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Abstract 

The effect of the polydispersity of the micelles on the surface elasticity modulus 
of surfactant solutions subjected to periodical oscillations is studied theoretically. 
By using the results of a previous theoretical study (CD. Dushkin, LB. Ivanov and 
P.A. Kralchevsky, Colloids Surfaces, 60 (1991) 235) two important cases of surfactant 
diffusion are considered. 

First, diffusion affected by the slow relaxation process of micellization. Expressions 
for the elasticity modulus and its oscillation-retarding phase are derived. They appear 
as a special case of the equations of Lucassen for monodisperse micelles (J. Lucassen, 
J. Chem. Sot., Faraday Trans. 1, 72 (1976) 76). The parameters of the micelle size 
distribution (mean aggregation number and dispersion) are computed from the data of 
Lucassen. The values of the calculated parameters are in agreement with their experi- 
mental values for different surfactants, obtained by chemical relaxation techniques. 

Second, diffusion affected by the fast relaxation process of micellization. The 
equations for the surface elasticity modulus derived here cannot be obtained in the 
frame of Lucassen’s model because the fast relaxation process is a net result of the poly- 
dispersity of the micelles. In both cases, the micelles enhance the exchange of monomers 
between the adsorption layer and the solution. Hence, the effective viscous behavior 
of the adsorption layer becomes more pronounced. 

1. INTRODUCTION 

The surface rheological properties of the surfactant layers are 
important for foam or emulsion stability. The interactions between the 
bubbles or droplets in these systems are accompanied by an unstoppable 
deformation and expansion of the adsorption layers. Their ability to 
resist the disturbances is determined by two factors. One of these is 
represented by the surface shear and dilational viscosities, which are 
counterparts of the respective bulk quantities. They account for the 
interactions between the adsorbed molecules and are probably of minor 
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importance in the case of the soluble low molecular weight surfactants 
which we consider here. The second factor is the surface apparent 
viscosity, which has no bulk analog. This apparent viscosity is due to 
the exchange of surfactant molecules between the adsorption layer and 
the solution. 

The apparent surface viscosity is connected with the surface dila- 
tional modulus, E, determining the viscoelastic behavior of the adsorp- 
tion layer. It gives the change in the surface tension, 0, corresponding 
to the alteration of the area A of the adsorption layer 

E = dg/d(ln A) (1.1) 

The dilational modulus depends on the way the experiment is per- 
formed. There are a number of experiments for measuring E, origin- 
ating chiefly from Ref. [l]. The adsorption layer can be subjected to 
periodic oscillations of different frequencies: around 1 Hz in the method 
of oscillating barriers [2,3]; 100 Hz in the longitudinal waves method 
[4,5]; lo4 Hz in the method of capillary waves produced by thermal 
interfacial fluctuations [6,7]. The area of the adsorption layer can be 
changed continuously, or with a jump, in a Langmuir trough [l,S] or 
in a funnel [9]. Furthermore, the relaxation of the surface tension is 
usually measured by a Wilhelmy plate or by light scattering [6,7]. 

The dilational modulus E is a complex quantity which may be 
represented as [lO] 

E = ER + iE, = IEI exp (irl/) (1.2) 

where i2 = - 1. The real part, ER, gives the elastic energy stored in the 
adsorption layer while the imaginary part, El, accounts for the energy 
dissipated in the layer during the oscillations. The dissipation is due 
to the apparent surface viscosity, i.e. to the exchange of surfactant 
with the adjacent solution. Hence, by studying the dependence E(o) 
one obtains information about the viscoelasticity of the adsorption 
layer. 

The absolute value IEI and the phase # of the moduius 

IEI = (23; + E,2)1’2 $ = arctan (EI/ER) Q-3) 

can be measured directly. When the adsorption layer has purely elastic 
behavior (El = 0) the surface tension changes in proportion to the 
surface area. The exchange of surfactant molecules between the bulk 
and the interface is negligible. In the case of viscoelastic behavior 
(E, > 0) a phase difference between the variations of the surface tension 
and surface area arises. The mass transfer exhibits a tendency to reduce 
the deviations of the surface tension from equilibrium. That is why in 
this case the dilational modulus also depends on the way the surfactant 
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molecules are transported to the interface. Here we shall consider the 
case of diffusion control, i.e. the case when the diffusion mass transfer 
from the bulk to the subsurface layer is much slower than the adsorp- 
tion of molecules onto the surface. The opposite case of slow adsorption 
is reviewed in Ref. [lo]. 

