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HYDROSTATICS OF SPHERICAL THIN FIIMS
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The hydrostatic approach is applied to spherical films
to define the film tension and the surface tensions of the two
interfaces and to generalize the definition of the disjoining
pressure to the case of systems with curved surfaces. Equati-
ons relating the themmodynamic parameters with the components
of the pressure tensor are derived.

INTRODUCTION

An important step in the theory of the surface phenomena was taken
by Bakker! who introduced the hydrostatic approach and derived an equation
for the surface tension in tems of the components of the pressure tensor
(for details see 2°3). The same equation applies to a plane thin film sepa-

“>5 when the film is considered as a membrane of zero

rating two bulk phases
thickness and the force acting per unit length along the film is the film
tension y. In contrast to an interface, the film can be considered also as
a bulk phase of thickness h. Then two forces, acting per unit length along
its surfaces must be introduced - the so called surface tensions of the
£ilm®>°2%>7, A hydrostatic definition of the surface tension of the film
was given in ref.5. A similar situation exists with curved films®’® - the
film can be considered from mechanical viewpoint either as a membrane with
tension y or as a bulk phase with two interfaces with surface tensions ¢,
and o3.

The purpose of the present paper is to derive the hydrostatic equati-
ons of the film tension y and the surface tensions o; and oz of a spherical
film. When the film is considered as a membrane the hydrostatic equations
for its tension y are the same as for the surface tension of a spherical
drop. However, new results are derived when the film is considered as a

bulk phase. Moreover, in this case a hydrostatic definition of the dis-
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joining pressure is also obtained in a natural way.

FIIM TENSION

Imagine two bulk phases, o and B, separated by a spherical thin film,
enveloping the phase o. Since this system is not homogeneous the force
field in it is described by the pressure tensor. There can be no shear
stresses in an equilibrium fluid system, so that the pressure tensor has
only three non-zero components: P ey 3d Pgg =P o6 where r, 6 and ¢ are
polar coordinates (r is the distance to the center of the system). The
force (per unit area), acting nommally to any surface r=const is P T and
it is called the normal component of the pressure tensor PNCr); along the
same surface acts Pp(r) = Pee =P 66> which is called the tangential compo-
nent of the pressure tensor. We will work with the total pressure tensor
which encompasses all possible interactions in the system and can be defi-
ned in a unique way®. Note, however, that its decomposition into parts,
accounting for the different kind of interactions (e.g. van der Waals',
electrostatic etc.), is somewhat arbitrary and this can lead sometimes to
difficulties (cf. ref.10). The condition for hydrostatic equilibrium can
be expressed by any of the following three equivalent equations®?’?:

2
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— =P, m
da?y T
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N _ 2
N_Z@ -py, @
T T T N
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N 2
——=1"(P, + 2P.) . (3)
dr N T

For convenience let us consider a portion of the system, enclosed
between two spheres of radii T, and Tge The total force acting on the sur-
face hatched in Fig.la in a direction perpendicular to it will be

18

£do =de [ Ppxdr . (4)
Toy

The respective moment is defined by

T
B 2

Mdo =do [ Prridr. (5)
rOL -

Following Gibbs'? we define an idealized system, by introducing two
phases, o and 8, homogeneous up to the dividing spherical surface of
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Figure 1. On the derivation of the conditions for mechanical equilibrium
of a spherical film (see the text).

radius Toe We apply per unit length at T, a force y (see Fig.1b) and
require that the real and the idealized systems be mechanically equivalent
(in tems of force and moment). If the pressures in the homogeneous phases

are P o and PB respectively, from the conditions for mechanical equivalence
of the two systems and Equations (4) and (5) it follows

g
21 -
Y = r—{ (qu T)r dr s (6)
0 o
T
=1 jscp - P)T dr )
Yoy Ces T POT AT
0 o
where
nd PocB = Poee(ro -T1) + PBG(r - ro) (8)

_ (1 for x> 0,
00 = {0 for x < 0. . (9

Equations (6) and (7) define the film tension y and the radius of the divi-
ding surface T, in tems of Pr, Poz and PB' The dividing surface defined in
this way is called "the surface of tension' 2’%. Let us assume that the

pressures P and PB coincide with the values of PN at t = T, and r = r

B
respectlvely, i.e.

