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General expressions for the energy of capillary meniscus forces acting between particles attached to a 
liquid-fluid interface are derived. These expressions are specified for the cases of  two vertical cylinders 
and two similar spheres partially immersed in a liquid layer on a horizontal solid substrate. The shape 
of the meniscus around the particles is determined from the Laplace equation by using the method of  
the matched asymptotic expansions. The derived asymptotic expressions are valid with a very good 
accuracy when the contact line radius and the interparticle distance are smaller than 100 t~m (l iquid- 
gas interface). The range of  validity can be wider for emulsion-type interfaces. The capillary meniscus 
forces turn out  to be attractive and very long-ranged. The results can be important  for interpreting the 
surface coagulation phenomena  accompanying flotation processes as well as two-dimensional ordering 
o f  colloidal particles and protein molecules. © 1992 Academic Press, Inc. 

1. I N T R O D U C T I O N  

It is known that the deformation of a liquid- 
fluid interface due to trapped colloidal particles 
gives rise to capillary forces exerted on the 
particles. Usually these forces are attractive 
and lead to the formation of  clusters. Such 
effects are observed and utilized in some ex- 
traction and separation flotation processes ( 1, 
2). The surface deformations produced by 
floating particles were studied experimentally 
by Hinsch (3) by means of  a holographic 
method. The capillary meniscus forces can be 
one of  the main factors leading to the for- 
mation of two-dimensional clusters and or- 
dered structures observed with micron-size 
particles (4, 5 ) as well as with protein mole- 
cules (6-8) .  

In spite of the well-established importance 
of the capillary meniscus forces there are only 
few theoretical works devoted to them. Nicol- 
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son (9) derived an analytical expression for 
the capillary force between two floating bub- 
bles by using a superposition approximation 
to solve the Laplace equation. This approxi- 
mated method was developed and applied by 
Chan et al. (10)  to floating spheres and hori- 
zontal cylinders. In the latter case the Laplace 
equation reduces to an ordinary differential 
equation. The capillary forces in this case were 
calculated by Gifford and Scriven ( 11 ) and by 
Fortes (12).  

In the present study we develop a new ap- 
proach to the theory of  capillary meniscus 
forces. In the next section a general expression 
for the interaction energy is formulated. By 
means of the Green formula the integrals over 
the meniscus volume and surface are trans- 
formed to integrals over the three-phase con- 
tact lines. This leads to a considerable simpli- 
fication of  the problem. In sections 3 and 4 
analytical expressions for the energy of capil- 
lary interaction between two vertical cylinders 
and two spheres protruding from a liquid layer 
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are derived. Numerical results and a discussion 
are presented at the end of the paper. 

2. G E N E R A L  E Q U A T I O N S  

a. Interaction Energy 

Let us consider a system of N particles at- 
tached to a liquid-fluid interface between 
Phases I and II (for the sake of simplicity only 
two particles are depicted in Fig. 1 ). The par- 
ticles can be solid, liquid, or bubbles. The in- 
terface is supposed to be flat and horizontal 
far from the particles. We choose the coordi- 
nate plane xy to coincide with this horizontal 
surface. 

Let 

z = ~'(x, y) [2.1] 

be the equation describing the surface of the 
liquid meniscus formed around the particles. 
~'can be both positive and negative depending 
on the particle weight and contact angle--see 
Fig. 1. In addition we assume that the system 
under consideration is situated between the 
planes z = zl and z = z2, located in Phases I 
and II, respectively--see Fig. 1. As shown be- 
low, these two planes play an auxiliary role: 
the final results do not depend on zl and z2 
(cf., e.g., Eqs. [3.20] and [3.21] below). That 
is why the exact location of  zl and z2 is not 
important. 

We denote by VI and VII the volumes of the 
respective phases and by Vxthe volume of the 
K-th particle (K = 1, 2 . . . . .  N).  If rl ,  r2, • • •, 

z 

( ~ Y )  o 

FIG. 1. Sketch of  two particles a t tached at  the interface 
between two fluid phases  I and  II. 

ru are the position vectors of the mass centers 
of the particles, the free energy of the system 
will read 

N 

W ( r l ,  r2 . . . .  , r N )  = ~ rnKgZ(~ ) 
K=I 

+ Z mrgZ(~ ) 
Y=I,II 

N 

+ X X WKrAKy+ 3`£XA. [2.2] 
K=I Y=I,II 

Here 

Z~) = ~---7 ~ zdV or 

,£ Z~ ) = -~y zdV [2.3] 
Y 

is the z coordinate of  the mass center of the 
respective particle or phase, mK and m r  are 
masses, g is the gravity acceleration, Axg and 
~0Kr are the area and the surface free energy 
density of the interface between Particle K and 
Phase Y; 3' is the interfacial tension of  the 
boundary between Phases I and II, and zXA is 
the difference between the areas of the latter 
boundary and of  the portion of  the plane xy 
included in the system. We use AA here be- 
cause it is a finite quantity even if the area of 
the interface between Phases I and II is infinite. 
(Note that the free energy W i n  Eq. [2.2] is 
defined up to an additive constant.) In fact 
~oKr represents the density of  the surface grand 
thermodynamical potential; WXr coincides 
with the respective interfacial tension when 
Particle K is fluid and there are no insoluble 
adsorbed species--see, e.g., (13, 14). 

The interaction energy A W between parti- 
cles 1, 2 . . . . .  N can be defined as 

AW(r l ,  r2 . . . . .  rN) 

= W ( r l , r 2 , . . . , r : v ) -  W~, [2.4] 

where W~ is the value of  W at infinite inter- 
particle separations. 

The main problem for calculating the in- 
teraction energy A W is the determination of  
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the meniscus profile f (x ,  y).  In general ~'(x, 
y) satisfies the Laplace equation of the capil- 
larity (15-17) ,  

(1 + f 2 ) f x x -  2fxfyfxy+ (1 + ~2x)~'yy 

= q2~-(x,y)( 1 + ~-2+ ~-2)3/2, [2.5] 

where 

~x=---- ox' 

O2f O2f 

fxy - OxOy ' fy" =- a T  2 

q2 = At)g/y, A0 = PI - -  PII ,  [2.6] 

where p~ and o~i are the mass densities of 
Phases I and II. The boundary conditions for 
Eq. [2.5] are the conditions for mechanical 
equilibrium at the three-phase contact l ines--  
see, e.g., (18).  