We shall restrict our considerations to the experiments of Lucassen 
and co-workers [2,3,11]. The sinusoidal perturbations in the surfactant 
layer adsorbed on the surface of water solutions are produced by two 
moving barriers. They oscillate with a small amplitude (relative devia- 
tion (dA/Al =t: 0.06) and a frequency of 0.05-10 cps (angular velocity 
o x 0.0052-1.047 s- ’ >. The compression and expansion of the layer are 
uniform over the whole area between the barriers. The respective 
variations of the surface tension (As x 0.1-4 dyn cm-‘) are monitored 
by the Wilhelmy plate method. Lucassen and van den Tempel [Z] have 
developed a theory which relates E to the parameters of the surfactant 
solution at concentrations below the critical micelle concentration 
(CMC). They have solved the diffusion problem at appropriate bound- 
ary conditions. To do this they have assumed that the deviations of the 
adsorption, surface tension and buik surfactant concentration from 
their equilibrium values are small. In such a way Lucassen and van 
den Tempel have obtained an expression for E and have calculated 
the paramete r of the adsorption isotherm of decanoic acid from the s 
experimental data for jE1 and sl/. 

Lucassen later generalized the theory for surfactant concentrations 
above the CMC [ll]. To account for the effect of the micelles he has 
supposed that: (i) only one sort of micelle containing m monomers is 
present in the solution; (ii) the monodisperse micelles can move due to 
diffusion but they do not adsorb onto the surface; and (iii) the micelliza- 
tion kinetics can be described by a one-step reaction mechanism when 
one micelle disintegrates directly to M monomers. The main conclusion 
of this theory is that the micelles do affect the surface elasticity by 
enhancing the exchange of material between the adsorption layer and 
the solution (for more details see below). By using this theory Lucassen 
has calculated the characteristic micellization time from the experi- 
mental data for several surfactants. This is the first attempt to study 
the micellization kinetics in the bulk of solution by means of surface 
experimental methods. 

In reality the micelles are polydisperse particles. The micellar solu- 
tion contains aggregates, which consist of a variable number of surfac- 
tant molecules (monomers) s. The abundant micelles with s > s2 have 
a gaussian size distribution. The transition size region (sl < s < s,), 
where the rare aggregates are placed, connects the micellar region 
with the oligomer region (I <s < sl). This complex system has a 
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peculiar behavior in non-equilibrium conditions. It is known that the 
kinetics of micellization at small deviations from equilibrium are 
connected with two relaxation processes, fast and slow, whose time 
constants, TF and rsL, differ appreciably [12-15). For example, in the 
stopped-flow experiment [12] the micelles transform during the fast 
relaxation into smaller ones, thus lowering their mean aggregation 
number. However, the total concentration of the micelles remains 
nearly constant. During the slow relaxation the mean aggregation 
number increases to its initial value. The micelles decrease in number 
until the new equilibrium concentration is reached. 

Aniansson and co-workers [13-153 have obtained expressions for TF 
and ~~~~ dependent on the parameters of the micellar system. The 
relaxation time of the fast process is 

and of the slow process: 

The constants in Eqns (1.4) and (1.5) are defined as follows: 

U-4) 

(1.6b) 

s3 Sl 

Em = c es En = c Es (1.6~) 
s2 + 1 1 

k, = 2 iz,c,/E, (1.6d) 
s2 f 1 

R =g (k,E,)-’ (1.6e) 
SI 

where k, is the mean dissociation rate constant of the micelles; es is 
the concentration of one s-mer; e,,, is the total concentration of the 
micelles; C, is the total concentration of the oligomers; j?,,, = C,/e,; 
Pn = i&/El; m and ft are the mean aggregation numbers of the oligomers 
(including the free monomers) and of the micelles respectively; m2 and 
n2 are the second mathematical moments of the micellar and oligomer 
size distributions; 0, and on are the respective dispersions; R is the 
resistance of the transition region. (The equilibrium quantities are 
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denoted with a bar above the letter.) It has been established [14] that 
the one-step reaction mechanism, used by Lucassen, corresponds 
roughly to the slow process. In this case the above expressions simplify 
to: pn = 1; n=l; o,=O; n2=1; a,=O; m,=m2; R= (k,Em)-‘. Equation 
(1.5) then reduces to 

zsL = fk; (1 + m2&)]- 0.7) 

The theory of Lucassen [ll] is successful in describing the main 
effect of the micelles on the dynamic surface elasticity of several 
surfactants when the slow relaxation process is of importance. But 
keeping in mind the more realistic model of Aniansson and Wall one 
may note that Lucassen’s theory has two disadvantages: (i) it. does not 
take into account the dispersion of the micelies 0, which enters the 
expressions for rF and zsL (Eqns (1.4) and (l.5)), and (ii) it is not possible 
in the frame of Lucassen’s theory to obtain a solution for E when the 
fast relaxation process is of importance. 