0‘ = PN(ra) and PB = P (rB) (10)
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Then on integrating Equation (1) we obtain
r
(PrZ-Pr2)=fBP d an
'8~ Ta'a TT -

T
o

[N

On perfomming the integration in Equation (6) and substituting the expres-
sion for the integral of Pp from (11) one easily obtains

p -p, =2 (12)

which is the familiar Laplace's equation.

This result calls for some comments. It is well known that Laplace's
equation holds only for the surface of tension. Therefore, y in Equation
(12) will have the meaning of surface tension only when 1, is defined as
in Equation (7), although we did not use the latter equation when deriving
Equation (12) - cf. ref.2. When carrying out similar derivations for a
spherical drop? one usually assumes that T, and Tg lie in regions where
there are homogeneous fluids, so that Pa and PB are the respective isotro-
pic pressures. This assumption substantially simplifies the themmodynamic
treatment. However, as far as the mechanical equilibrium is concerned, this
assumption is not necessary. Indeed, in our derivation T, and g are arbit-
rary and Poc and PB were defined by Equations (10): for example T, can be
zero and then P will be the pressure in the center of the inner phase a.
This fact can be of importance in the treatment of very small drops, when
the phase encircled by the film never becomes homogeneous. It is pertinent
to derive expressions for y only in temms of integrals of (PN - T). The
integration of (2), along with (12) yields

g T
y-=j(PN-PT),r—°dr. (13)
An alternative expression is obta?:ned by integrating Equation (3) and
making use of Equations (7) and (12):
r 2
y=[ (B -Pp L dr. (14)
: T 0
The analogs of these equations for the surface tension of a spherical drop
were first derived by Goodrich®® and Buff'"*, respectively. Equations (13)
and (14) lead to an explicit equation for Tyt
T

. .
2
{f (By - Pp)ridr

5. "o
ro To ; . (15)
T
£ (By - Pp) =

o
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SURFACE TENSIONS AND DISJOINING PRESSURE OF THE FIIM

As already mentioned in the Introduction, the film, as opposite to the
transition region between two phases, is a bulk (although non-homogeneous)
phase. On the other hand, in the previous section the film was treated as
a membrane of tension vy, radius T, and zero thickness, i.e. in the same way
as the transition region between two bulk phases. This, of course, is per-
missible. Nevertheless, it is convenient to develop also a hydrostatic ap-
proach in which the finite thickness of the film is explicitly accounted
for.

To do that, let us introduce an idealized system consisting of the
bulk phase o with pressure Pa (lying within r g <T% r—1), bulk phase B with -

- pressure PB (:r2 <7T< rB) and a reference phase R (for details see below)
with pressure PR (note that Ty <1y < rz). The film is, therefore, represen-
ted as a spherical layer of thickness h = Ty = Tq- We call the spheres of
radii r; and r, "film surfaces" and by analogy with Equations (6) and (7)
we define the respective surface tensions of the film o, and o, as:

(o]
oary = [ (B p - Pp(@)r dr , , (16)
T
T
oty = [ (g - Prrldr (17)
T
with o
PozR = Pone(r1 -1) + PRe(r - r1) (18)
and rB »
02T, = / (PRB - PT(r)) r dr , 19
T
T
0o3 = | (Bpg - Pp(m) rdr , (20)
T
0
with
PRB = Il‘Re(r2 -71) + PBe(r - rz) . 21

To obtain an analog'of Equation (12) (the nommal force balance) we integra-
te Equations (1) and (18) (the latter multiplied by r) from r, to T, and
eliminate P r from the result. Then keeping in mind Equatlon (16) we obtain

204 rg
—_—= Poz - PR - {PN(ro) - PR} = - (22)
T B

A similar result holds for the other surface. By analogy with the tensorial
definition of the disjoining pressure II in flat films5°15°1€s37 jet us call
disjoining pressure of the spherical film the pressure difference
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nI= PN(ro) - P (23)
Since the pressure tensor is comected with the intemmolecular forces, the
disjoining pressure so defined accounts for the alteration of the field of
these forces in the film with respect to the reference phase.

