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Abstract 

An analytical expression for the shape of the capillary menis, R formed around a vertical cylinder or spherical particle 
near a vertical wall is derived by using the method of matched asymptotic expansions. The forces of capillary interaction 
bctwccn the particle (cylinder) and the wall arc calculated. The resulting expressions are valid when the distance bctwecn 
the particle (cylinder) and the wall, as well as the particle radius, are much smaller than the capillary length. This range 
corresponds to colloidal and micron-size particles. The theory predicts attraction bctwccn such a particlc and the wall. 
The results can be useful for a better understanding of proccsscs such as surface coagulation and two-dimensional 
ordering of colloidal particles or protein molcculcs attached to a fluid intcrfacc. 

Kq+\~ords: Asymptotic expansions; capillary meniscus forces: microparticlcs. 

1. Introduction 

The deformation of a liquid-fluid interface due 
to trapped small particles gives rise to capillary 
forces exerted on the particles. Usually these forces 
are attractive and lead to formation of clusters. 
Such effects were observed long ago and are utilized 
in some extraction and separation flotation pro- 
cesses (see for example Refs [ 1,2]). The capillary 
meniscus interactions were studied experimentally 
by Minsch [3] and Camoin et al. [4]. These forces 
can be among the main factors leading to formation 
of two-dimensional clusters and ordered structures 
observed with micron-size particles [S-7] as well 
as with protein molecules [S-lo]. 

Despite the well-established importancs of the 
capillary meniscus forces, there are only a few theo- 
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retical works devoted to them. Nicolson [ 111 derived 
an analytical expression for the capillary force 
between two floating bubbles by using the superpo- 
sition approximation to solve the Laplace equation 
of capillarity. A similar approximate method was 
applied by Chan et al. [ 121 to floating spheres and 
horizontal cylinders. For the latter case alternative 
approaches were proposed by Gifford and Striven 
[13] and by Fortes [14]. The theoretical works 
[ 1 l- 141 are based on solutions of the Laplace equa- 
tion for capillary menisci of translational or rota- 
tional symmetry, where the Laplace equation 
reduces to an ordinary differential equation. 

A recent development in this field is the analyti- 
cal solution of the Laplace partial diflerential equa- 
tion in bipolar coordinates proposed in Refs 
[15,16] for the case of small particles and small 
meniscus slope. This solution provides expressions 
for calculating the capillary meniscus force between 
two vertical cylinders, between two spheres par- 
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tia!!y immersed in a liquid layer, and between a 

vertical cylinder and a sphere. It was established 
that the capillary meniscus forces are compara- 

tively long range and the energy of interaction is 

much larger than the thermal energy LIT even for 

submicron particles. 
Since the above theoretical results arc valid for 

particles of small radii (not larger than about 

100 ilrn), they cannot be applied to describe the 

capillary interaction bctwecn a particlc and a larger 

aggregate or between a particle and a vertical wall. 

This problem is considered in the prrscnt paper. 

An asymptotic expression for calcula!ing the shape 
of the capillary meniscus around a ;rertical cylinder 

near a wall is derived in the next section. Equations 

for the shape of the two co:itact Iincs arc also 

obtained. Then cxprcssions ftir the capillary menis- 
cus forces cxcrtcd on the Gylinder and on the wall 

arc derived. The result;: also allow calculation of 

the capillary intcracrion between a wall and :: 
spherical particle jydhich is pa,-‘ial!y iillmersed in a 

liquid I;lycr. The analytical expressions arc 

illustrated wi!il three-dimensional graphs of the 
meniscus shape and plots of the capillary forces vs 
distance l-&wccn the particle and the wall. 

In Fzncral. the capillary force exerted on a 
partklc is an integral cffcct of the action of the 

hytirosiatic prcssurc through the wet surface and 
of the kicrfacial tension along the three-phase 

contact line. Wo mention in advance that the 
capillary forces due to hydrostatic pressure exerted 

on the particle and on the wall arc not of equal 
magnitude. However, it turns out that the hori- 

zontal projections of the total (hydrostatic pressure 
plus interfacial tc -ion) capillary forces exerted on 

the particlc and on the wall have equal magnitude 
and opposite directions, i.c. they obey a countcr- 
part of Newton’s third law; this is proved in 
Appendix A. 

2. Shape of the capillary meniscus 

2. I Basic eqtrtlr iorts 

Let us consider the capillary meniscus formed 
around a vertical circular cylinder, whose axis is 

scparatcd at a distance s from a flat vertical plate 

(Fig. I). When the cyiindcr is situated far away 

from the vertical plate (s-+ r~), the mcnisci on the 

right. and on the left from the plate arc similar: 

their shape has already been dcscribcd thcorcticully 

[ 171. Our aim below is to derive an expression for 

the shape of the meniscus on the right from the 

plate for finite values of s. 

The interface bctwccn the two fluid phases I and 

II is supposed to be flat and horizontal far away 

from the cylilider and the wall. We choose the 

coordinate plane .Y_Y to coincide with this horizontal 

surface. Let 

: = <(s, 1’) 

be the cqua .tion dcscr 

(2.1) 

.ibing the shape of the intcr- 

- 
x 

(b) 

Fig. 1. Slictch of (:I) the capillary meniscus roi-mcd around 3 
cylinder ol radius r2 situated at a distnncc s from 3 flat vertical 

wall. and (b) the bipolar coordinntcs used in the phc sy (z, 

and x2 arc the three-phase contact angles at the wall and 
cylinder surfxx. rcspcctivcly: kz is the elevation of the cylinder 
contact line above the flat intcrlkc at s -+ x: the lines s = 0 

and T = T? = constant arc the projections ol the wall and 

cylinder in the plant s_r). 



fact. The function < can be both positive and 
negative, depending on the values of the three- 

phase contact angles a, and xz formed at the wall 

and cylinder surface (see Fig. l(a) and Ref. [ 171). 

Here and subsequently the parameters conncctcd 

with the wall and the cylinder are denoted by 

indices 1 and 2 respcctivcly. 

The geometry of the system suggests the intro- 

duction of bipolar coordinates in the plane SJ’ (see 

for example Ref. [IS] and Fig. l(b)): 

o sinh r (I sin g 
s = 

cash T - cos CT 
I! = 

cash r - cos (T 
(2.2) 

- 7rc,ca<lI O<? < -:. I_ 

Zach line T = constant is a circumfercncc [IS]: 

(2.3) 

If the surface of the wall coincides with the coordi- 

nate plane J’Z and T = t2. = constant is the equatio;? 

of the cyliader surface, then in accordance with 

Eqn (2.3) one finds 

s = a coth TV (2.4) 

r2 = a/sinh TV (2.5) 

where r2 is the radius of the cylinder. From Eqns 

(2.4) and (2.5) one determines the parameter CI: 

,I=J_ (2.6) 

We restrict our consideration to the cast where 

the slope of the meniscus surface is small, i.e. 

<< 1 and 
g 2 

0 ;IJ, 
<< I (2.7) 

Under this restriction the Laplace equation of 

capillarity, which determines the meniscus shape, 

reads [ 15,171 

(2.8) 

where 

q2 = Apgly AP = PI - PII (2.9) 

pi and ~,r are the mass densities of phases I and 

II; ; is the interfacial tension; g is the acceleration 

due to gravity. 