Equations [ 2.2 ] -  [ 2.6 ] provide a basis for 
calculating the capillary interactions in each 
specified case. As demonstrated below, the 
problem considerably simplifies when the 
slope of the meniscus surface ~(x, y) is small. 

b. Meniscus Surface Energy 

Here we consider separately the surface free 
energy 3,AA of the boundary between Phases 
I and II. Eqs. [2.2] and [2.4] imply that the 
contribution of the meniscus surface free en- 
ergy into the interaction energy A W is 

AWm = 3'(AA -- AAoo), [2.7] 

where kAo~ is the value of AA at infinite in- 
terparticle distances. Let C1, C2 . . . . .  CN be 
the projections of the three-phase contact lines 
of particles 1, 2 . . . . .  N on the plane xy- - see  
Fig. 2. We denote by A } the area encircled by 
the contour Cx, and by A~:o~ the value of 
A~: for infinite interparticle distances. Then 
Eq. [2.7] can be transformed to read 

AWm = 3,[AA p - AAe 

N 

- Z ( A ~ - A ~ ) ] ,  [2.8] 
K=I 

Sm 

FIG. 2. Sketch of the integration contours in Eq. [2.18 ]. 
A~: is the area encircled by the contour CK, which repre- 
sents the projection of the contact line of the ith particle 
on the plane xy. ~ is the running inner unit normal; Sin 
is the area outside the contours Cx. 

where AA P is the difference between the area 
of the meniscus surface and the area of its pro- 
jection on the plane xy. Hence AA e can be 
expressed as follows 

~Sra{[ [0~12 AA e = 1 + \Ox] 

{Or)2] 1/2-  1}ds, [ 2 . 9 ]  

+ \ O y }  ] 

where ds = dxdy is the surface element and 
the integration is carried out over the projec- 
tion of  the meniscus surface on the plane xy. 
In fact Sm is the surface outside the contours 
C,: (K = 1, 2 . . . . .  N) - - see  Fig. 2. When the 
slope of the meniscus surface is small, i.e., 

(0r/  (0q2 
Ox] 4~ 1, \Oy] ~ 1, [2.101 

the square root in Eq. [2.9] can be expanded 
in series to yield 

,£ 
~ A  p = ~ ( ~ i i ~ )  • ( ~ i i ~ ' ) d s ,  [ 2 . 1 1 ]  

in 

where 

V I I i =  ~XX' [ 2 . 1 2 1  

is the two-dimensional gradient operator. 
When the relationships [2.10] are satisfied, 

Eq. [2.5 ] reduces to 

VI2~-= q2~-. [2.13] 

Journal of Colloid and lnterfoce Science Vo 151, No. 1, June 1992 



82 KRALCHEVSKY ET AL. 

By using Eq. [ 2.13 ] one obtains 

(VII~") • (VII~") = VII" (~'VII~) -- ~'VI21 ~" 

= VI," (~'V,,~') - q2~-2 [2.14] 

Let Vm be the volume comprised between Sm 
and the meniscus surface z = ~'(x, y)--see the 
hatched area in Fig. I. Then 

% z d V = f s m d S £ ~ z d z  

1 fs= ¢2ds" [2.151 2 

From Eqs. [ 2.11 ], [ 2.14 ], and [ 2.15 ] one de- 
rives 

AA e = I - q2 f zdV, [2.16] 
or= 

where 

1 L I = ~ dsVn- (~'~Tn~'). [2.171 

According to the Green theorem (see, e.g., Ref. 
(17)) 

I = ~ dl#.(~'V~1~'). [2.18] 
K ~ I  

The contours CK and their orientation are 
shown in Fig. 2, where the unit running nor- 
mal ~ is also depicted. The rectangle in Fig. 2 
represents schematically the outer boundary 
of the region Sm, which is situated far away 
from the particles, where ~'Vn~" -+ 0. That is 
why the integral over it does not contribute to 
Eq. [2.18]. 

By substituting from Eqs. [ 2.6 ] and [ 2.16 ] 
into Eq. [2.8] one finally obtains 

N 

AWm = 3/[1 - I~o - ~ (A~: - A~:~o)] 
K = I  

where I i s  given by Eq. [2.18] and Iv is the 
limiting value of  I for infinite interparticle 
separations. One can check that in view of Eqs. 

[2.2], [2.3], and [2.7] the integrals over Vm 
and Vmoo in the right-hand side of  Eq. [2 . t9]  
cancel the integrals of  ~'(x, y) arising from 
Z~5 ). Thus Eq. [2.4] turns out to contain only 
integrals over the contact lines, particle sur- 
faces, and volumes, but it does not contain 
integrals of  the meniscus profile ~'(x, y) .  That 
is why simple analytical expressions for the 
capillary forces can be derived. This fact is il- 
lustrated below for two specified systems. 

In conclusion it should be noted that the 
validity of  Eq. [2.19 ] is restricted to meniscus 
surfaces of  small slope, for which Eqs. [2.11] 
and [ 2.13 ] hold. As proven by Chan et al. ( 1 O) 
this restriction is always satisfied with small 
floating particles (small Bond number) .  

3. CAPILLARY INTERACTION BETWEEN TWO 
VERTICAL CYLINDERS 

a. Energy of Capillary Interaction 

Let us consider the capillary meniscus 
around two similar vertical circular cylinders, 
whose axes of symmetry are separated at a dis- 
tance of 2s. We will suppose that the contact 
angle a, subtended between the meniscus and 
cylinder surfaces (see Fig. 3), is close enough 
to 90 ° for Eqs. [2.10-2.19] to hold. In fact 

cos a = - / 1 .  n, [3.1] 

where n is the unit normal to the meniscus 
surface at the contact line. 

The geometry of  the system suggests intro- 

i 

(ti) ! 
. . . .  ' ' 

i 

( i )  ! 
I 

. . . . . . . . . . . .  I . . . . . . .  

z2 I ! 1  
[ 

0 I 
i I x 
I 

. . . . . . .  I__1 . . . . . . . . . . . . . .  

FIG. 3. Sketch of the capillary meniscus around two 
similar vertical cylinders of radius re; a is the contact angle, 
2s is the distance between the axes of the cylinders. 
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duct ion o f  bipolar coordinates in the plane xy  
(see, e.g., Ref. (19) ) :  

a sinh r a sin 
x = , y =  

cosh r - cos ff cosh r - cos ff 

- -~r~<a~<Tr,  - o Q < r < + o o .  [3.2]  

Each line r = const  is a c i rcumference (19)  

a 2 
( x -  a coth r )  2 + y2 _ [3.31 

s inh2 r ,  

see Fig. 4. I f r  = +r~ is the equation of  surfaces 
o f  the two cylinders, then in accordance with 
Eq. [3.3]  and Fig. 3 one finds 

r~ = a / s i n h  T 1 [3.4] 

s = a coth r~. [3.5] 

F r o m  Eqs. [3 .4-3 .5]  one derives 

2 [3.61 a = ~s2 - rc. 