Our aim in the present study is to develop a diffusion theory for the 
surface dilational modulus which accounts for the polydispersity of the 
micelles. Our theory allows a treatment of the mass transfer affected 
by either the fast process or the slow process of micellization. 

First we will formulate the general equations, describing the micelles 
as nolydisperse, diffusing and reacting particles and discuss the 
mathematical method of solution. 

2. DIFFUSION EQUATIONS 

We assume the reaction mechanism of formation of micelles to be 

A,+A,_, ++As 
I 

s= 2, 3, 4, '.', s3 Gw 

where A, are the symbols of the s-mers; k2s+ and k[ are the respective 
rate constants of association and dissociation of the sth reaction. The 
starting point of our mathematical consideration is the set of diffusion 
equations for the bulk concentrations of the species c,(x, t), correspond- 
ing to the reaction set shown in (2.11 

ac, 
at 

ac, 

ae 

Js= k,+clc,.+ + k,c, 

s= 2, 3, 4, ..', s3 

s= 2, 3, 4, . . . . s3 

(2.2a) 

(2.2b) 

(2.3) 
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s3 

c SC, = c 
1 

(2.4) 

where D, are the diffusivities of the s-mers; J,(x, t), given by Eqn (2.3), 
is the y’- - ..~ction (pseudo)flux, i.e. the total rate of the sth reaction. The 
local balance of the monomers (2.4) states that the total surfactant 
concentration c(x, t) is not equal to the equilibrium value, c?, because 
there is diffusion and adsorption of surfactant material. 

The solu.tion of Eqns (2.2)-(2.4) has to obey the following bound,.ry 
conditions for the components: 

&AT) = AD1 2 (2.5) 
x=0 

r = f + (aiyac,)(c, - E,)I,=, (2.6) 

acs 
ax x=o = 

0 s = 2, 3, 4, . . . . s3 (2.7) 

cs(a3, t) = 05, S = l, 2, 3, . . . , s3 cm 

Equation (2.5) represents the surface balance of monomers on a flat 
interface placed at x = 0 (note, that the area, A(t), varies with time). 
Equation (2.6) is an expansion of the adsorption, r(t), in a series for 
small deviations from equilibrium while Eqn (2.7) means that aggre- 
gates with s >, 2 do not adsorb. Finally, Eqn (2,8) states that the 
deviations from equilibrium vanish far from the solution surface. 

In this type of experiment the diRusion time constant of the free 
monomers zD is given by the expression [16] 

wo 
which is consistent also with the boundary conditions (2.5) and (2.6). 
The characteristic time of the experiment, CU- I, can differ from Tn. 
However, they must be of the same order of magnitude if we want to 
detect the effect of the exchange of material between the surface and 
t.he solution. Two important case s of diffusion exist, depending on the 
magnitude of the time constai?.ts ratio [16]. In general, the diffusion 
will be affected by the micellization kinetics only if zD is of the order 
of rF or zSL. If 5n%rF the fast relaxation process will be important for 
the behavior of the surface tension. In the other case (rD= zsL) the 
diffusion will be influenced by the slow relaxation process. Since at a 
given concentration TF is always much slower than zsL, the case 
ZDZ:CCFZ fSL is most unlikely for the usual surfactants. 
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In our previous paper [16] a method for simplifying the complicated 
set of partial differential equations (2.2)-(2.4) is developed. As a result 
a set of only two equations is obtained. One of them is for the concentra- 
tion of the free monomer, the other one is for the total concentration 
of the micelles. Below we shall consider separately the two cases of 
diffusion formulated above, i.e. rD x tF and rD z rsL. We SOlVe the respec- 
tive diffusion equations for the monomers and the micelles to find 
expressions for the surface elasticity modulus. 

3. DIFFUSION AFFECTED BY THE SLOW RELAXATION PROCESS 

When TD x ZSL, the diffusion of surfactant is affected by the slow 
relaxation process. In this case the diffusion equations in the bulk of 
solution reduce to [16] 

(3.la) 

(3. lb) 

where <I and Lj,,, are the relative deviations of the concentrations of 
the free monomers and of the micelles from equilibrium: 

Cl k t) = (Cl - G YG 5mtx9 t, = Cc, - G)lEm 

The con&ants in Eqns (3.1) are given by Eqns (1.6). 
introduced the effective diffusivity of the monomers 
represented as 

(3.2) 

IIere we have 
D:, which is 

(3.3) 

0: accounts for the effect of the micelles on the difksivity of the free 
monomers. The mean diffusivities of the micelles D, and the oligomers 
D, are defined by 

Dn = 2 D,Es/fTn = d,D1 
1 

The source terms in the right-hand side of Eqns (3.1) give the net effect 
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of the micellization kinetics on the diffusion of the species. They are 
due to disintegration of the micelles during the slovw relaxation process. 