In bipolar coordinates Eqn (2.8) has the form 

(see for example Ref. [IS]): 

(cash r - cos a)2 

(2.10) 

Usually (I z 5 cm - ‘; then for small vn!~s of 

CI ((I d 100 urn) one has (~1~1)~ < 2.5 * IO - ‘. If such is 

the case, Eqn (2.10) contains a small parameter 

and its solution can be found in the form of an 

asymptotic expansion. 

One sees that however small (qa)’ may be, the 

right-hand side of Eqn (2.10) can be comparable 

with the left-hand side when CJ and T tend simulta- 

neously to zero. That is why in keeping with the 

method of the matched asymptotic expansions (see 

for example Ref. [19]) we consider an inner and 

an outer region: 

inner region (close to the cylinder): 

(cash T - cos CJ)’ >> ((I($ 

outer region (far from the cylinder): 

(cash T - cos 0)’ <(~LJ)’ 

The solutions of Eqn (2.10) in these two regions 

are considered separately below. 

In the inner region, Eqn (2.10) reduces to 

(2.11) 

(In fact Eqn (2.1 I) determines the zeroth-order 

solution for i(a,r).) One can seek the solution of 
Eqn (2.1 I) in the form of a Fourier series: 

x exp (- nr) cos )IO T>,O (2.12) 
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The integration constants B,, wham )I := 0, 1; .J, . . . , 

are determined from ths bc:unii*t:y condition for 

constancy of t1;< r..o!:-C.;! angle at the cylinder 

Wrf?....: 

-L’?l,R2 = cos a2 = constant (2.13) 

where e, is ?he running unit tangent to the T lines 

(obviously e, is normal to the cylinder surface) and 

II is the running unit normal ?o the liquid interface. 
By using the methods of diffcrentiai geometry (see 

for examy;tc Ref. [20]) along with the restriction 

foi’ small slope, Eqn (2.7) one can transform Eqn 

(2.13) to read 

3< Q sin eclz 
T = 

cash rz -- cos CT 
(2.14) 

or T=Tl 

where angle tir characterizes the ~~cniscus slope 

at the contact line (see also Fig. I I: 

sin tj2 = cos ~1~ (2.15) 

By expanding the right-!rand side of Eqn (2.14) in 

a Fourier series one obtains 

x I + 2 f exp(- hrl) cos IID 
> 

(2.16) 
It=1 

where Eqn (2.5) is also used. A comparison !X%~.GII 
Eqns (2.13) and (2.16) yir!dT 

II= 1,2,... (2. I 7) 

By substituting from Eqn (2.17) into Eqn (2.12) 

one finds the sought for solution of the Laplacc 
equation in the inner region: 

i’“(o,r) = C, + r2 sin rjz In{2 cash ‘5 - 2 cos 6) 

(2.18) 

Here we have used the identity 

* 1 
5 - 2 F - exp(- irr) cos )fcr 

” S’l It 

= ln(2 cash r - 2 CGS a) (2.19) 

By diflcrcntiating Eqn (2.18) one Cat? show that 

Besides, by using the expressions 

(2.2 i 1 

and 

( I sin’ a 
2 

= [I +(JQ.12)]-1 (2.221 
x-0 

stemming from Eqn (2.2) from Eqn (2. IS) one can 

derive the asyrnptotics of ji” along the _Y and _V 

axes: 

2u’ 
<‘“(O,T) := Co t r2 sin tj2 2 In .- 

[ () \, .Y , 

4-o 
a2 ( >I 7 s >> 1 

i’“(a,O) = Co + r2 sin ti2 2 In Z? 
[ 0 Y 

(2.23) 

(2.24; 

i’he comparison between Eqirs (2.23,) and <X23) 

shows that the outer asymptotics of the inner 

s’3l5tion c:~n hc written in the form 

where 

). _ JY’ + )‘? (T.?!,! , 

The constant Co is detcr:nined hy r.;~ ;ching the 

iuncr with the outer c.-!;iiion. 

2.3 Outer sdution id procedure ofrnatching 

We seek the solution of Eqn (2.8) in the .mtcr 

region in the form 
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y”y.y. “! = E exp(-qx) + GK,(qr) X20 The compound solution, which is uniformly valid 
(2.27) both in the outer and the inner region is [19] 

where E and G are integla!i.-m consta.nts, K, is a 
modified Bessel function (see for exam?!? Ref. [ 181). 
The first term on the right-hand side of Eqn (X7) 
/rlescribes the shape of the meniscus due to a single 
vcrticsi wall, whereas the seconti term describes 
the meniscus shape ar.qund a single vertical cylin- 
der. One car casiIy check that the function i = 
<““‘( x.J.) cjvcr, by Eqn (2.27), satisfies both Eqn 
(2.Z) ;~b:..j tile boundary condition 

< = [‘” f p111 _ ([‘II )oUI (2.34) 

Then from Eqns (2.18), (2.25), (2.27), (2.33) and 
(2.34) one derives an expliciL expression for the 
COIllpOUlid so!ution: 

c(o,r) = f tan tfQ1 exp(- qx) + r2 sin z$~ 

x 2K,(qr) + 2 In & + ln(2 cash T 

iim,,,,~(x,j:! =- (1 (2.28) 

Fiom the zozjition for corlstency of the contact 
angle at the :va!! 

c7i 1 - 
ax x=0 

Z ---= -tan$, 
tan ctl 

(2.29) 

(cf. Eqn (2.7) or Fig. 1) one determines constant 
E ii, Li!? :z:: . 

(2.30) 

wvhcre c_, is the contact angle at the wall measured 
li:rr,:i& i>llase I. The constant G, as we!1 as the 
c~~;rdint C,, ii: Eqn (2.18), is determined by means 
<?t ;1;~: coi;&fIon for matching the outer and inner 
$iJiji[io*lj [I q 

((inyu; = iput)in (2.3 1) 

By expanding Eqn (2.27) in series for small r one 
obtains 

\4 ‘ruu’>in = c” -- G ln(y,/2) - G ln(qr) i O(qx) (2.32) 

where ye = 1.781 0724!8 _.., and ln ye is the Euler- 
Masceroni number (see fcr example Ref. [18]). A 
substitution from Eqrc, (2.25) and (2.32) into Eqn 
(2.3!), alung ~itZ1 Eqn (2.30), yields 

- Lr, sin tLz in(y,qa) (2.33) 

- 2 cos a) 1 x20 (2.35) 

Equation (2.35), together with Eqns (2.2) and (2.26), 
allows calculation of the shape of the capillary 
meniscus. One can check that Eqn (2.35) satisfies 
all necessary boundary conditions, Eqns (2.14), 
(2.28) and (2.29). Besides, the terms in EqZ (2.35) 
contain@ !.ogarithmic divergences cancel each 
Other, and the whole expression is regular for r --, 0 
and r+co. 