The geometrical  mean ing  of  parameter  a is 
illustrated in Fig. 4. I f  e~ is the running  unit  
tangent  to the r lines, then Eq. [ 3.1 ] can be 
t ransformed to read 

cos a = e~. n] ,=~.  [ 3.7 ] 

By using the apparatus of  differential geometry 
(see, e.g., Ref. ( 17 )) one can derive 

_ 1 g'~O~-r~ =~. [3.8] 

~= - - , r  1 ,,r = ,,.I- 1 
x 

F IG .  4. B icy l ind r i ca l  c o o r d i n a t e s  ( ~r, r )  in  t he  p l a n e  x y .  

T h e  t w o  c i r c u m f e r e n c e s  o f  r a d i u s  re, c o r r e s p o n d i n g  to  ~" 

= ~-t, a n d  r = - r t ,  r e p r e s e n t  t he  c o n t a c t  l ine  p ro jec t ions .  

H e r e  

a 2 

g'* = g ~  (cosh r -  cos ~)2 [3.9] 

are the componen t s  o f  the metric tensor o f  the 
space curvilinear coordinates x = x(~,  z) ,  y 
= y (a ,  r ) ,  z = z - -c f .  Eq. [3.2] .  The deter- 
minan t  o f  this metric tensor is g* = g~g~ .  
Similarly at  is the determinant  o f  the surface 
metric tensor o f  the surface z = ~'(o-, r ) .  One 
can derive that  

a t = g ~ g ~  1 + g ~ \ O ~ ]  

× 1 + - -  . [3.10] 

In bipolar coordinates the relationships [2.10 ] 
read 

, (0r? , (0r? 
g,~k &r] ~ 1, - -  ~ I. g .  \o- 1 

Then a r ~ g,,g, , ,  and the combinat ion o f  Eqs. 
[ 3 . 7 ] - [ 3 . 9 ]  yields 

1 O~" -- e . 'Vi i~ ' l .=~ ,  [ 3 . 1 1 ]  sin ~ ~ ~ Orr ,=~1 

where 

sin ko~ = cos ~, [ 3.121 

see Fig. 3. 
Since the cylinder radius, r~, does no t  de- 

pend  on s, then A~; = A~:o~ (K  = 1, 2) and 
Eq. [ 2.19 ] reduces to 

AWm = 3,(I - I ~ )  

-  Xpg(f mZdV- zdV). [3.131 

Obviously for the contour  C~ t~ = - e~  (see 
Fig. 2) and f rom Eqs. [ 2.18 ] and [ 3.11 ] one 
obtains 

I = sin ~c ~_ dl~. [3.14] 
~c '  1 

It is taken into account  in Eq. [ 3.14 ] that  
the integrals over the two circumferences C1 
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and C2 are equal--&. Eq. [2.18]. At infinite 
distance between the cylinders from Eq. [ 3.14 ] 
one obtains 

I~ = 27rrch~sin ~ ,  [3.15] 

where h~ is the elevation of  the contact line 
over the plane xy at s ~ c~. In the case when 
(qrc) 2 ~ 1 Derjaguin (20) has derived an 
expression for h~,  

h~ = resin ~cln 
4 

%qr~ ( 1 + cos ~¢) ' [ 3.16 ] 

where % = 1.781072418 • • • and In % is the 
number of Euler-Masceroni--see, e.g., Ref. 
(19), Section 21.4-1. The next term of the ex- 
pansion of h~o for small (qrc) 2 is derived in 
Refs. (21, 22). 

In view of Eq. [ 2.2 ] and Fig. 3 for the system 
under consideration one derives 

2 

Z X 
K = I  Y=I,1I 

O~KyAKy = 47rrc(Z2Wli -- ZlCOl) 

+ 2(6Ol - -  w l i  ) ~C dl~, 
1 

[3.17] 

where we have introduced the notation 

O~Kr-~ ~0r, K =  1, 2, Y =  I, II. [3.18] 

Thus one obtains 

2 

~ (CoKyAKy- lim wKyAKr) 
K = I  Y=I, I I  s ~ m  

Besides, having in mind Eq. [2.3 ] one derives 

Z mrgZ(~ )= Z oYgfv zdV 
Y=I,I I  Y=I , I I  ¥ 

L = ~ g(p,iz 2 - p,z~) as 

+ Apg fvm zdV. [3.20] 
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Hence 

Z [mrgZ~ ) -  lim rnrgZ~ )] 
Y - I , I I  s ~  

1 
Finally, by using Eqs. [2.2], [2.7], [3.12- 
3.15], [3.19], and [3.21] one brings the 
expression [ 2.4 ] for the interaction energy in 
the form 

2xW(s) = [2(wi - W l l )  ~ -  ~y sin ~c] 

×[fc, dl~-2~rroh~]. [3.22] 

Note that when deriving Eq. [3.22] the volume 
integrals in the right-hand sides of Eq. [ 3.13 ] 
and [3.21] cancel each other. 

In addition, if the contact angle ~ is the 
equilibrium one, i.e., if the Young equation, 

COIl - -  WI = ']z sin ~Ye, 

holds (cf. Eq. [3.12]), then Eq. [3.22] reduces 
to 

AW(s) = --2a-3,rcsin ~¢(hc - h~),  [3.23] 

where by definition, 

hc = 1 fc dl~, [3.24] 27cr~ 

he can be calculated by means of  Eq. [3.54] 
derived below. 

It will be shown below that 2xW(s) given 
by Eq. [ 3.23 ] is negative and corresponds to 
attraction between the two cylinders. It should 
also be noted that Eq. [3.23] holds for both 
positive and negative angles ~¢ provided that 
the relationships [2.10 ] are satisfied. 

b. Shape of the Meniscus around 
the Cylinders 

Our aim below is to calculate the integral 
in the right-hand side of  Eq. [3.24]: 

fc f_r ad~ dl~ = ~(~, rl) cosh rl - cos a 

[3.25] 
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(dl = g~f~d0---see Eq. [3.9] and Ref. (17)).  
With this end in view we will first determine 
the shape of  the meniscus around the cylin- 
ders. 

In bipolar coordinates Eq. [2.13] has the 
form 

o`j02  / 
( c o s h r - c o s  ) ~ +  Or 2 } 

= (aq)2~'(0-, r ) .  [3.26] 

For liquid-gas and liquid-liquid interfaces q 
usually varies between 1 and 10 cm -~ . For q 
= 10 cm -1 and a = 100 #m one has (aq) 2 = 
10 -2. Hence for a ~ 100 ~m Eq. [3.26] con- 
tains a small parameter  and the solution can 
be found in the form of an asymptotic expan- 
sion. 

