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Abstract—In order to investigate the influence of the surface viscosity on the type of the flow inside and
outside a droplet moving in a thin liquid layer, it is essential to compute all hydrodynamical parameters
which are important for a better understanding of the hydrodynamical interaction of the thin liquid film
and the droplet in it. In the present paper, the problem of a translational slow motion of a droplet with
a viscous interface in a liquid layer bounded by viscous liquid—gas interfaces is considered. For low
Reynolds and capillary numbers, different values of droplet and film bulk viscosity ratios and surface
dilatational and shear viscosities are used in the frame of Newtonian surface rheology. The problem reduces
to two dimensions when using the “two vorticities—one velocity” formulation of basic flow equations. The
model equations and boundary conditions, which contain second-order derivatives of the velocity and the
vorticity, are solved numerically to provide information on type of flow, pressure distribution and drag
coefficient. The numerical results reveal the strong influence of the surface viscosity on the motion of the
droplet in the viscous liquid layer when the radius of the droplet is of the same order of magnitude as the
thickness of the liquid film. The presence of the viscous liquid-gas interface close to the droplet changes the
flow pattern inside the droplet considerably when the droplet bulk viscosity is sufficiently higher than the

viscosity of the film.

1. INTRODUCTION

Coating processes, such as those encountered in the
photographic industry, may be significantly in-
fluenced by interfacial rheological properties. Coating
fluids generally contain molecular species which
readily adsorb to the surface of a fluid layer [cf.
Valentini et al. (1991)]. When the coating film con-
tains liquid or gaseous defects (droplets or bubbles)
the species adsorb also to the liquid-liquid or
liquid—gas interfaces and they change the rheological
behaviour of the interfaces from a free interface to
a linear Newtonian or non-Newtonian highly viscous
layer. The behaviour is similar to particle interfaces in
biological fluid flow systems containing deformable
particles. The material properties of the red blood cell
membrane and its physiological functions [cf. Feng
(1993)] depend on the interfacial viscosity and diffus-
ivity. That is why the theoretical and experimental
investigation of the hydrodynamical parameters of
the flow induced by the movement of a solid or liquid
particle in liquid layers or pipes is one of the impor-
tant tasks of chemical engineering.

'Corresponding author.

Classical experiments carried out by Lebedev
(1916) and Silvey (1916) show that small fluid droplets
settled as solid spheres and therefore contradict the
theory of Rybczynski (1911) and Hadamard (1911).
The small amount of surfactants changes the inter-
facial mobility of the droplet. The effect of Gibbs
elasticity and surface viscosity on the drag coefficient
of an emulsion droplet in an adsorption controlled
unbounded Marangoni flow was presented by Levich
(1962) and Edwards et al. (1991). They showed that in
the frame of the Boussinesq—-Scriven constitutive law
for a Newtonian viscous liquid interface, only the
dilatational surface viscosity influences the drag. The
numerical results of Danov et al. (1994) revealed that
there is a strong influence of the shear and dilatational
surface viscosity on the motion (rotation, translation
and stationary) of a solid particle in a viscous liquid
layer when the radius of the particle is of the same
order of magnitude as the thickness of the liquid film
or when the particle is close to the surface of the liquid
film.

The hydrodynamics treatment of solid particles,
droplets and bubbles in the presence of walls was
developed by several authors [cf. Happel and Brenner
(1965), Hetsroni (1982) and Davis (1993)]. Here we
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point out only some new articles related very close to
the topic of the present paper. Shapira and Haber
(1988,1990), using Lorentz’s reflection method, pro-
vided analytical results for the drag force and the
shape of a small droplet moving in Couette flow or
with constant translational velocity between two
parallel walls. Yang and Leal (1990) considered the
movement of a spherical droplet, either parallel or
perpendicular to a plane, deformable interface in the
frame of low Reynolds number hydrodynamics. They
investigated the influence of the viscosity ratios, den-
sity differences, interfacial tensions and the drop posi-
tion relative to the free interface on the degree of
distortion of the plane interface as well as on the
distortion of the fluid drop surface. Besides, they cal-
culated the drag coefficient of the moving droplet.

These analytical results of particle motions close to
interfaces are not applicable in the case of a viscous
interface because the boundary conditions contain
second-order derivatives of the velocity [cf. Danov et
al. (1994)].

These boundary conditions are the reason, why the
otherwise convenient numerical method for solving
the problem of a moving rigid particle in Stokes’ flow,
the second-kind boundary-integral equation formula-
tion as used by Liron and Barta (1992) is not appli-
cable in our case. Similarly, the explicit transient algo-
rithm for predicting incompressible viscous flow in
arbitrary geometry given by Mukhopadhyay et al.
(1993) is valid only with standard boundary condi-
tions. Therefore, we used the “two vorticities—one
velocity” formulation, in order to reduce the problem
of the moving particle in a thin liquid layer from three
dimensions to two dimensions.