It should be noted that Eqn (2.35) represents a 
zeroth-order compound asymptotic solution for 
the meniscus shape, which is valid for (qa)’ CC 1 
and for smail meniscus slope (see Eqn (2.7)). These 
conditions are satisfied very we? with small par- 
ticles (see below), so Eqn (2.35) can be used to 
describe the capillary interactions governing vari- 
ous processes of surface aggregation cf colloidal 
particles near a wall. 

Figure 2 represents illustrative examples of the 
shape of the meniscus surface calculated by means 
of Eqn (2..15) for tw(l different cases. In Fig. 2(a) 
the slope angles at the two contact lines have the 
same sign: $I = 0.5”, qr! = 5”, whereas in Fig. 2(b) 
they have opposite signs: t+Ql = 0.5”, Gl = - 5”. In 
both cases s = 4 pm, r7 = 1 pm and q- ’ = 0.2 cm. 
The holes in the surfaces depicted in Figs 2(a) and 
2(b) correspond to the places where the respective 
cylinders pierce the interface. The periphery of the 
holes is not smooth because of the square coordi- 
nate network used in the computer program. (The 
real smoo;h contact line on the cylinder is not 
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rig. 2. s[lnpc or ttlc capillary rncniscus surface c:~lculokxJ from Liqn (2.35): (:I) I//! = 0.5 . eI- = 5 : (b) (1, = 0.5 . 1//z = - 5 In both 

uascs s = 4 pm. I’, = I pm. y- ’ = 0.3 cm. 

shown in the figures because of the resolution of the capillary forces correspond to attraction 

the plotting program.) One sets that in Fig. 2(a) bctwccn the cylinder and the uall. 

the meniscus between the wall and cylinder has a In the case where I,!J, = 0 (i.e. the cor,tact angle 

saddle-like shape, which is not the case in Fig. 2(b). at the wall is zr = 90”), Eqn (2.35) is equivalent to 

Nevertheless it is shown below that in both cases Eqns (2.49)-(2.52) in Ref. [I 51. Hence in this case 



the meniscus between the cylinder and the wall 
has the same shape as the meniscus between two 
similar cylinders of radius rl?, each of them being 
the mirror image of the other one with respect to 
the wall surracc. That is why in such a CHSC the 
capillary interaction between the cylinder and the 
wall is the same as between the cylinder and its 
mirror image. In this respect there is some analogy 
with the image forces in electrostatics. 

3. Shape of the three-phase contact lines 

The shape of the contact lint at the vertical wall 
can be detcrmincd by setting s = 0 (T = 0, v = _v) in 
Eqn (2.35). In accordance with Eqn (2.22) one 
obtains 

x 
[ 

2 

X,(qlyl)-In ( )I 1 +> (3. I I Here WC have used Eqns (3.1) and (3.2). 
The shape of the contact line at the surfkce of 

the vertical cylinder can be calculated by means 
of Eqn (2.18): 

i?(O) = <i”(o, rz) 

For large ~7, Eqn (3.1) yields 

i1(_Y)-i, = $ tan I/J, = constant IJ’I >>(I, 4-l 

(3.2) 

In fact the constant <,. represents the elevation of 
the contact line at a single vertical wall. At _V = 0 
the contact line exhibits a maximum elevation: 

cl(O) = i tan ~4~ - 2r, sin I(/-, In(;l,qa/2) (3.3) 

(Note that (C/U)’ << 1, so the logarithm in Eqn (3.3) 
is negative.) Figure 3 represents the shape of the 
contact line at the wall for different vaues of ~10. 
One sees that the elevation of Ihe contact line 
increases when the distance between the cylinder 
::nd the wall decreases (qn decreases (cf. Eqn (2.6) 
and Fig. 1)). If t/j2 -K 0, the elevation j, - <, will 
also have a negative sign. The area below each 
curve in Fig. 3 is proportional to the change in the 

-0 010 -0 005 0 000 0 005 0.010 

4Y 

Fig. 3. Shape oi the three-phase contact line on the wall. 
calculaled from Eqns (3.1) and (3.2) for three vducs or +I. 

wet area due to the presence of the cylinder: 

I 

AA= s [C~(_V)-<. 1 dy= 2nr, sin $J~((I- ’ - n) 

- x 
f3.4) 

=5 Co +- r2 sin tiZ ln(2 cash TV - 2 cos rr), (3.5) 

where the constant Co is determined by Eqn (2.33). 
The dependence of iZ on 0 means that the contact 
line is not horizontal. The inclination of the contact 
line can be characterized by the angle rl defined as 
follows: 

tan fj = $ [[‘“(7r, 52) - $“(O, r2)] 
2 

(3.6) 

By substituting from Eqn (2.18) into Eqn (3.6) one 
obtains 

tan rj = sin +I In 
1 + exp(- TV) 
1 - exp(- TV) 

In addition, from Eqn (2.5) one derives 

(3.7) 

(3.8) 



As shown in Appendix B, when the separation 

between the cylinder and the wall is large enough 

(r-,/s<< I), the inclination angfc of the contact fine rl 

is small compared with the meniscus slope angle ti2: 

where C2 is the circumference, representing the 

projection of the contact line on the pZanc .YJ~. 

Also. d! = d’&z da, where g,, is a component of 

the respective metric tensor. After substituting the 

value of P ,,fld given in WT. [Is] one obtains 

x 

I,, = N s i,(a) do --_ - 
TEI’Y! COSfl ?z - cos d 

0 

(3.10) 

Finally, by means of Eqns (2.19), (2.33). (3.5) and 

(3. IO) one derives 

x r,+2fn 
{ [ 

I -exp(-2r2) 

yC ya Ii (qa)” << I 
_) 

(3.1 I) 

Equation (3.1 I), together with Eqns (2.6) and (3.8), 

determines the dependence of 11~ on the distance s 

bctwcen the cylinder and the wall. Figure 4 

illustrates the dependence of the mean elevation 

II, on the distance s between the cylinder and the 

wall for three dimerent values of the cylinder radius 

r2. As could be expected, 11~ increases with decrease 

of s or with increase of r2_ At large separations 

(rz << s << (I- ’ ), an asymptotic expression for II, can 

+, = 1 O, 3, = 5 O 

y =40 mN/m 

38.00 :p---, 
I’ -r..._., 

. . . . . ‘..,~ ..,_ ___ Tz = 2’(lm 
33 .m ,- ’ .‘.‘---.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

I 
“\ I 

1, 
.W r, = 1 ILrn ‘C,-.- ->_._: -.-,-.-.-.-.-__,_ I 

36.00'. '.'..,.'."'.....I 
D 2.5 2% .75 .,m 

s [pm] 

be derived (see Appendix B): 

(3.1 la) 

The numerical calculations show that Eqns (3.11) 

and (3. I I a) provide coincident results except in the 

case of small distances between the cylinder and 

the wall. 

It should be noted that in the case of a single 

cylinder (s + VJ, n--f co) the efcvation of the contact 

fine is given by the Derjaguin [?I] formula: 

A2 x = r2 sin rG/2 In 
4 

;‘#2( I + cos I/j,) 

(qr# << I (3.12) 

Since Eqn (3.1 !) holds for (+I)’ << I, one cannot 

obtain Eqn (3.12) by setting II--, C.Q in Eqn (3.1 I). 