One sees that however small (qa) 2 may be, 
the right-hand side of  Eq. [ 3.26] can be com- 
parable with the left-hand side when 0- and r 
tend simultaneously to zero. That  is why in 
connection with the method of the matched 
asymptotic expansions (see, e.g., Ref. (23)) 
we will consider an inner and an outer region: 

inner region (close to the cylinders): 
(cosh r - cos 0-)2 > (qa)2 

outer region (far from the cylinders): 
(Gosh r - cos  0)  2 ~ (qa) 2 

In the inner region Eq. [3.26] reduces to 

02--f + 02~" = 0. [3.27] 
O~ 2 Or 2 

(In fact, Eq. [3.27] determines the zeroth-or- 
der solution for ~'.) One can seek the solution 
of  Eq. [3.27] in the form of a Fourier series: 

co 

~(0-, r) = Co + Bor + ~ B, e-"~cos n 0-, 
n=l 

r > 0 .  [3.281 

The integration constants Bn, n = 0, l, 2 . . . ,  
are to be determined from the boundary con- 
dition 

0~" = a sin ~o [3.29] 
&-r ,=,l Gosh T 1 - -  C O S  0- 

stemming from Eqs. [3.9] and [3.11]. By ex- 
panding the right-hand side ofEq.  [ 3.29 ] into 
a Fourier series one obtains 

0~-rf = rcsin XI'c 
q '~T 1 

OO 

× (1 + 2 ~ e x p ( - n r l ) c o s  no-), [3.30] 
n - I  

where Eq. [3.4] is also taken into account. 
From Eqs. [3.28] and [3.30] one easily de- 
termines 

B0 = rcsin ~c ; [3.31] 

2 
Bn = - - rosin ~c. [3.32] 

n 

From Eqs. [3.28] and [3.31]-[3.32]  one ob- 
tains the form of  the solution for the whole 
region - o o  < r < +oo,  

~'(0-, r )  = Co 

+ resin ~c ln(2  Gosh r - 2 cos 0-), [3.33] 

where we have used the identity 

co 

[rl - 2 ~ _1 e x p ( - n ] r l ) c o s  
n=l n 

= ln(2 cosh r - 2 cos 0-). [3.34] 

Along the outer part of  x axis (0- = 0) Eq. 
[ 3.33 ] yields 

~'(0, r )  = Co + resin ~ 

× [ r + 2 1 n ( 1 - e - ~ ) ] ,  r > 0 .  [3.35] 

For large x by using the expression for r(x, y) 
in Ref. (19) one obtains 

In x + a  
TIy=0 = X -  a 

=  3. 61 

Then from Eqs. [3 .35]- [3 .36]  one derives 

~'(0, r )  = Co + r~sin ~c 

× [ 2 1 n 2 a + o ( a 2 / x 2 ) ] ,  x >  1. [3.37] 
[ J x 
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On the other hand, along the y axis ( r  = 0) 
Eq. [3.33] reduces to 

P(a, 0) = C0 + resin ~c ln (4  sin2 2 )  • 

[3.381 

the condition of matching of  the outer and 
inner solutions (see Ref. ( 23 )): 

( p i n ) o u t =  (pout) in .  [3.46] 

By expanding the right-hand side of Eq. [3.45] 
in series for small qr one obtains 

In addition, for r -- 0 Eq. [3.2] yields 

O" 
sin 2 ~ = ( 1 + y2/a2)-l. [3.39] 

Then the asymptotics of  the inner solution 
p(a, z),  Eq. [3.33], along the y axis reads 

p( a, 0) = Co + r~sin xI% 

X[21n2a+o(ae/y2)],  y>> 1. [3.40] 
/ 3 Y 

The comparison between Eqs. [3.37] and 
[ 3.40 ] shows that the outer asymptotics of the 
inner solution is axisymmetrical, i.e., one can 
write 

(pin)out= Co 

+ rnsin ~[21n2a + o(a2/r2)] [3.41] 

where 

r = ~/x 2 + y2. [ 3.42 ] 

The above result implies that the meniscus 
surface in the outer region (~ ~ 1, r ~ 1 ) is 
axisymmetrical. Hence in the outer region Eq. 
[ 2.13 ] reduces to 

1 d r-~r =qaP" [3.43] 
rYr 

Along with the outer boundary condition 

lim p(r) -- 0, [3.44] 
F~ CO 

Eq. [ 3.431 yields 

pout(r) = GKo(qr), [3.451 

where G is an integration constant and K0 is 
modified Bessel function--see, e.g., (19, 24). 
The constant G as well as the constant Co in 
Eq. [3.33] is to be determined by means of 

(pout)in = G[-ln(7eqr/2) + 0(q2r2)]. 

[3.47] 

By substitution from Eqs. [3.41] and [3.47] 
into Eq. [ 3.46 ] one determines 

G = 2resin *c,  

Co = -2r~sin xI'cln(3,eqa). [3.48] 

Hence the inner solution [ 3.33 ] and the outer 
solution [ 3.45] acquire the form 

pin(if ,  7") ----- resin ~ c [ - 2  ln(3,eqa) 

+ ln(2 cosh r - 2 cos o-)] [3.49] 

p°ut(r) = 2resin ~I'cKo(qr). [3.50] 

Then the solution, which is uniformly valid 
in the inner and outer region is (23): 

p = pin + pont__ (pout) in ,  [3.51] 

where in view of Eqs. [3 .47]-[3.48]  

(pout)in = -2resin ~¢ln(3%qr/2). [3.52] 

In accordance with Eqs. [3 .24]-[3.25]  the 
mean elevation ho of  the contact line over the 
plane xy is 

hc D a L 2~rr~ ~ ~in(ff, r l  ) 
d~ 

cosh r ~  - cos if" 

[3.531 

The substitution from Eq. [3.49] into Eq. 
[ 3.53 ] yields 

hc = rosin ~I'n 

1 - e x p ( - 2 r l ) ]  [3.54] 
× r t + 2 1 n  7eqa 3" 

From Eq. [ 3.4 ] it follows that 

"rl = ln(a/rc + V1 + aZ/r~). [3.55] 

Equations [ 3.54 ] -  [ 3.55 ] provide the sought- 
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t a n  r 7 / s i n  "I% 

4.00 

3.00 

2,00 

1.00 

q-a = 0.2 em 

0 . ( ~ 0  r , , 

0 5 10 

a / re  

FIG. 5. Plot  o f  tan  rffsin ,1% vs a/r~. 

for dependence of  h~ on a, which in combi- 
nation with Eq. [ 3.23 ] gives the capillary in- 
teraction energy AWas a function of distance 
s between the two cylindersmcf. Eq. [3.5]. 