Combining Eqns (I-I), (2.5) and (2.6) and summing Eqns (2.7) and 
Eqns (2_8), we obtain the following boundary conditions for <I and t,,.,: 

(3.4a) 

51(% o=o (3.4b) 

asrrn 
dx,=*= 0 (3.4c) 

4nl(% 0 = 0 (3.4d) 

where &, is the diffusicn length and EG is the Gibbs elasticity, defined as 

6n= aF/ae, 
and 

EG = - dZ/d(ln r) 

Further, we shall determine the concentration of the free monomers 
el, which in turn gives the elasticity modulus (cf. Eqn (3.4a)). 

Following Lucassen [ll] we assume that the solutions of the 
boundary-value problem formulated above can be represented as 
periodic functions oft 

L (x,0 = E, (x) exp (imt) L (x, t) = &Ax) exp (iW (3.5) 

where g, and Cm are functions of x:. From (3-l), (3.4) and (3.5) we obtain 
the respective differential equations 

and boundary conditions 

(3.6a) 

(3.6b) 

(3.7a) 

(3.7b) 

-;-I d& =O 

d* Lo 
(3.7c) 
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En(~) = 0 (3.7d) 

The constants in (3.6) are 

a1 = iwz, j(d T Sk) - ma, a,= - amrsJ[(d,nA + dmk%,J% 661 

b, = - amTsL/[d,j3,REI Si] b, = iwrD/(d,S&) - b,/m 

where a = ~~~~~~ is the Damkijhler number, giving the ratio between 
the diffusion and the reaction terms in Eqns (3.1). 

The boundary-value problem shown in Eqns (3.6)-(3.7) can be solved 
as shown in Ref. [ll]. In this way we obtain the expression 

E ---Z 
EC 

i 

1+ (1 - i)Z -& 
( > 

112 
(1 - iX)‘/” 

1 

for the complex elasticity modulus 

z = (2Wb) - 1’2 x= (OQJ1 

K= Jm,Ptl+ %3??3/(~213, + m2PrnI 

[17]. Here 

(3.8) 

The corresponding equation of Lucassen for monodisperse micelles 
(Eqn (3) in Ref. [ll]) is a special case of our Eqn (3.8), when 
K=k,/co and dT= 1 (for definitions of the other constants in this case 
see Section 1). 

One can separate the real and the imaginary parts in Eqn (3.8). The 
results for the modulus ]Ej and the phase @ are 

~=[l+2ZmG,+.Zm(G~+G~)~-1~2 (3.9) 
G 

(3.10) 
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where we have introduced the notations 

zm = z(/F1/3~/d~)“2/ycl;- -I- Ci’) 

F=l-iX IFI = (1 + Xi)1’2 

IBI = (B; f By2 BE = 1-t d,fdf + 2Fm cos # 

BI = - (Xd,/dT) + Xd, - d,)n2/LiCdT(n2rBn + m2Pm)l + 2Fm sin 4 

F,,, = (jF(d,/df)1’2 f$ = [arctan (- X)1/2 

CR = 1 + F,,, cos q5 C!= -K+F,,, sin $ 

G,=(C,- C1) cos 7 + (CR + Cr) sin y 

G, = - CC, f Ci) cos y + (CR - C,) sin 1’ 

y = 4 + [arctan (B,/B,)]/2 

(the subscripts R and I denote real and imaginary parts respectively). 
If the solution does not contain micelles (p,,, = 0, /3,, = 1, rzz = 1, 

dT = 1, X= K) the Eqns (3.8)-(3.10) transform into the corresponding 
equations of Lucassen and van den Tempel[2] 

_ l+Z+iZ E 

Eci 1+2z+2z2 

IEI 1 - 
EG (1 + 22 + 222)“2 

+ 
2 

= arctan - 
( > 1+Z 

(3.11a) 

(3.11b) 

(3.11c) 

4. DIFFUSION AFFECTED BY THE FAST RELAXATION PROCESS 

If the fast relaxation process affects the mass transfer (~b w sF), the 
bulk diffusion can be described by the equations 

(4. la) 

(4.lb) 

derived in Ref. [16]. Equation (4.la) accounts for the diffusion of the 
free monomers, while Eqn (4.Lb) refers to the monomers which are 
aggregated in mioelles. &, is the relative deviation from equilibrium 
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of the concentration of the aggregated monomers, defined as 

Z,(x. ;t) = 2 s& C,lCn 
s2 + 1 

(4.2) 

Zm is used instead of <,,, because the total concentration of the micelles 
remains approximately constant, when the diffusion is influenced by 
the fast reiaxatiun process, i.e. 5, = 8 (see Ref. [16]). However, the 
micelles of different aggregation number s can diffuse, forced by the 
respective concentration gradients. 