Finally, it is worthwhile recalling that the asymp- 

totic expressions for the slope of the meniscus and 

the contact lines derived above are valid when 

(c/tr)’ << I sin’ tik << I Ii= I, 2 (3.13) 

4. Capillary interaction between a vertical cylinder 
and a wall 

The capillary force exerted on the cylinder or 

on ;:,e wall can be calculated by integrating the 
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meniscus interracial tension along the contact iine 
and the hydrostatic pressure through the wet sur- 
face of the respective body: 

F’k’ = F’k-i’ + /X”P’ k=l,2 (4. 1) 

where I-.,, an& S, jsi = 5,2} symbdh2e 1’r.e respe~~i-ve 

contact line and wet surface, y is the meniscus 
surface tension considered as a vector and p is the 
hydrostatic pressure. (We recall that k = I and k = 
2 refer to the wall and the cylinder respective!y.) 
It is worthwhile noting that Pk’ is a force which 
is \+&\e to birecf mea5uremcnL ks proven in 
Appendix A, IFI;” = ]Fk”I; here and subsequently 
the subscript s denotes the x-component of the 
respective force, In this respect one can say that 
the capillary forces obey Newton’s third law. (Note, 
however, that in genera1 lFI”“l # IF\‘;‘)1 and 
IF? “)I # IF~?“I.) Below we calculate independently 
F”’ and FL2’, and compare the results. The coinci- 
dince between IF:‘)1 and lF12’l would be an indica- 
tion of the correctness of the asymptotic 
expressions for the meniscus shape derived above. 

4.1 Capillary force exerted 011 the wa11 

As shown in Fig. 3 both the wet area of the wall 
and the shape of the contact line change when 
varying the distance between the cylinder and the 
wall, Since the surface of the wall is supposed to 
be infinite along the y axis, it is expedient to denote 
F”’ ‘AC iiic:l.ement of the capillary force exerted on 
the wall, which is due to the presence of the 
cylinder at some finite distance s from the wall. 
One can realize that in fact F”’ equals the net force 
exerted on the two sides of the plate depicted in 
Fig. 1. The only non-trivial component of F”) is 
the .Y component because the x axis is directed 
from the wall towards the cylinder (Fig. I). 

The _Y component of F”‘) reads 

Bearing in mind Eo,ns (2.71 and (4.41 one obtains 

(4.5) 

Also, in view of Eqn (3.13) one can set cos Gr =: 1. 
Then Eqn (4.3) transforms to read 

(4.6) 

According to Eqn (4.6), FS;“” is always positive 
irrespective of the sign of angle +!J~. From Eqn (3.1) 
one easily derives 

dC, - = 2r, sin Jlz 
a2 

dY Y(Y’ + a’) 
- qK l(4Y) 1 (4.7) 

Equations (4.6) and (4.7) allow calculation of Fp” 
by means of numericai integration. 

Below we proceed with the derivation of an 
expression for F, . (‘JO The hydrostatic pressure in 
the two neighbouring phases is 

PY = PO - PYS Y = I, II (4.8) 

where p. = constant is the pressure at the level z = 0 
(see Fig. I ). Then the _Y component of F” p) reads 

+?t, 51 

F”“’ = 
x s s dy ddp,l - PII 

--m 5, 

oc 

= Aa s K:(Y) - Cl dy 
0 

(4.9) 
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,.rl=. .- ::j, v Lip and <, are defined by Eqns (2.9) and 
(3.2). Equation (4.9), along with Eqn (3.1), allows 
calculation of Fklp) by means of numerical 
integration. 

4.2 CapillaryJorce exerted 011 tile cylinder 

For the aske of convenience we make a special 
choice of the coordinate system (see Fig. 5). The z 
axis coincides with the axis of the cylinder. The 
plar;e z = 0 as usual coincides with the horizontal 
ficid interface far from the cylinder and wall. The 
_Y axis is directed from the cylinder towards the 
wall. The: symmetry of the system implies that 
the JJ components of F’“‘) and Pp are equal to 
zero. That is why our task is reduced to a calcula- 
tion of 

F(Z”) = 
.x c.,, 

. p-A and F($‘) = E,. F”P’ 

(4.10) 

where e, is the unit vector of the x axis. Because 
of the specific choice of the coordinate systelm, 
positive (negative) values of F$’ correspond to 
capillary attraction (repulsion) between the wall 
(k = 1) and the cy’.inder (k = 2). (Indeed, in both 
cases the x axes are oriented from the body under 
consideration towards the other body.) 

Let z = cZ(cp) be the equation of the contact line 
with cp being the azimuthal angle in the plane _uy 
(Fig. 5). 

Fig. 5. Sketch of the contact line z = ia on a vertical cylinder 
of radix ri; y is the interfacial tension and angle Gr character- 
izes the meniscus slope at the contact line. 
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Then the linear element along the contact line 
is 

(4.1 I ) 

The vector of the running unit tangent to the 
contact line is 

1 
t=- dCz ’ 

- r2 sin ‘peX + r2 cos qe, + - e= 
dv J 

(4.12) 
% 

(e, and e, are the unit vectors of the respective axes). 
Similarly the vector of the running unit normal to 
the cylindrical surface is 

n = cos cpeX - sin cpe, (4.13) 

At a given point M of the contact ‘line one can 
define the vector of the unit running binormal as 
follows: 

b=nxt (4.14) 

Since the vector of the interfacial tension y belongs 
to the plane formed by the vectors rr and b, one 
can write 

y = y(sin lclzb + cos #2r~) (4.15) 

(see Fig. 5). Then by substituting from Eqns 
(4.12)-(4.14) into Eqn (4.15) one obtains 

coscpcos*,-~di2sincpsin+, 
z d<p > 

(4.16) 

From Eqns (4.2), (4. lo), (4.11) and (4.16) one derives 

n 

F’Z7’ = di2 
x - 2y sin GZ 

1 
- sin cp d$o + dF’,Z’ 
dq 

(4.17) 

0 

where 

‘5n 

dF2’ = ‘i’ cos $2 
s 

x cos C$J dcp 

0 

n 

cos cp dq 

cl 
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Above we derived an expression for calculating 
i2 as a function of CJ (see Eqn (3.5)). Therefore it 
is more convenient to use c fOi pzrameterization 
of the contact line, instead of the azimuthal angle 
CJI. From Eqns (2.2) and (2.4) one can obtain the 
connection between the two parameters, cp and cr: 

A simple asymptotic formula for FjFZit) can be 
obtained in the case of large separation between 
the cylinder and the wall (r2/s -X 1) (see Appendix 
B). The result reads 

1 
(4.23a) 

1 -cash r2 cos 0 
cos cp = 

cash t2 - cos c 

OGcp<X O<CT<71 

where ~~ is given by Eqn (3.8). 
Eqns (4.17) and (4.18) yields 

FC2’) = 2y sin tc12 sinh r2 X 
n 

(4. I 8) 

A combination of 

From Eqn (2.18) one obtains 

dC, rZ sin $2 sin 0 
-= 
da cash t2 -COSC 

By using the identity 

II 

s 

sin2 0 da 7~ exp(- T) 
(cash 7 - cos a)’ 

= 
sinh T 

0 

from Eqns (4.19) and (4.20) one derives 

FtZp) = 2nr2y sin2 $2 exp(-r,) + dFj,Z’ X 

(4.19) 

(4.20) 

(4.2 1) 

(4.22) 

Finally, by substituting from Eqns (2.6) and (3.8) 
into Eqn (4.22) cne obtains the explicit dependence 
of Fk2y) on the distance s: 

where 

(4.23) 

AF!j2’ = ‘/ cos ti 2 a 
cash r2 cos a) do 

The last integral can be calculated numerically 
after substituting the expression for d[,/do from 
Eqn (4.20). 