It should be noted that Eq. [3.54] is valid 
when 

(qa) 2 ~ 1, sin2~c ~ 1. [3.56] 

Hence a boundary transition a --* oo (infinite 
distance between the cylinders) in Eq. [3.54] 
does not make sense. In the other limit, a --* 
0, from [3 .54]- [3 .55]  one obtains the maxi- 
mum value of  he, 

2 
h~(a --* 0) = 2rcsin ~ l n  - -  ~ 2ho~, 7eqr~ 

[3.57] 
cf. Eqs. [3.16] and [3.56]. 

Equation [3.49] shows that at fixed r = 7"1, 

~-i~ depends on a, i.e., the contact line is not 
horizontal. The slope of the contact line can 
be characterized by the angle o defined as fol- 
lows: 

tan ~/ = [ f in( r ,  r l )  - ~ ' in (o ,  rl)]/(2rc) 

[3.58] 

By means of Eq. [3.49] one obtains 

1 + e x p ( - r l )  
tan ~ = sin ~cln [3.59] 

1 - e x p ( - r l )  

The plot o f ( t an  O)/sin ~I% vs a/r~ is shown in 
Fig. 5. One sees that for a/r~ > 3 the incli- 

nation of the contact line is very small (tan n 
< O. 1 ) even if q% = 20 °. 

4. C A P I L L A R Y  I N T E R A C T I O N  B E T W E E N  

T W O  SPHERES 

Let us consider a flat horizontal plate cov- 
ered with a liquid layer of thickness lo (Phase 
I). In addition, let us consider two similar 
spheres of radius R, which are put on the plate. 
If 2 R > l0 the spheres protrude from Phase I 
and lines of  three-phase contact are fo rmed- -  
see Fig. 6. We again restrict our considerations 
to the case of small slope of the meniscus sur- 
face (sin2~I'c ~ 1--see Fig. 6) and to small 
inclination of the contact line from horizontal 
position. In this case the horizontal projection 
of the contact line can be treated approxi- 
mately as a circumference of radius re. In ad- 
dition, Eqs. [ 3.11 ] and [ 3.14 ] hold again. 
However, instead of Eq. [ 3.12 ] in the present 
case one is to write 

tee + ~ = arcsin(rc/R), [4.1] 

where a is the real contact angle--cf. Fig. 6. 
Besides, Eq. [ 3.15 ] is to be written in the form 

I~o = 2~-r~oh~sin ~ ,  [4.2] 

where r~o and ~ o  are the limiting values of  re 
and ~ for s --~ oo. In this way Eq. [2.19] 
takes the form 

/~ W m  ~-~ 2~r3'[ rch~sin ~c  

- ro~hoosin "~o - r~ + r~]  

- Apg(fvmZdV- fvm ZdV), [4.3] 

/ / / / / / / / / / / / / / / / / / / / / / /d/ / / /d/ / / / / / / / / / /  
2 r e  

FIG. 6. Sketch of  two spheres of  radius  R par t ia l ly  im-  

mersed  in  a l iqu id  layer  of  th ickness  lo on  a hor izonta l  

substrate.  
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where hc is defined by Eq. [3.24]. The coun- 
terpart of  Eq. [ 3.19 ] for the present case reads 

2 

~ ( W K r A K y -  lim wKrAKy) 
K = I  Y=I , I I  s---~ o~ 

= 4~rR(w~ - wn)(hc - ho~). [4.4] 

By means of  some geometrical considerations 
one can derive 

f.i dV-f,,ozdV=LzdV 
- f ,  m ZdV-Z[ zdV- ,=zdV] [4.5] 

fv, lZdV-f.,, zdV=-  zdv 

[4.6] 

The volumes V~ and V2 represent part of  the 
particle volume and are shown in Fig. 6. The 
boundary between them is a part of a cylin- 
drical surface based on the contact line. One 
can easily derive tlaat 

fv zdV- fv, zdV= dzzr (z) 

rr ¢ r 2 h  2 2 2 
2 " . . . .  - ro~hoo) 

where 

r2s(Z) = R 2 - ( z  - R + lo) 2 [4.8] 

is the equation of the spherical particle surface. 
Then by making use of Eqs. [4 .5]- [4 .8]  one 
obtains a counterpart of Eq. [ 3.21], 

Z ( m r g Z ( ~ ) -  lira m r g Z ~  )) 
Y=I, I  s ~  

where as usual Ap = pi - -  PlI. Finally, a sub- 
stitution from Eqs. [ 2.2 ], [ 2.7 ], [ 4.3 ], [ 4.4 ], 
and [4.9] into Eq. [ 2.4 ] leads to the following 
expression for the interaction energy between 
the two particles 

A W ( s )  = 4~rR(wi - wii)(hc - ho~) 

- 2~r~,(-rchcsin ~c + r 2 

+ r~h~sin ~ - r 2 )  

- 2AO fv ZdV- fvl zdV ) . [4.101 

If the Young equation ~on - o~ = ~, cos a is 
satisfied (equilibrium contact line without 
contact angle hysteresis), Eq. [4.10] trans- 
forms to read 

AW(s)  = -2~-3'[2(hc - ho~)R cos a 

__ 2 r~hcsin ~c + r~ + r~h~sin ~ - r~]  

- 2 Xog(fv zdV- fv, zdV ) . [4.11] 

By means of  [4.7 ] -  [4.8 ] one easily calculates 

z d V -  z d V  = ~ (hE -- h 2 )  
I 1o~ 

× [2lo(2R - lo) - h~ - h~]  

4 
+ ~ ( R  - lo)(hS~ - h ~ )  

2 2 2 2 t - r ¢ h ~  + r o ~ h o ~  . [4.12] 
J 

The numerical calculations show, that usu- 
ally the last term in Eq. [4.11] turns out to be 
negligible. Eqs. [ 4.11 ] -  [4.12 ] in conjunction 
with Eq. [3.54] for hc and the Derjaguin (20) 
formula, 

2 
h~ = rosin ~ l n -  [4.13] 

"[eqr~ ' 

allow calculation of the capillary interaction 
energy A Wbetween the two spherical particles. 
The corresponding capillary force is 

d ( A W )  
f =  [4.14] 

d(2s) 
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Numerical results for the capillary interactions a" [ e m ]  
are given in the next section. 0 ,_5 