To solve Eqns (4.1) we use Eqns (3.4a) and (3.4b) 
Cons for the function cl. The boundary conditions 
are 

as boundary condi- 
for the function Zm 

a = 
Lm x=o = 0 

q&F3,t)=U 

(4.3a) 

(4.3b) 

To derive Eqns (4.3), Eqns (2.7) and (2.8) are first multiplied by s and 
then summed over the micellar region. We search again for a periodic 
solution of the problem (cf. (3.5)) 

C1 (x, t) = L (x) exp (iat) Em(x, t) = Sm(x) exp (iwt) (4-4) 

Equations (4.1) and (4.4) give 

d2L _ 
dx2 

a,& +a,~, 

d2s, 

dx2 
= b,& + b,& 

(4&a) 

(4.5b) 

where new constants are introduced 

a, = iwr,/6& - aia, a,= - c%Ji; &I~&%) 

b, = - atFkG /(d,Sk) b, = iwtD/(d,6&) - b, /ai 

where z = ~b/r, is in fact the Damkijhler number for the fast process. 
Solving the problem as in the preceding section we obtain the complex 
elasticity modulus 

s / 
- = 
EC i 

1+(1-ii)z(l-iX)‘/‘:~i ~-~~~2(~-iJ=j’L~z]2-i~(~-d,j)‘~2 

-1 

x P - iK+ ds2(1 - iX)1/2]-1 (4.6) 



where 

X= (CC@- * K= X/(1 + a;&) 

The separation of the real and imaginary parts of Eq_rt (4.6) leads to 
the same equations for the elasticity modulus IEI anti the phase @ as 
Eqns (3.9) and (3.10). The definitions of the constants remain the same 
except that now: 

&= 1+ d, + 2(d,IF1)1:2 cos 4 

Bi = - d,X + K(1 - d,) + 2(d,IFl)1’2 sin @ 

CR = 1 + (d,/Fl)1’2 cos t$ 

c,= - K + (d,lFj)1/2 sin 4 

When micelles are absent (K = X) the corresponding equations (3.11) 
are a special case of our equations for E, IEI and ti. 

Equation (4.6) cannot be obtained in the frame of Lucassen’s model 
because the fast process is a result of the polydispersity of micelles. 

5. DISCUSSION 

We discuss first the case where the difYusion is affected by the slow 
relaxation process. The effect of the polydispersity of the micelles on 
the elasticity modulus IEI and the phase + is shown in Figs 1 and 2 
respectively. The curves are drawn by means of Eqns (3.9) and (3.10). 
The values of the constants are chosen in such a way that our Tesults 
and the results of Lucassen for moaodisperse micelles [ll] are 
comparable. 

Let us consider first the behavior of the system when there are no 
micelles in the solution. The mechanical energy of the periodical 
oscillations transforms into elastic energy of the adsorption layer. In 
the experiment of Lucassen low molecular weight surfactants which 
are soluble in the water phase were used. That is why the dissipation 
of the energy in the adsorption layer is due to the exchange of molecules 
between the surface and the solution rather than to the interactions 
(friction) between the adsorbed surfac.cal_, of molecules. The easier the 
molecules -pass from the adsorption layer k’: the solution 2nd vice versa, 
the greater will be Er and Ic/ (see Eqn (1.3) and Fig. 2) and, hence, the 
greater will be the effective surface viscosity. If the oscillations are 
too fast (0-l G r,,), the diffusion of surfactant does not influence the 
adsorption layer. The layer behaves as though the surfactant is not 
soluble. In this case 2 + 1 and Eqn (3.11b) gives I& I --+ EG (Fig. 1) while 
it follows from Eqn (3.11~) that e -+ 0 (Fig. 2). There is no dissipation 
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Fig. 1. Dependence of the surface elasticity modulus II!ZI on w, when the diffusion is 
affected by the slow relaxation process of micellization. Curve 1 corresponds to the 
case when micelles are absent from the solution, Eqn (3.lfb). The other curves are 
drp.wn from Eqn (3.9) for micellar solutions, containing ,micelles with different disper- 
sions 0,; curve 2, crm = 20; curve 3, Q,= 10; curve 4, cm = 0 (model of Lucassen). The 
remaining constants are: &=0.25; dn = 
R-2*10” cm3smol-‘* 