Equation (4.23a) shows that the capillary force 
decays very slowly with the distance s, i.e. Fry) is 
very long-range. 

Below we proceed with the derivation of an 
expression for FL2P’. Let z, and z,, be the coordi- 
nates of the highest and of the lowest point of the 
contact line (Fig. 5). The parameter S2 in Eqn (4.2) 
can be chosen to be’ that part of the cylinder 
surface existing between the planes z = z, and z = 
zb. Besides, one has to substitute in Eqn (4.2) (for 
k = 2) the following expression for p: 

p= PI 1 for Z-K Cz(v) 

PII for Z'42(40) 

(4.24) 

Accordingly, from Eqns (4.2), (4.10) and (4.24) one 
obtains 

r 
I[ 

F’2P’ = _ 
x s dq r2 cos cp PII dz 

-7-C 

L 
=a 52 

(4.25) 

A substitution from Eqns (4.8) and (4.24) into Eqn 
(4.25) yields 

x 

Fk2p) = Apgr, s i-1 ~0s v dv (4.26) 

0 

As mentioned earlier, it is more convenient to use 
0 as an integration variable in Eqn (4.26). By 
differentiating Eqn (4.18) one obtains 

dv sinh 2 2 

da=- cash r2 -- cos cr 
(4.27) 
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Finally, Eqns (2.5) (4.18), (4.26) and (4.27) yieid 

,I 

FL”‘) = dpga 
s 

i -cash ~~ cos G 
(cash ~~ - cos D)’ 

<i(C) do (4.28) 

0 

where iz(a) is given by Eqn (3.5). Equation (4.28) 
allows calculation of F, (2p) by means of numericai 
integration. 

The series expansion of Eqn (4.283 icads to the 
following asymptotic fotmula for *GFP’ (see Appen- 
dix B): 

The comparison between Eqns (4.28a) and (4.23a) 
shows that Fj,ZpJ/F~2y’ z r,?,‘2ir2isin y!~~ in the range 
of validity of the asymptotic expressions used. 
When tan I,LJ~ is of the order of sin ti2, in keeping 
with Eyns (3.1 la) and (3.13) one obtains FL2”‘/ 

F!;” ;: qr, << 1. 

4.3 Ntctnerical r.~ulfs atd discrrssiott 

Our aim below is to rompare the capillary forces 
F$‘P’ (k = 1,2) due to the hydrostatic pressure with 
the capillary forces F, w cix! to the interfacial 
tension, as well as to compare the total capillary 
forces Fy’ with FL2’. It should be noted that the 
numerical values of the parameters used below 
obey Eqn (3.13), which determines tilt: range of 
validity of cur analytical expressions. Figure 6 
represents data for FL’“) and Fkzp) calculated by 
means of Eqns (4.9) and (4.28) respectively. The 
values of the parameters used are y = 40 mN m - ‘, 
y2= I um,$, = l”,t,G2= f5”,dp= 1 gcmm3.0ne 
can see that FLIP) is much larger than Fjc2P). In 
addition, when the angles $t and e2 have the same 
sign, both FL’“) and Fi2P’ are positive and corre- 
spond to attractio n between the cylinder and the 
wa!!. On the other hand, when $r and fi2 are of 
different sign, both F1;‘“’ and FS;2p’ are negative 
and correspond to repulsion between the cylinder 
and the wall. 

In contrast with FFP’, F!$” can only be positive, 
i.e. the force due to the surface tension in all cases 
leads to attraction between the cylinder and the 
wall. Moreover Fy”) z Fi2?’ as could be expected, 
because FF”’ x F\?‘! (stze Figs 6 and 7). 

Table I contains data for the total capi!!ary 
forrc F4.k) = i;“kP) + F(kY) 1 . 

F(z) must hr. *’ 
1~ = 1, 2 Since Fi” and 

._ :.:q~si (s& Appendix A) the cornpa+ 
sin between th e caicuhtted va?!::cs ot thesy :-,vu 

forces provides 11 test for the scff-consistency of the 
asymptotic expressions fOi the meniscus shape 
derived above. In particu’rar, l;‘kl’ is ca!culated by 
means of Eqns (4.6) and i.d.9) whereas FL’) is 
cakulated by means of Eqns (4.23) and (4.28). Both 
F:,” and F, (2) turn out to be positive and coincide 

2.50 7 -75.00 
r,=ipm ’ 

Fi2p) [N] 

2.50 

‘,a,= 5’ (x 10”) 

1 *-_ _ 
0.00 --“-_-,-_-,-_-,~~-_-,-_ --_- _-,-_ -,-,- 

.--.-‘-‘- -I 0.00 

s[pml 

Fig. 6. Plot of the capillary force F$” due to the hydrostatic 

pressure YS the distance s between tk wall (k = 1) and the 
cylinder (k = 2). 

s.00 

Fck7)[N] x 

(x 10’0) : 

2.00:\ 

F(IY) = F(27) rc =lpm 
x x y = 40 mN/m 

1.00 
+I = I" 

o.oo LL 

1 !iO 100 1so 200 

sfPm1 

Fig. 7. Plot of the capillary force Ff” due to the meniscus 
interfacial tension vs the distant;:: s between the cylinder and 
the wall. 
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TABLE I 

Comparison between Fp’ and F I? for different values of the 
distance s between the cylinder and the wall for r2 = 1 pm; JI’ = 
I ‘, G2 = 5”. y = 43 f&I m-’ 

s(r:in) Fl,"(X) F"'(N) x 
- 

!O 9.64.10-” 9.60. lo-” 
20 4.81.10-” 4.78. IO- ” 
30 3.20.10-” 3.18*10-” 
40 2.39. lo-” 2.39. lo- ” 
SG 1.91.10-‘* 1.91 -lo-” 
60 1.59~10-” 1.59-IO-” 
7i! 1.36.I0-” 1.36*10-‘* 
80 1.18~10-1’ 1.19.10-‘1 
90 1.04. lo-” 1.06.10-” 

100 9.37*10-‘2 9.55*13-‘2 
110 8.4X.10- I2 8.68*10_‘2 
I20 7.74.10-12 7.96.10-‘2 
130 7.lc)~lo-‘~ 7.34. IO_‘2 
140 6.56*10-‘2 6.82. IO- ‘* 
150 6.10. iQ-‘2 5.36. lo-” 

to the position of close contact (s = r2). Since both 
terms in the right-hand side of Eqn (4.23) are 
positive, by substituting from Eqn (4.23) into Eqn 
(4.29) one can derive 