5. N U M E R I C A L  R E S U L T S  A N D  D I S C U S S I O N  

The capillary interactions between particles 
attached to a liquid-fluid interface are impor- 
tant in a very wide region of particle size: from 
1 0  - 7  c m  u p  t o  1 0  - 1  c m .  The interest of the 
experimentalists is increased to the region of 
the micrometer-size particles (e.g., polystyrene 
latexes--see Refs. (4, 5)) and to the region 
around 10 nm (macromolecular globules-- 
see Refs. (6-8)) .  That is why in the illustrative 
numerical study below we will focus our at- 
tention on particle size of the order of  10 nm 
and 1 #m. Of  course, the theoretical expres- 
sions derived in the previous sections have a 
wider range of validity. 

a. Capillary Interaction between Two 
Vertical Cylinders 

First of all we consider the dependence of 
the contact line elevation he on the distance 
between the cylinders for a given angle ~I,c. 
The calculative procedure is the following. For 
a given s and cylinder radius r~ from Eq. [ 3.6 ] 
one determines a- -see  also Fig. 4. Then one 
calculates rl  from Eq. [3.55] and h~ from Eq. 
[3.54]. hoo is given by Eq. [3.16]. Figure 7 
represents the ratio hJhoo as a function of 

h e / h ~  

~ o 0  I -  ro=~-,, , .h.=6.v== ] 
l "  1 - -  ro=0.,u,~.h-=0.5~u~]__ _ _  

1.75 ~ .............. 

150 

1,25 
q-' = 0.2 c m  

1.00 , , , , I , , , , I , , , , ~ , , , , I 

0 25 50 75 i00 

a /r~ 

FIG.  7. P lo t  o f  h c / h ~  vs  a/rc  for  cy l inders .  

hp = 1 g / e r a  a 
7 = 40 m N / m  

0.I0 

0 05 ,,,, , ...... , . . . . . . . . . . . . . . . . . . .  , . . . . . . . . . . .  , . . . . . . . . .  t . . . . .  
lO-V 10-6 i0-5 10-4 lO-S lO-a 

re [ c m ]  

FIG. 8. The radius of validity of Eq. [3.54] a* as a 
function of the cylinder radius re. 

a/ro for two different values of re: 6 nm and 
800 nm. As could be expected, hc decreases 
when the distance between cylinders increases. 
The curves in Fig. 7 are insensitive to the value 
of  ~I,~ (if  only I xIQI ~< 20 ° in order for Eq. 
[3.56] to hold). It is worthwhile noting that 
the two curves in Fig. 7 do not differ too much 
in spite of the great difference between the val- 
ues of r~. 

As mentioned earlier, Eq. [3.54] for ho is 
valid when (qa) 2 ~ 1. For sufficiently large 
values of a the values of he calculated by means 
of  Eq. [3.54] are not correct, e.g., the ratio 
h~/hoo depicted in Fig. 7 can be less than unity 
and even negative. Let a = a* be the solution 
of the equation he(a) = h oo. For a > a* Eq. 
[3.54] is no more valid (he < hoo). Hence a* 
provides an estimate of the boundary of va- 
lidity of Eq. [3.54]. Figure 8 represents a* vs 
rc calculated by means of Eq. [3.16] and 
[3 .54]- [3 .55] .  To determine q we used 7 = 
40 m N / m  and Ap = 1 g/cm3--see  Eq. [2.6]. 
The region of validity of Eq. [3.54] corre- 
sponds to a < a*. It is remarkable that for rc 
< 100 #m a* is constant and equal to (%q)-1. 
For r~ > 100 #m a* (and the range of validity 
of  Eq. [ 3.54 ]) decreases fast. 

Having calculated h~ and hoo one can easily 
determine the energy of capillary interaction 
AWby means of Eq. [3.23]. The plot of  AW 
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vs a/rc is presented in Fig. 9 for various values 
of  r~ and ~c. One sees that A W is negative 
and corresponds to attraction between the two 
cylinders. Since AWis an even function ofxI% 
(cf. Eqs. [3.16], [3.23], and [3.54]), AWls  
negative for both concave and convex menisci 
(~c > 0 or Mo < 0). Besides, the magnitude 
of A W increases with ro proportionally to r 2 
and with ff'~ proportionally to sinZMc. 

Another feature of  the capillary force inter- 
action energy is that A W is extremely long- 
ranged--see Fig. 9. This fact implies that in 
the case of more than two cylinders the cap- 
illary interaction will not be pair-wise additive 
and many-body interactions must be taken 
into account. 

b. Single Sphere Protruding 
from a Liquid Layer 

To calculate parameters roo, ~ o ,  and h~o 
entering Eq. [4.11 ] we used the following pro- 
cedure. We suppose that the sphere radius R, 
the layer thickness 10, and the contact angle oe 
(see Fig. 6) are known. Let us define 

Lo = I0 + hoo. [5.1]  

In the case of  consideration, when a three- 
phase contact  line is formed, one has 

10 < l~ < 2R. Ifl~o is known, from the equation 
of  sphere one finds 

roo(loo) = [loo(2R - loo)] 1/2. [5.2] 

Then from Eq. [4. I ] one determines 

roo(loo) 
Moo(loo) = a r c s i n - -  c~. [5.3] 

R 

Finally, a combination of  Eqs. [ 3.16 ] (with 
Me = Moo) and [ 5.1 ] yields 

/o0 = 10 - roo(loo)sin ~oo(loo) 

X ln[%qroo(loo)(1 + cos ~oo(loo))/4]. 

[5.4] 

In view of Eqs. [5 .2] - [5 .3] ,  Eq. [5.4] repre- 
sents an equation for calculating loo, which is 
to be solved numerically. Figures 10a and 10b 
show the dependences of ~o~ and hoo on 10 for 
contact angle ~ = 0 and for two values of  the 
particle radius R. Striking facts are that even 
for lo --* 0 the particle is encircled by a thick 
meniscus and that Mc can not exceed 30 ° for 
the values of  R considered. It should be also 
noted that for the smaller particle (R = 6 nm) 
disjoining pressure effects, which are not ac- 
counted for in Eq. [5.4], can be impor tan t - -  
see, e.g., (25). This is discussed by the end of 
the next subsection. 

AW 
[ J ] x l 0  '5 

a 

0.00' - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

~ c : 5  ° ...,..°.........-" .... 