1; nz = 1; n= 1; m=50; #I,= I; p,=O.O2; 
- , 5, = 2.5 - 10s cm3 mol-‘. 

of energy (E, + 0), because the surfactant molecules do not cross into 
and from the solution. In the other limit (extremely slow oscillations, 

- 1 + ~b) the adsorption layer loses its elastic properties, because the 
gansfer of molecules is too fast: IEi e Eo (Fig. 1) and El = ER ($ = 45”) 
(Fig. 2). Most 
(zss2-1'z~ 

pronounced dare these alterations when 0-l z ‘cb 
0.71, Ii!31 x0.54& and I,+ zn/8). 

Let us consider now the effect of the micelles on the behavior of the 
adsorption layer. At a given frequency of oscillations the modulus lEl 
is smaller than in the case without micelles (Fig. 1). The micelles 
enhance the exchange of monomers with the adsorption layer, because 
they can diffuse and disintegrate simultaneously. This leads to a 
notable maximum in E1/ER or, what is the same, in the phase + (Fig. 2). 
Under the otherwise equal conditions the micelles with zero dispersion 
produce the biggest surface viscosity (model of Lucassen). When the 
mice&s are polydisperse, as in our model, the height of the maximum 
decreases. This may be explained by the fact that the monodisperse 
micelles disrupt at once releasing many more mon.omers than poly- 
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Fig. 2. Dependence of the phase 9 = arctan (EI/ER) on o at different values of the disper- 
sion of the micelles 0,. Curve I is for solution without micelles, Eqn (3.11~). Curves 2, 
3 and 4 are plotted from Eqn (3.10) for micelles with 0 m = 20, curve 2; 0, = 10, curve 3; 

cl-/l = 0, curve 4 (model of Lucassen). The other parameters are as in Fig. 1. 

disperse micelles having the same bulk concentration, &, but dis- 
integrating by the many-steps mechanism (2.1). 

From the experimental data of Lucassen we computed the parameters 
of the micellar distribution in solutions of hexadecyl dimethylammonio- 
propane sulfonate (HDPS). We used the data of IEl measured for five 
different concentrations of HDPS (above the CMC) at five frequencies 
(see Fig. 3). The numerical procedure used by us consists of the 
following steps: (i) At each point we subtract the experimental value 
of IEI from the value calculated by Eqn (3.9). (ii) We take the sum of 
the squares of these differences for a?1 points. (iii) We minimize this 
sum numerically by varying the parameters m, CT,,, and z~,_. (Note, that 
the mean aggregation number m and the dispersion G,,, do not depend 
on the concentration.) The minimization method of Hooke and Jeeves 
(quoted in Ref. [X3]) is used. (iv) Finally we compute the theoretical 
curves for E,/& = tan @ (Fig. 4) using the constants obtained from the 
data of lEl/Eo in Fig. 3. 

The diffusion time of HDPS is zr, = 0.725 s; it remains ccinstant above 
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0 2 4 
he 

Fig. 3. Data of Lucassen [ll] for the surface elasticity modulus ]E] of micellar soiutions 
of HDPS (28”C), plotted vs the relative concentration of the aggregated monomers 0. 
The values of o are 0.052 s- ' (0), curve 1; 0.105 s- i (a), curve 2; 0.209 s- ’ ( q I), curve 3; 
0.524 s-l (S), curve 4; 1.047 s-l (A), curve 5. The (solid) curves are drawn from Eqn 
(3.9) at Zl = 2.55 - lo-' mol cm-‘; tn = 0,725 S- 1 and d,,, = 0.25 [li]; d, = 1; rz2 = 1; IZ = 1; 
/?,=l; m=45; 6,= 15. The values used for ‘csL are given by Eqn (5.1) (see Fig. 5). 

0 2 4 6 8 
9 

Fig. 4. Data of Lucassen [ll] for the ratio E1/ER (i.e. the phase 9) of wic~ilar solutions 
of HDPS (28°C) vs 8 at different w: 0.209 s- ’ ( q ), curve 1; 0.524 s- * (Nil), curve 2; 
1.047 s- 1 (A), curve 3. The (solid) curves are drawn from Eqn (3.10) using the values 
for m, Q, and rsL, computed from the data of elasticity modulus in Fig. 3. 

the CMC because the concentration of the free monomer does not 
change (El = 2.55 l 10m8 mol cmB3 ). The ratio & is accepted to be 
d, = 0.25 (Lucassen). We assume for the oligomers that d,., = 1, n2 = 1 

and & = I. The micellar constarits of HDPS, calculated by our theory, 
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are M = 45 and 0, = 15. Note that these are the first constants of the 
polydisperse micellar distribution to be determined by means of a 
surface experiment. 