5 

Id &(s)I > 
s 

27~27 sin2 ti2 ds 

S-l-J_ 
r2 

= ny sin2 J12 
c 

s2 - i-t -sJ_ 

+r:ln(c+/>)] (4.3( 

For r2 <- s -=x q- I, Eqn (4.30) yields 

ldW,(s)l > rry sin2 (4.3 

with the absolute value of the horizontal projectiog 
of the capillary force. Table 1 shows that the calcu- 
lated values of FL’) and FJ,2) are practically equal. 
The ;Ilore pronounced differences for large values 
of the distance s are connected with the condition 
(qa)2 << 1, which determines the range of validity of 
our asymptotic expressions. The latter condition 
can b? violated for very large values of the distance 
s (see Eqg (2.6)). It should be noted that the forces 
F!j2Y) and i;L2P) calculated by means of the a$yillp- 
totic expressions, Eqns (4.23a) arzd (4.28a), practi- 
cally coincide wi:h th: results from the general 
expressi0cF, Zqns (4.23) and (4.28), except for small 
distances between the cylinder and the wall. 

With y=40mN m-‘, t,G2=5“. r2= 1 pm ands= 
1 Or, from Eqn (4.31) one obtains jd W21 > 
2.4. lo- l5 J. This value is much larger than the ther- 
mal energy kT z 1 0B2’ J. Hence the capillary 
attraction is able to produce strong attachment of a 
microparticle to the wall. Indeed, as shown in the 
next section, Eqn (4.23) is applicable not only to 
cylinders but also to spherical particles. 

5. Capihry interactions between a sphere aed a 
wall 

It might seem that the forces of capillary inter- 
action between a cylinder of micron radius and a 
wall are too small to have any physical importance. 
The following estimate can answer this question. 

The quantity 

Let us consider a flat vertical wall and a flat 
horizontal plate, which is covered with a liquid 
layer (phase I) (see Fig. 8). In addition, let us con- 
sider a spherical particle which is put on the plate 
and is partially immersed in the liquid iayer. It is 
supposed that far from the sphere and the wall the 
liquid layer has uniform thickness lo. As usual, the 
coordinate plane xy is chosen to coincide with the 
horizontal fluid interface far from the wall. 

S 

0 !V2(s) = - c 
j 

F$2y’ ds 

r2 

(4.29) 

represents the work done by the capillary force to 
bring the cylinder from a distance s from the wall 

We again restrict our CUBAN C.~..r _*- -: j >-,&ons to the case 
of a small slopz of tne ilXi?i-Xc5 sail"ace (sin2 ti4 << 1, 
k = 1,2; Fig. 81 and to a small deviation of the 
particle contact line from the horizontal position 
(see the disr;ussion after Eqn (3.8)). Then the hori- 
zontal projection of the particle contact line can 



Fig. 8. Skcicl? sf ; hc capillary meniscus formed around ;t sphcri- 
cal particle which is situated at :I distance s from ;I vertical 

wall. The sphere is partiaiiy immcrscd in a liquid luycr whose 

thickness is equnl to lo for s--t x. R and 1’2 arc the radii of the 
lwrticlc and of the three-phase con!nct line: *I, and z, :trc the 
contact angics at the wall and the particlc surface rcspcctivcly. 

be treated approximatciy as a circumfercncc of 

radius r7. Ln contrast with the case of a vertical 

cylinder considered above, in this case r2 and $2 

depend on the distance s between the partic!e and 

the wail (Fig. 8). This dcpcndence can be dctcr- 

mined in the following way. 

Let R be the radius of the spherical particic. 

From the equation of the spherical surface one can 

derive 

r-,(/z,) = [(lo + h,)(2R - 1” - hJJ”’ (5.1) 

where h, is the mean elevation of the particle 

contact line over the flat horizontal surface far 

from rhc wall (Fig. 8). In addition, simple geqmetri- 

cal considerations yie!d 

(5.2) 

where rz is the corresponding thrcs-phase contact 

angle. Besides. at given values of s and +I Eqns 

(2.6), (3.8) and (3.1 1) determine 11~ as a function of 

r2 and tb2: 

irz = 112[I-z(Il& 11/2(/I,)] (5.3) 

For each given distance s one can solve numeri- 

ca!ly Eqn (5.3) along with Eqns (5.1) and (5.2) to 

calculate /I~, r2, $Z and a. With the parameter 

values thus calcu!ated one can determine the menis- 

cus profile from Eqn (2.35), as we!! as the shape of 

the contact lines from Eqns (3.1) and (3.5). Then 

Eq!r.s {4.3), (4.6), (4.23) and (4.28) allow calculation 

of the capillary forces F’$” and Fcp’, k = I, 2. 

The app!icability of Eqn (4.28) for calculating 

F’$” needs some discussion. indeed, the horizontal 

projection of the fol~e cxcrtcd on an element ds, 

from the surface of’ the spherical particle is p cos 0 

x ds, = p ds, (see Fig. 9). Here ds, = (ds,) cos 0 is 

the area of the orthogonal projection of ds, on the 

surface of the respcctivc cylinder (z, and z,, arc the 

same as in Fig. 5). Hence the integral of the pressure 

taken through the spherical belt (between rn and 

+) can bc approximately replaced by the integral 

through the rcspcctive belt from the surface of the 

cylinder. In other words, Eqn (4.26) and its corol- 

lary, Eqn (4.28), can also be used in the case of a 

spherical particle. 

As an illustration, Fig. 10 reprcFcn:s the plot of 

F’f’ vs the distance s (see Eqn (4.2~) for a spherical 

particle of radius R = I pm_ The values of the other 

parameters are $I = 0.01 ‘, y - I = 0.2 cm and lo = 

0.5 pm. The two curves correspond to two different 

values of the contact angle: cxZ = I o and mz = 25”. 

It turns out that Fj;” and FL’) coincide again, as 

they should. Their values are positive and corre- 

spond to attraction between the particle and the 

wait. 

The fact that the capillary force between a rmail 

particle and a vertical wail can be only attractive, 

Fig. 9. Cross-scction of a spherical particle. The prcssurc p is 

dircctcd normally IO the spherical surtkc clcmcnt ds,: ds, is 
the projection or ds, on the vertical cylindrical surfxc. 
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- cY2= 1” 
___ CY,=25” 

R=lpm 

y = 40 mN/m 

+, = 0.010 

1.00 

0.00 I ’ . 
1 50 100 I 50 200 

sCwn3 

Fig. IO. Ptot or lhc total capillary force i-‘$’ due to interaction 

bctwccn u sphcricol particlc and :I ~311 vs the distance s [or 

l\vo dilfcrcnt vnlucs 0T the p~l?iClC three-phnsc contact angle 

22. 

irrespective of the sign of angle $- (see Fig. 8), 
rleeds special discussion. It is known that a repul- 
sive capillary meniscus interaction can exist 
between two particles when one of them forms a 
conveA meniscus and the other one a concave 
meniscus (set for example Refs [14,16-j). In our 
cast, however, the geometry of the system is some- 
what different. Indeed, since qr’, << 1, the particle 
does not “feel” the slope of the meniscus created 
by the wall. This circumstance is reflected by Eqns 
(4.7) and (4.20) which show that the slope of the 
two contact lines does not depend on the meniscus 
slope at the wall, $, . Moreover, Figs 2(a) and 2(b) 
demonstrate that for both positive tiZ (convex 
meniscus) and negative $2 (concave meniscus) the 
length of the contact line on the wall is increased 
in comparison with the horizontal contact line for 
s-+ co. However, this increase in the contact line 
length gives rise to a positive capillary force FL”) 
(see Eqns (4.3) and (4.6)). Moreover, for small 
particles, FL”’ >> F\‘P) and FL”‘) z FL’). Therefore 
the t.otd capillary force FL” exerted on the wall 
must be positive. The same is true for the force 
FL’) exerted on the particle, which is to be equal 
to FI;” (see Appendix A). 