-i0,00 "'" 
i0 o 

-20.00 q-I = 0.2 c ln  

re  = 0.15/zm 

-30 .00  
0 250 500 750 lO00 

a / r e  

AW 
[ J ] × l O  19 b 

0,00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

_10,00 ~ ~-5~ 

-e0.oo [ ...."'fie = 10 ° q-i  = 0.2 e m  

-30.00, 
0 250 500 750 1000 

a / / r e  

lqG. 9. Capillary meniscus interaction energy A W vs the distance between two vertical cylinders char- 
acterized by a/rc with re being the cylinder radius. 
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~I,~ [deg]  
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0.0 
0.0 

a R =  0 . 8 # m  
- - -  R = O . 4 ~ m  

.... R=6nm 

~ = 0.2 cm q 

~. ~ O(--0 o 

, , , , i , , , , i . . . .  i , , , , r 

0.50 1.00 1.50 ~.00 

t o / R  

h~/R 

2.0 

1.5 

1.0 

0.5 

0.0 
0,00 

' % . . . .  

~ . q- = 0.2 crn 

0.50 1,00 1.50 2 0 0  
t o / R  

FIG. 10. Angle  of  meniscus  slope ~c  ( a )  and  e levat ion  of  the contac t  l ine hc (b )  vs the l iqu id  layer  th ickness  
lo for a single par t ia l ly  i m m e r s e d  sphere of  radius  R .  

c. Two Spheres Protruding 
f rom a Liquid Layer 

In the case of two spheres of the same radius 
R instead of Eq. [5.4] one has 

l = lo + ho[rc(l), q~(l) ,  a ( l ) ] ,  [5.51 

where hc is given by Eqs. [3 .54]-[3 .55]  along 
with the expressions 

rc(l) = [I(2R - l)]1/2, 

rc(l) 
~c(l)  = arcsin - a [5.6] 

R 

a(l )  = [s 2 - r2(1)] 1/2. [5.7] 

To determine l we solved Eq. [ 5.5] numeri- 
cally. The results for h~/ho~ vs s / R  are shown 
in Fig. 11. One sees from Figs. 10b and 11 that 
both hoo and the ratio h~/ho~ increase when 
the thickness of  the liquid layer 10 decreases. 
Besides, hc increases when the distance 2s be- 
tween particle centers at a given thickness 1o 
decreases. 

By using the values of re(l), ~ ( l ) ,  and a( l )  
determined as explained above one can esti- 
mate the deviation of  the contact line from 
horizontal position by means of Eqs. [ 3.55 ] 
and [3.59]. The calculated tan n/sin ~c is 
plotted in Fig. 12 vs a i R .  One sees that for 
micrometer size particles the inclination of the 
contact line is negligible. This fact supports 

our assumption that the contours C 1 and C2 
depicted in Fig. 2 are circumferences in the 
case of  small spherical particles. 

Figure 13 represents the dependence of the 
capillary interaction free energy A W on the 
distance between particles for particle radius 
R = 0.8 #m and contact angle a = 0% AW 
was determined by means of Eq. [4.11 ] along 
with the values of  the geometrical parameters 
calculated from Eqs. [ 5.2 ] - [ 5.7 ]. The most 
important fact is that A Wis negative and cor- 
responds to attraction between the particles. 
Besides, the capillary interaction turns out to 

--" -- R = 0.8 ~zna, l o = 0.4 ]~m 
- -  R = 0 . 8  p a n  , [ o  = 1 . 2 / z r n  

~ ' " - - .  ,.. q ~- 0 . 2  c n l  
1.02 ~ ~ ' "  ,.  a = 0  ° 

1 . 0 0  i i i i i i i l l  i i r I I i I l l  i I I r r r l r P  

I0 i00 I000 s/R 

FIG. I I .  Plot o f  h¢/hoo vs s/R where 2s is the center- 
to-center  separa t ion  be tween two s imi la r  spheres of  
radius  R .  
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t a n  q / s i n  ,!% 

0 2 0  

0 . i 5  

0 1 0  

0 , 0 5  

0 0 0  
0 

" a =  0 ° ,  q ~ = 0 . 2 c m  

1 0 =  1.2/am ( a b o v e  e q u a t o r )  

i , i i i , i r r r h , i i I i t i i r 
5 1 0  1 5  2 0  

a / R  

FIG. 12. Plot of tan n/sin ,I% vs a/R;  n characterizes 
the deviation of the contact line from horizontal position-- 
see Eq. [3.58]. 

be long-ranged: even at s = 1000R, I A W I is 
considerably largeC'than the thermal energy 
kBT. Such a long-range attraction could lead 
to two-dimensional disorder-order phase 
transitions and formation of  ordered clusters 
or larger domains of  particles depending on 
their concentration as observed in Ref. (26). 
As seen in Fig. 13 the attraction increases when 
the thickness l0 of the liquid layer around the 

particles decreases. This effect is illustrated also 
in Fig. 14 for different values of  the contact 
angle at fixed interparticle distance 2s = 5 R. 
The attraction is larger for small thickness l0 
and small contact angle a. When lo = R ( 1 + 
cos a )  both angle ~¢ and the meniscus ele- 
vation he are equal to zero at every interparticle 
separation. For this lo one obtains A W = 0 
and the curves in Fig. 14 exhibit a maximum. 
The points on the fight from the maximum 
correspond to negative ~¢ and h~ (the contact 
line is situated below the level of the horizontal 
interface far from the particles). It is worth- 
while to note that in spite of the large variation 
of  a for the curves in Fig. 14, the slope angles 
• ¢ and ~ determined from Eqs. [ 5.2 ] - [ 5.7 ] 
turn out to be small enough to satisfy 
Eq. [3.56]. 

The approach for the calculation of A Wfor  
two similar spheres or cylinders developed in 
this study can be extended for the case of cyl- 
inders an d /o r  spheres of different radii and 
contact angles. Such a study is under way (27). 

When the particles are small (e.g., macro- 
molecular globules--see Refs. (6-8) )  and the 
liquid layer shown in Fig. 6 is thin, the effect 
of the disjoining pressure should be taken into 
account. The disjoining pressure enters the 
Laplace equation and hence it affects the me- 

Aw(~) 
[ J ] x l O  1~ 

o o o  ........ . . . . . . . .  .-..~.7.-..7..-.2.'5.=.7..7.:.=.=..--..:.:=.:..:.::.=.v.= . . . . .  

/o q = 0 . 2 c r n  
0.4 / t i n  

1 

c ~ = 0  ° 

R = 0.8 f fm 

- 5 . 00  

- ItLOO 

1 5 . 0 0  , , , , i , , ~ , I , , , , , ~ , , , 

2 5 0  5 0 0  7 5 0  '_00 r' 

s / R  

FIG. 13. Dependence of  the capillary meniscus inter- 
action energy AW on the distance 2s between the centers 
of two similar spheres of radius R for two values of the 
liquid layer thickness 10. 