The computed slow relaxation time ~~~(6) is given in Fig. 5 as a 
function of the relative concentration 8 

To compute the solid lines in Figs 3 and 4 we used the numerical fit 
of 5SL 

ZCjL1 = - 1.49425 + 2.659498 (5.1) 

At the lowest concentrations the linear fit of Eqn (5.1) fails. That is 
why the solid curves in this region cannot be drawn theoretically 
(dashed lines in Fig. 3). 

The dashed line in Fig. 5 corresponds to Eqn (1.7) (model of Lucassen). 
The constants used are as determined by Lucassen [Ill: ~TZ = 50 and 
k, =0.154~-~.1 t may be expected that the time constants zsL calculated 
by the model of Lucassen will be somewhat lower than those predicted 
by the polydisperse theory of the micellization kinetics. The main 
advantage of our theory is that it also allows the computation of the 

75 

70 

5 

0 

0 2 r: 6 8 

8 

Fig. 5. Concentration dependence of the reverse slow relaxation time l/rsL of HDPS. 
The values of ~~~ (circles) are computed from the data of Lucassen [II] by our poly- 
disperse model at 0, = 15 and m = 45 (see the text). The solid line corresponds to Eqn 
(5.1). The dashed line is drawn from Eqn (1.7) for monodisperse micelles, having 0, = 0, 
m = 50, k, = 0.154 s- '. 



229 

dispersion of the micelles, orn. Unfortunately, experimental data for 
HDPS from bulk experiments are not available in the literature. The 
values of the micellar constants of HDPS, received by us, are of the 
same order as the constants of many typical surfactants, published in 
Refs [15 and 191. 

We shall consider now the case when the diffusion is affected by 
the fast relaxation process. In Fig. 6 we have shown E,/E, as a function 
of the frequency at different 8. The numerical values of the constants 
are for SDS (sodium dodecyl sulfate): TD = 1.20 low6 s; d, = 0.18 
(D1 = 5.8 9 10V6 cm2 s-’ and D, = 10m6 cm2 s-’ [20]); lz,= 107sV1, 
M = 64 and o,,, = 13 [15]. It is seen that the phase @ increases when 
the micelle concentration (i.e. 0) increases. In this way the viscous 
behavior of the adsorption layer becomes appreciable because the 
micelles enhance the supply of monomers in the adsorption layer. The 
characteristic diffusion time of SDS is much smaller than that of HDPS 
which is why one needs much higher frequencies of oscillation (of the 
order of 104-lo5 EIzj in order to satisfy the condition w-l zz rb. Such 
high frequencies are not accessible in the mechanical methods [2-51. 
They can be realized by light scattering from the surface thermal 
fluctuations [6,7]. 

Finally we shall discuss the case of micellization kinetics, described 
as a pseudo-first order reaction. The complicated reaction of formation 
of micelles can be represented roughly as a pseudo-first order reaction 

E, 4 
ER 3 

2 
60 

Fig. 6. Dependence of E,/E, and the phase $ on o. when the fast relax ttion process 
affects the diffusion. The constants used are for SDS (see the text). Th,. solid curve= 
correspond to different concentrations of the aggregated monomers 8: tI=O, a=0 
(without micelles), curve 1 (Eqn (3.11~)); 0 = 1, a = 0.26, curve 2 (Eqn (4.6)); 0 = 5, a = 1, 
curve 3. The dashed lines 2* and 3* represent the approximate solution of Eqn (5.7). 
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with characteristic time tM, equal to either TF or zsL. The reverse time 
l/tM is not yet a rate constant of an elementary SrSt-order reaction, 
but it is a complex function of the rate constants of the reaction 
mechanism (2.1) and of the concentration too. A this case the micellar 
system appears as a quasi-closed system, where the total surfactant 
concentration does not change locally, i.e. 

c(x, t) z E (5.2) 

However, the concentrations of the individual species (s-mers) can vary 
with time (for more details see Ref. [lb] Q ). Two additional relations 
between the functions in the diffusion equations are established in this 
case [16]: 

(n2Pfn + +xn>~+ mPm~In = 0 
(diffusion affected by the slow relaxation process) and 

(5.3a) 

Cl +p,zm=o 
(diffusion affected by 
that the assumption 
for the diffusivities: 

(5.3b) 

the fast process). However, it is shol- A in Ref. [IS] 
(5.2) is equivalent to the following relationship 

(5.4) 

In reality the diffusivity of the micelles is several times lower than the 
diffusivity of the free monomers. For example, for HDPS d,.,, = 0.25 and 
for SDS d,,, = 0.18 (see above). Nevertheless, the hypothesis (5.2) (or, 
what is the same, (5.4)) may be important for some practical cases 
where the analytical solution of (3.1) and (4.1) i:; impossible (e.g. the 
kinetics of the surface tension [16] ). 