The situation can change for larger particles 
when Fj;‘J” can be comparable in magnitude with 
FL’?‘. Figure I 1 represents the dependence of the 
ratio F~‘P’/FI;“” vs the particle radius R for lo/R = 

0.10 * *, = 0.01” 
F!‘id/F(Wb 

x a,= 1” 

0.08 
I, /R = 0.3 

s/R = 10 

005 

0 03 

0 10 20 30 ‘IO 50 

R [gm] 

Fig. II. Plot of F, ‘*p’/F:l;) vs particle radius R for s/R = IO 

and IO/R = 0.3. 

0.3 and s/R = 50. One can see that the contribution 
of the hydrostatic pressure to the total capillary 
force increases with the increase in the particie 
radius. 

6. Concluding remzxks 

The main finding of the present paper is that 
capillary forces play a dominant role for colloidal 
particles attached to a liquid interface in the vicin- 
ity of a vertical wa!! (or a particle aggregate of 
much larger size). This conclusion is based on the 
following results. 

(i) An analytical expression for the shape of the 
capillary meniscus formed around a vertical cylin- 
der near a vertical flat wall is derived (see Fig. I 
and Eqn (2.35)). It allows calculation of the shape 
of the three-phase contact lines (see Eqns (3.1) ar.d 

(3.5)). 
(ii) An equation for the mean elevation hz of the 

cylinder contact line is also derived. It is a counter- 
part of the knov:n Derjaguin equation for “a 
meniscus on a needle” (see Eqns (3.1 I) and (3.12)). 

(iii) The expressions for the case of a vertica! 
cylinder near a wall can also be applied for the 
case of a spherical particle near a wall (see Fig. 8). 

(iv) It turns out that the horizontal projections 
of the force F(‘) exerted on the wall and of the 
force F”) exerted on the particle (cylinder) must 
be equal (see Appendix A). 
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(v) Each of the forces F”’ and F”’ is a super- 

position of a force F (‘N due to the hydrostatic , 

pressure p, and a force Fta7’. k = I, 2, due to the 

meniscus interfacial tension ;‘. 

(vi) Depending on the contact angles of the wall 

and cylinder (particle), Ftkp’ can be attractive or 

repulsive (see Fig. 6). In contrast, Ftk7’ in all cases 

leads to attraction between the cylinder (particle) 

and the wall (see Fig. 7). 

(vii) Simple asymptotic expressions for .FF;” and 

F’$” are derived for large distances between the 

cylinder and the wall (see Eqns (4.23a) and (4.28a)). 

The forces I;“’ and Fd2’ are liable to direct 

measurement. The meniscus shape can be also 

determined experimentally by means of different 

interferame!ric techniques (see for example Ref. 

[22]). Hence there are various ways to verify 

experimentally the present theoretical results. 

The basic analytical expression for the meniscus 

shape derived in this paper, Eqn (2.35), represents 

a zeroth-order term of an asymptotic expansion 

for small meniscus slope and small particles (see 

Eqn (3.13j). That is why, in the case of liquid-gas 

interfaces, the expressions derived in this paper are 

valid for particle (cylinder) radii of the order of 

100 pm or smaller. (In the case of liquid-liquid 

interfaces the capillary length cl-’ is larger and the 

range of validity of the theory can be wider.) 

Fortlunateiy, this is the range of size of micropar- 

titles and colloidal particles_ As discussed in the 

text, the energy of capillary attraction turns out to 

be larger than the thermal energy kT even with 

micron-size particles. Therefore we believe our 

results can be useful for interpreting experimental 

data about two-dimensional coagulation and 

microparticIe ordering at a liquid-fluid interface 

near a vertical wall. When the thickness 1” of the 

liquid layer (see F: xg. S) is small enough, the action 

of the disjoining pressure should al<,> be taken into 

account (see for example Refs [IS] and [23]). 
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Appendix A: The capillary forces and Newton’s 
third law 

Let F$’ (k = 1, 2) be the projection of the capil- 

lary force F’“’ on the horizontal coordinate plane 



KN. Pmrmc CJ al./Colloids SurJaccs 67 ( 1992) 119- I38 t35 

sy. The choice of the coordinate system is the same 
as in Fig. i. Our aim here is to prove that the 
horizontal projections of capillary forces exerted 
on the wail (k = 1) and on the cylinder (or spherkal 
particle, k = 2) have the same magnitude, but oppo- 
sitr: sign, i.e. that 

a 
i. = 

cash s2 - cos u (A5) 

see also Ref. [is]. In addition 

F!f’ = _ Fi;’ .(AL) 

Equation (Al) can be considered as a counterpart 
of Newton’s third law. It is demonstrated that Eqn 
(Al) holds because the shape of the capillary 
meniscus surface satisfies the Laplace equation 
along with the condition for constancy of the three- 
phase contact angles. We consider again the case 
where the slope of the meniscus surface is small 
(cf. Eqn (2.7)). However, our derivation is not 
iimitcd to small values of the radius r2 or to small 
distances, s, between the wall and the cylinder 
(particle) (see Figs 1 and 8). 

where the angle 0 characterizes the running slope 
of the contact line LZ_ By expanding the square 
root in Eqn (A6) and by using Eqns (A3) and (A4) 
one obtains 

L1 CZ 

(A7) 

Let us first consider the capillary force exerted 
on the cylinder (particle). From Eqns (4.1) and (4.2) 
one obtains 

where the higher-order terms with respect to the 
slope are neglected (see Eqn (2.7)). Then, having in 
mind the constancy of angle t,l~~ from Eqns (2.14), 
(A4), (A5) and (A7), one derives 

(A2) 

Lr C2 =,, 

where L, denotes the respective contact line and 
C2 is its projection on the horizontal plane .uy; ,U 
is a running unit vector normal to the contour C2 
directed inwards; z, and zt, are the same as in Eqn 
(4.25); y,, is a vector representing the horizental 
projection of the interfaciai tension Ye 

From Eqns (4.12)-(4.15) one can derive 

dL 
YII = -? en -sin IJQ~ + er cos 

dl 
ti2 

> 
(A3) 

where E, and e, are the running unit vectors 
tangential to the r~ and T lines in bipolar coordi- 
nates (cf. Eqn (2.2)). In our case, e, and e, represent 
also units tangent and normal to the contour CZ. 
In particular 