Then
20, rg 20, r(z)
_I:_;.P(X-PR-H?’ T=PR-PB+H?. (24)
1 1 2 2
In the limit rj +« , one obtains from these equations
T=P,-Pp=Py-Pp, (25)

which is a generalized fom of the themodynamic definition of the disjoin-
ing pressure for flat films.

The hydrostatical definitions of o; and r; (i =1,2) are the same as
those of v and To» namely Equations (16), (17), (19) and (20) define the
film surfaces by the conditions for full mechanical equivalence of the real
and idealized systems. Therefore, following Gibbs'?, we again call the film
surfaces defined by Equations (16), (17), (19) and (20) "surfaces of tension"
For a liquid drop the "surface of tension' always coincides with the "sur-
face of minimum surface tension' and this is the surface for which Laplace's
equation holds?:'2. Equation (12) reveals that the same is true for a film
as long as it is considered as a membrane of temnsion y. The situation can
be different when the film is represented as a phase of finite thickness h:
beside the capillary pressure tems, Equations (24) contain disjoining pres-
sure tems. The latter could be also eliminated by choosing in Equation (23)
Pp = Py(r,). Then Equations (22) and (24) acquire the same fom as the res-
pective equations of Rusanov®, valid for the surface of minimum surface
tension. However, as our derivation shows, for a film of finite thickness
the surfaces of tension (as defined by Equations (16) - (21)) and the sur-

faces of minimun surface tensions (for which Zci/:r-1 =P i=1,2) do not

ci’
necessarily coincide.

The choice of the pressure of the reference phase PR can be arbitrary.
That is why we kept it in our treatment as an undefined parameter. From the
theoretical viewpoint it is convenient to choose as reference phase the bulk
phase that would exist between the phases o and B in the limiting case h -+ «
(thick film). It will be shown below that such an approach allows easy
transition from curved to flat films.

By means of Equations (2) and (3) one can derive the following expres-

sions analogous to Equations (13) and (14):

T

Oy - o dr 1 2,2

—I?: {‘ (PN - PT)——I’ - ‘Z‘H(To/r-] - 1) ’ (26)
o
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By suming up Equations (26) and (27) and keeping also in mind Equation
(13), we obtain

— ==+ S Oqy (30)

where h1 =T, - T, hy =1, - T, and h = h1 + h,. The limiting case of a
flat film%°7 can be obtained by letting Ty > (but keeping h1 and h2 fini-
te):

Y =0y +0, + 1 h. 31

Another important relationship is obtained by summing up Equations (28) and
(29) and taking into account Equation (14):

YA, = O1A; + OA, + HhAo s (32)

where Ao, A1 and A2 are the areas of the surfaces of radii Ty T and Ty,
respectively. In the limit r o~ ® Equation (32) also leads to Equation (31).

As already pointed out the definition of I (Equation (23)) is a matter
of convention. Since in a curved film PN is not a constant (according to
Equation (2) Py is a function of r ) one can define a local disjoining pres-
sure II(r) for any surface of radius r. By making the nomal force balance
(along r) of a volume element confined between a conical surface and two
spheres of radii T, and r, one can easily show that

I(r) = L(ry) (/7% . (33)

Then Equations (24) yield

207 20, :
— = Pa-PR-H(r1) , —_— = PR- PB+H(r2) . (34)
T T

1 2
These equations describe the nommal force balances at the film surfa-
R and PR- PB
between, the film surfaces is accounted for by two temms: the curvature tem

ces. They show that in the pressure drops Poc_ p the interaction
20;/r;, 1=1,2 (in which the surface tensions o, and 0,, due to the inter-
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action, will be different from the surface tensions of drops of the same
radii) and the disjoining pressure temms H(r1) and II(r,). In the limit
T,Ty > @, both Equations (34) lead again to the known definition of I in
a flat film - see Equation (25).
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