In both cases considered in Sections 3 and 4, the set of two diffusion 
equations reduces to one equation 

(5.5) 

Equation (5.5) is a generalization of the pseudo-first order-reaction 
model for diffusion problems. The equation for the function tr (x) 

d2& 1 
---(iwr,i-CC)~,=O 
dx2 6; 

(5.6) 

follows from Eqn (5.4). Solving (5.6) we obtain 

E 
-= [1+(1-i)Z(1-iX)‘~2]-1 
EC 

(5.7) 



Equation (5.7) can be obtained also if we set, in Eqns (3.8) and (4.6), 
& = d, = 1 (cf. Eqn (5.4)). 

The dashed lines in Fig. 6 are plotted from Eqn (5.7). The area of 
validity of the assumptions (5.2) or (5.4) can be seen. This approximation 
can be used at sufficiently high frequencies when CO > k, /a$ (of the 
order of 5.9 l lo4 s-l for SDS). Under these conditions the micelles 
appear effectively as immobile surfactant sources with respect to the 
monomers, because the micelles diffuse as fast as the free monomers do. 

CONCLUSION 

A theory of the effect of polydisperse micelles on the surface elas- 
ticity modulus of surfactant solutions subjected to periodic oscillations 
with small amplitude is developed. The adsorption kinetics are assumed 
to be diffusion controlled. The micellization kinetics could affect the 
surface elasticity if the time constant of the fast relaxation process tt’ 
or that of the slow process zsL is comparable with the characteristic 
diffusion time zb. Two important cases of surfactant diffusion are 
considered: rsL M Tb and TF z Tn. 

If the diffusion is affected by the slow relaxation process, expressions 
for the complex elasticity modulus E, for 1 El and for the phase $ are 
derived. These equations give, as special cases, the equation for E of 
Lucassen [ll] for monodisperse micelles and the corresponding 
equations of Lucassen and van den Tempel [23 for solutions without 
micelles. The parameters of the micelle size distribution of HDPS (mean 
aggregation number m and dispersion a,) are computed from the experi- 
mental data of Lucassen [II]. The calculated values m = 45 and O, = 15 
agree with the values of the parameters for other surfactants, obtained 
by chemical relaxation techniques 115,191. 

When the diffusion is affected by the fast relaxation process, 
equations for E, /E\ and + are derived. These equations cannot be 
obtained in the frame or” Lucassen’s model, because the fast relaxation 
process is a result of the polydispersity of the micelles. 

In both cases the micelles enhance the exchange of monomers 
between the adsorption layer and the solution, thus making the effec- 
tive viscous behavior of the adsorption layer more pronounbyed. The 
main advantage of the proposed theory is that the treatment t; surfac- 
tant diffusion, affected not only by the slow relaxation process of 
micellization but also by the fast relaxation process, is possible. The 
time constants of micellization TF and z sL computed by our theory from 
surface experiments are consistent with those computed from bulk 
experiments by the theory of Aniansson and co-workers [13-151. 
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APPENDIX: LIST OF SYMBOLS 

Surface area 
Chemical symbol of one s-mer 
Total surfactant concentration 
s-mer concentration 
Total micelle and oligomer concentrations 
Dimensionless monomer diffusivity 
Dimensionless mean micelle and oligomer diffusivities 
s-mer diffusivity 
Mean micelle and oligomer diffusivities 
Surface elasticity modulus 
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Gibbs’ elasticity modulus 
Total rate of the sth reaction 

J-1 
Mean micelle rate constant 
Association and dissociation rate constants of the sth reaction 
Mean aggregation numbers of micelles and oligomers 
Second moments of micelle and oligomer size distribution 
Resistance of the transition. region 
Aggregation number 
Time 
Space variable 

Greek letters 

Damkijhler number 
Dimensionless s-mer concent:-ation 
Dimensionless micelle and oligomer concentrations 
Adsorption 
Diffusion length 
Excess surfactant concentration aggregated in micelles 
Relative deviation of s-mer concentration from equilibrium 
Relative deviation of total micelle concentration 
Relative deviation of the concentration of monomers aggre- 
gated in micelles 
Surface tension 
Dispersions of micelle and oligomer size distribution 
Diffusion time constant 
Fast relaxation time 
Slow relaxation time 
Oscillation retarding phase 
Angular velocity 