!I 
d/e,=0 (A4) 

CZ 

The last eqlirtion can be transformed to read 

$dly,,=p ~dl[e,*(~i)~~-~ri(~~~.Pr] (A8) 

LZ C1 

where P is the gradient operator in the plane sy 
and the relation sin $Z = E; V<(r = r2) was used. 
However, similarly to Eqn (4.26) one can derive 

--b 

$ s 
d/p dzp= -Apg 

$ 
dl/+i2 (A9) 

C2 =n c2 

Equations (2.9), (A2), (A8) and (A9) yield 
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where p = cr and U is the idem factor (the unit 
tensor) in the plant SJT. It should bc noted that 
contour CZ in Eqn (AIO) is oriented clockwise 

Our aim below is to prove that a counterpart 
of Eqn (A 10) ho!ds for the capillary force FI,” 
exerted on the vertical plate (see Fig. I): 

where C, is a degenerate contour consisting of two 
straight lines parallel to the J’ axis representing the 
orthogonal projections of the left-hand and right- 
hand side contact lines on the horizontal plane s_r. 
It is supposed that, similarly to contour C,. con- 
tour C, is oriented inwards. Then Eqn (A I 1) can 
bc represented in the form 

F;:‘=I +12+1 I 3 
I .L. : - 
, _.-_I 

where 

+ TV 

I, = -; E, 

- s d)~[(~5).P~l.~=--d-(~~)*~‘il.~=0] 

- I 

(A14) 

+ -L 

dy[i’/,= -d - 5’tx=o] (A15) 

where e, is the unit vector of the s axis; s = -d 
and s = 0 are the s coordinates of the icft-hand 
and right-hand side contact lines on the plate (cf. 
Fig. I). Having in mind that 

C;V~/,= _d=O (A161 

one can easily dcrivc 

+Y 
r 

I, =;‘tan$, 
I 

d_r(F’<[,= -rl+ Oil,=o) 

Since <(.Y -= 0) = iI is an even function of J* (see 
Lqn (3.1.) and Fig. 3), one obtains 

iI =o (A17) 

Hcsidcs 

iI., _ _(J = i, ils=o = i*(Y) 

Then Eqns (A14) and (A15) reduce to 

+I 

13 = i’q2 e, 
f 

dp IX:(Y) - i; 1 (A191 
0 

From Eqns (3.9), (4.6), (4.9), (A 12) and (A 17)-(A19) 
one obtains 

Fp = e,[FIC”’ + Fi;‘P’] WO) 

as it must be. In fact. Eqn (A20) proves the validity 
of Eqn (Al 1). As known, j tends exponentially to 
zero far away from the plate (see for example Eqn 
(2.27)). Then by means of Eqns (Al 0) and (Al I) 
and by using the Green’s theorem (see for example 
Ref. [20]) one obtains 
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where S,, is the orthogonal projection of the menis- 

cus surface on the plane sy. By using the Laplace 

equation (Eqn (2.8)) one can derive 

+ (W*(~i)l (A22) 

The substitution from Eqn (822) into Eqn (A21) 

leads to the sought for relation, Eqn (A I), represent- 

ing a counterpart oi’ Newton’s third law. 

Appendix B: Capillary meniscus interaction at a 
large separation between the cylinder and the wall 

When the distance between the cylinder and the 

wall k large compared with the cylinder radius, 

simple asymptotic formulae for the capillary inter- 

action energy and force can be obtained by using 

appropriate series expansions of the general expres- 
sions. We consider the case where the quantity 

is a small parameter with r2 and s being repectively 

the cylinder radius and the dista.rce between the 

axis of the cylinder and the wall (see Fig. I). In 
terms of the small parameter c, Eqn (2.6) can be 
written in the form 

Cl = sJi-7 =z s[l + 0(&I 032) 

From Eqn (3.8) one obtains 

> (B3) 

I 
-, exp r7 z sinh rt z cash t-, - +I +O(c”)] (B4) 

By substitutin g the expressions (B3) and (B4) 
into Eqn (3.11) we derive the following asymptotic 
formula for the mean elevation of the three-phase 
contact line around the cylinder: 

I1 - f tan $I + r2 sin $2 In 
2 

( > 
- 2- 
;‘e4s 

-r2 sin ti2 In(;l,qs)[l + O(c)] 

If we are interested in the angular dependence of 
the elevation of the contact line around the cylin- 
der, we have to keep the leading term containing 
the angle D in !hc series expansion of Eqn (3.5). 

Equation (B6), together with Eqns (3.6), (3.7) and 
(Bl), reveals that the inclination of the contact line, 
characterized b:t means of the angle ‘1, is small 
compared with the slope angle I,!I~ of the meniscus 
at the cylinder surface: 

tan 11 -+4: [I -t O(c’)]<< I 
sin $/2 Z u36) 

Asymptotic expressions for the capillary forces 
acting on the cylinder can be found by expanding 
Eqns (4.23) and (4.28): 

F’2P’ 
x 

(B7) 

WW 

where lr2 is given by Eqn (B5). The comparison 
between Eqns (B7) and (BS) shows that 
FLIP’ << F, (2g) because (qr2)’ c I. It is interesting to 
note that the Ieading term in the asymptotics of 
the capillary force Fi2”, given by Eqn (B7). coin- 
cides with the respective asymptotic expression for 
the capillary force acting between two similar 
cylinders of radius r2 and meniscus slope angle ti2, 
separated at a distance L = 2s (see Ref. [ 161). 

As shown in Section 4, for rz <<s-x q- ‘, the 
energy dW2 of interaction between the cylinder 
and the wall can be expressed approximately by 
means of Eqn (4.3 I ): 

Id W,(s)l z 7ry$ sin2 f+G2 In s + constant (B9) 

In fact, the latter expression can be obtained by 
integration of the capillary force acting between 
the cylinders (see Eqn (B7)). The constant of integ- 
ration in Eqn (B9) depends on the choice of a 
reference state of zero interaction energy. 

The numerical calculations show that Eqns 
(B5)-(B9), although quite simple, describe very well 
the capillary interactions except in the case of a 
small separation between the cylinder and a wall. 
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One should a!so keep in mind that the asymptotic 

formulae, as well as the general expressions are 

restricted to small slopes of the meniscus profile 

(sin IJ?~ << 1, k = I, 2) and lo not very !arge distances 

((1s CC I), i.e. the approximate expressions (B2)-(B9) 

are strictly applicable for separations :; satisfyi:Ig 

the relationship 

This regigti, ;c.r! r .S;?;)t!ds to the case of capillary 

intcracikus @::w:t.il colloida! particles. If I’, and 

I/I2 arr Anc>lvn. the expression!: (ES-(59) can also 

bc :!& 12: dC5cribiny the interaction between a 
sp.,~rc and a ~~11. To estimate I*? and I//~ for the I- . 

case of 2 sntzre, the asymptotic expressions, Eqns 

(35)(‘r33), ‘can be used, a!ong with the geometrical 

rc!aGonsi?ig, Eqns (5.1) and (5.2). 