Aw(s) 
[ J ] x l 0  ~5 

o . 0 o  ~[ o = 9 0 ° . i  " /  . . . . . . . . .  2 - ' ~ r ~ - - " ~ s ~ " - ~ " ' ~ : = ~ " . / " ~ ~ -  ~ 

-500 f / / "  . " 2 ~  " \  

- 1 0 . 0 0  [ ~ = 6 0 ° /  " " / /  [ / " / , . . /  
-15 .0o r .  = 

- ooo . . - /  R = 0 . 8  / zm 
/ 

[ , " V  S =  ~ . ~  ]{ 
- 2 5 . 0 0  t .  / 

- 3 0 . 0 0  

0 . 0  0 5 1 .0  1 5  2 . 0  

l o / R  

FIG. 14. Plot of A W vs lo/R for different values of  the 
contact angle a at fixed distance 2s = 5R between the 
centers of two similar spheres of  radius R. 
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niscus shape. For small meniscus slope (cf. 
Eq. [2.10]) from Eq. [5] in Ref. (25) or from 
Eq. [4.11] in Ref. (28) one can derive 

YV2~ " = Pc - II, [ 5.8 ] 

where Pc and II are the capillary and disjoining 
pressures, respectively. The capillary pressure 
can be represented in the form 

, ) (0)  _ p~0)  
Pc = *n + Apg~', [5.9] 

where P(r °), Y = I, II, is the hydrostatic pressure 
in the respective phase at level z = 0--see Fig. 
6. It is natural to suppose that the film of 
thickness h = lo is an equilibrium wetting film. 
Then the disjoining pressure can be expanded 
in series for small ~': 

o ( o )  _ p~O) 
IX  ~ ~ I I  

(For f = 0 Eqs. [5.9]-[5.10] yield II = Pc as 
it should be for an equilibrium flat film--see, 
e.g., Ref. (29).) The substitution from Eqs. 
[5.91-[5.101 into Eq. [5.81 leads to 

where 

v 2 f  = 42/. [5.111 

q2 _ Apg IIt ,  li '  --77-,dli . [ 5.12 ] 
3' = a n t =  0 

For equilibrium films II' < 0 and hence ~2 is 
a positive quantity. The comparison between 
Eqs. [ 5.11 ] and [ 2.13 ] reveals that the dis- 
joining pressure effect can be accounted for 
by changing formally q to ~ in Eqs. [3.49]- 
[ 3.52 ], [ 3.54 ], and [4.13 ] describing the me- 
niscus profile. The contribution of II into the 
capillary interaction energy A W needs a spe- 
cial study, which is outside the scope of the 
present paper. 

Equation [ 5.12 ] shows that the disjoining 
pressure effect becomes important when 

- I I ' (h )  >~ &pg. [5.131 

As an illustration let us consider the simplest 

disjoining pressure isotherm, that o f  the van 
der Waals forces, 

AH 
II(h) - 6a.h3, [5.14] 

where AH is the compound Hamaker con- 
stant--see, e.g., Ref. (30). From Eqs. [ 5.13 ] - 
[5.14] one can conclude that the disjoining 
pressure becomes important when the film 
thickness h satisfies the relationship 

h <~ (--AH/2~rApg) 1/4. [5.15] 

For an aqueous film on mercury, like those 
studied in Refs. (6, 7), one has AH = --7.22 
× 10 -2o j (van der Waals repulsion )--see Ref. 
(31). With this value of As Eq. [5.15] yields 
h < 1.0 t~m. The latter value is somewhat ex- 
aggerated for the reason that Eq. [ 5.14] is not 
valid for such large thickness because of 
the electromagnetic retardation effect--cf. 
Ref. (30). 

CONCLUDING REMARKS 

A general expression for the energy of cap- 
illary interaction between particles attached to 
a liquid-fluid interface is proposed--see Eqs. 
[2.2] and [2.4]. The weight of the particles 
and of the capillary menisci around them as 
well as the surface energy of all phase bound- 
aries are taken into account. In the case of 
small slope of the meniscus surface, when the 
Laplace equation can be linearized, all inte- 
grals over the meniscus surface and volume 
(the volume hatched in Fig. 1 ) cancel each 
other. Then it turns out, that the capillary in- 
teraction energy 2x Wis expressed only through 
integrals over the particle surface and volume, 
and over the lines of three-phase contact. 

In the case of two vertical cylinders the gen- 
eral equations lead to a simple expression for 
AW, Eq. [3.23]. AW depends on the eleva- 
tion, he, of the contact line over the horizontal 
interface far from the cylinders. To derive an 
expression for hc we solved the Laplace equa- 
tion in the case, when (qa)2 is a small param- 
eter (cf. Eq. [2.6] and Fig. 4). The method of 
the matched asymptotic expansions is used. 
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Eqs. [3 .49] ,  [3 .50] ,  and  [3.511 represent  the  
inner ,  the  outer,  and  the  un i fo rmly  valid so- 
lut ion,  respectively.  Equa t ion  [3.54 ] gives the  
sought-for  expression for the  e levat ion he. 

The  general  equa t ions  are appl ied  also to 
calculate  the  energy o f  capi l lary  in te rac t ion  
be tween two s imi lar  spheres p ro t rud ing  f rom 
a hor izonta l  l iquid  l a y e r - - s e e  Fig. 6 and  Eq. 
[4.1 1]. Both for spheres and  cyl inders  the  en- 
ergy o f  capi l la ry  in te rac t ion  turns  ou t  to  be 
at t ract ive and  l o n g - r a n g e d - - s e e  Figs. 9a and  
9b as well as 13a and  13b. Hence  the capi l lary  
forces should  be  taken  into  account  when in- 
terpre t ing exper imenta l  da t a  for par t ic le  or- 
der ing at  an  in te r face - - see ,  e.g., ( 4 - 7 ) .  

The  present  s tudy can find a fur ther  devel-  

o p m e n t  in several  aspects:  ( i )  The  capi l lary  
interact ions between two particles under  other  
geometr ical  configurat ions can be investigated. 
( i i )  W h e n  the par t ic le -conta in ing  layer  is thin,  
the  effect o f  dis jo in ing  pressure  on the menis-  
cus profile should also be taken  into a c c o u n t - -  
see Eq. [ 5 . i 3 ] .  

W e  hope  the present  s tudy will con t r ibu te  
to a be t te r  unde r s t and ing  o f  p h e n o m e n a  like 
cluster  f o rma t ion  and  part ic le  order ing at  a 
l i qu id - f lu id  interface.  
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