The present paper discusses the problem for deter-
mining the hydrodynamical parameters of a small
droplet moving in a viscous liquid layer for low
Reynolds and capillary numbers. At all interfaces
a linear Newtonian rheological behaviour is assumed.
The problem for Stokes’ flow in a cylindrical coordi-
nate system of revolution in the liquid layer and in
a spherical coordinate system inside the droplet is
reduced from three dimensions to two dimensions
using a method similar to that of Danov et al. (1994).
It turned out that the application of this method is
convenient for numerical computations. In order to
illustrate the global interaction between a droplet and
an interface and its dependence on the bulk viscosity
ratios, the surface viscosity numbers and the drag
force, velocity and pressure distributions outside as
well as inside the droplet were obtained and are pre-
sented in Section 3. The numerical results reveal the
change of the type of motion inside the droplet when
the droplet bulk viscosity is sufficiently higher than
the film bulk viscosity. The effects depend strongly on
the magnitude of the surface viscosity.

2. MATHEMATICAL MODEL OF THE PROBLEM. BASIC
EQUATIONS AND BOUNDARY CONDITIONS
Let us consider a viscous liquid droplet with radius
a and viscous interface S, performing a translational
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motion along the Oy axis. The droplet is immersed in
a viscous liquid layer bounded by two viscous inter-
faces S, and S, (see Fig. 1). It is supposed that the
translational velocity ¥V, of the droplet is so slow and
the deformation of the interfaces S,, S, and S, caused
by the flow are so small that the flow inside the
droplet as well as the flow in the surrounding liquid
film can be considered as a viscous, incompressible
creeping motion and that all the boundary conditions
can be linearized around the non-perturbed interfaces.
As was shown in Danov et al. (1994) the solution of
Stokes’ equations in the liquid layer contains only one
mode of the Fourier expansion. After introducing
dimensionless variables by scaling the r-, z- and x;-
coordinates with the droplet radius a (see Fig. 1) the
components of the velocity in the liquid film v/ and
the pressure p/ can be expressed in the following
general form:

é
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where  and { are dimensionless functions related to
the vorticity components in the meridian plane, F/
and P/ are the dimensionless meridian components of
the velocity and pressure and #” is the viscosity of the
liquid. Let the non-perturbed equations of the film
interfaces are z = z, and z = z,, where z, and z, are
the vertical coordinates of the liquid layer planes.
Following the method for the transformation of the
three-dimensional problem into a two-dimensional
problem using the “two vorticities—one velocity” for
mulation, the Fourier expansion of the components of
the velocity v/ and the pressure p? inside the droplet
can be written as follows:
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where F9, P4, w® and w9 are the dimensionless meridi-
an components of the fluid velocity, pressure, and
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Fig. 1. Geometry of the system.



Slow motion of an interfacial viscous droplet

radial and polar components of the vorticity vector,
respectively, and #* is the viscosity of the liquid inside
the droplet.

Substituting eqs (1) and (2) into the equations of
continuity [cf. Danov et al. (1994)] we obtain the
following equations for F/ and F? in the liquid layer
and inside the droplet:

G*F, 3oFS QO F 1éy ¢ 18

P 3 T a5 =0

cr r or 0z ror r rcz

OFY 4 0F* 1 0°F* 3cotx, oF?! 3
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After eliminating the pressure from Stokes’ equations
one obtains a general equation for the vorticity vector.
This yields the following system of second-order dif-

ferential equations for the vorticity functions ¢ and
{ in the liquid layer:

oy 1oy o 0
éerr ror | 8z2
)
P 18 AN L 204
E= Il Sl R Rl v

Using an analogous procedure for the dimensionless
radial and polar coordinates of the vorticity vector
inside the droplet, we obtain a similar system in
spherical coordinates:
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Once the solution (F/, , £, F4, w{ and w9) of the eqs
(2)—(5) is found, the veloc:1ty componcnts outside as
well as inside the droplet can be computed using eqs
(1) and (2). By substituting egs (1) and (2) into the
meridian components of the momentum balance, the
pressures inside and outside can be expressed in terms
of the solution of eqs (3)-(5) as follows:
Y l/f

pr=_7
or r 52

owl G “
= 2sin x, (—r—l - X, —2 — w")

0x, ox,

In order to account for the influence of soluble and
insoluble surfactants, when the Marangoni effect is
neglected and the interface rheology is linear, we con-
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sider the Boussinesq—Scriven definition for the New-
tonian interfaces [cf. Scriven (1960) and Edwards et al.
(1991)]. In this case, the surface excess pressure tensor
can be written as a sum of the isotropic thermodyn-
amic interfacial tensor and deviatoric parts, which are
related to the surface excess stress tensor. The surface
excess stress tensor in the frame of the linear inter-
facial rheology depends on the rate of relative dis-
placement of surface points and the dilatational and
shear viscosities, which are the material properties of
the fluid interface. In the dimensionless formulation
the Boussinesq—Scriven definition yields the following
parameters:

I d d d
LA O R
Mx Nx s Mx
™
E =Tk g, ST o)
any anx

where i/ and yf are the ratios of the bulk viscosities
and the characteristical viscosity #,. E, and E; are
shear surface viscosity numbers, K, and K, are dilata-
tional surface viscosity numbers of liquid—gas and
liquid-liquid interfaces, fe x> s> N and n§ are,
respectively, the interfacial shear and dilatational vis-
cosities at a given point of the liquid—gas and the
droplet interface. Hence, in the “two vorticities—one
velocity” formulation the kinematical equation and
the tangential projection for the interfacial mo-
mentum transport equation on the liquid-gas inter-
faces give the following boundary conditions [cf.
Danov et al. (1994)]
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On the droplet surface the fluid velocity inside and
outside contains only a component tangential to the
surface and it is equal to the mass-average (material)
surface velocity. In our case these boundary condi-
tions reduce to

aF* oF/
= —2wh, —+F = -2w]
OX1 axl

©®

Fi=F =U, wi=w{=w at§,

where U, is the dimensionless meridian component of
the interface velocity and w; is the dimensionless
radial component of the vorticity on the interface (it
can be introduced because the radial component of
the vorticity is a continuous function on the interface).
We consider a similar rheological behaviour of the
liquid-liquid droplet interface S, as of the liquid—gas
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interfaces S; and S,. Then the dynamic boundary
conditions in the “two vorticities-one velocity” formu-
lation reduce to

2
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In the surface equations and boundary conditions
(7)—~(9) the spherical vorticity components in the liquid
layer are related to the functions ¢ and { as follows:
S 1 v S 1 12
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2x, 2x,
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Finally, the resultant force F, due to the stresses,
exerted by the surrounding fluid on the surface of the
droplet S, can be derived from

w
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and the dimensionless radial and vertical film velocity
components R' and Z/ are given by

-
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4
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Integration of eq. (13) is performed along the non-
perturbed droplet boundary x, = 1.

3. NUMERICAL RESULTS AND DISCUSSIONS

3.1. Velocity and pressure distribution

In Figs 2-7, velocity and pressure distributions for
a droplet moving in a thin liquid layer are presented.
As opposed to the case, when a droplet is moving in
an unbounded liquid, one observes immediately, that
the velocity fields as well as the pressure distributions
are no longer symmetrical. This is due to the presence
of the interfaces close to the droplet with different
distances from the lower and upper side. Besides, the
lower surface viscosity numbers were chosen to be ten
times higher than the upper ones.

The fact that the droplet is closer to the lower
interface means that there is less liquid to be moved by
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the particle between its surface and the interface than
on the upper side and, hence, this will reduce the size
of the vortex inside the droplet on the lower side. In
contrast, the higher viscosity of the lower interface
tends to increase the size of the corresponding lower
vortex.

In Fig. 2 the effect of the different distances to the
lower and upper interface and the effect of the differ-
ent surface viscosity numbers neutralise each other
approximately so that the two vorticities have about
the same size. In Fig. 2(a) the viscosity inside the
droplet is ten times lower than in the situation which
was considered for Fig. 2(b). One observes that the
flow pattern does not change but that the absolute
values of the velocity inside the droplet decrease due
to the increased dissipation of energy.

In contrast, changing only the viscosity of the film,
whilst all other parameters remain constant, changes
the flow pattern inside and outside the droplet dra-
matically, as can be seen from Fig. 3. One can see that
for a higher film viscosity the influence of the particle
is further reaching and the gradients are less pro-
nounced, than for smaller film viscosities. When the
viscosity of the film and the droplet are of the same
order of magnitude, the situation is similar to the
previously described case. However, when the droplet
viscosity exceeds the film viscosity by one to two
orders of magnitude, the droplet behaves almost like
a rigid sphere. When the obtained results are com-
pared with the results presented in Danov et al. (1994)
one has to bear in mind, that the results presented
here refer to the equilibrium situation, not to the
elementary motion.

Figures 4 and 5 show the pressure distributions
which correspond to the previously discussed velocity
plots. In general, the influence of different parameters
can be identified easier when looking at the isobars
than from the velocity fields. As long as the viscosity
of the droplet is smaller or about as high as the
viscosity of the film, a change of the droplet viscosity
does mainly influence the pressure distribution inside,
while there are almost no changes in the film.

From Fig. 4 one can see how an increase of the
droplet viscosity leads to lower pressure gradients as
well as lower absolute values of the pressure and
hence a lower pressure jump at the droplet—film inter-
face.

The situation is rather different when the droplet
viscosity is considerably higher than the film viscosity.
In this case (Fig. 5) the pressure distribution in the film
gets strongly influenced when changing the droplet
viscosity. When the film is a lot less viscous than the
droplet, the pressure inside the droplet is almost zero
as can be expected for a rotating particle. At the same
time, the pressure gradients and the absolute values of
the pressure in the film are considerably higher and
the influence of the surface viscosity results in ex-
tremely steep pressure gradients between the bottom
of the particle and the lower interface.

In Figs 6 and 7, the presented data refer to a situ-
ation with almost free surfaces. When the viscosity of



Slow motion of an interfacial viscous droplet

2947

arrow scale:

——  0.40
2 - - - - - - - . T oI
ETo T o T

O S T T
R L
-1 f_.__::::: T
-2 7lil;llll||il|;ltlllllHJIlHllHul, sttt ] oo b o b
(a -5 -4 -3 -2 -1 y 1 2 3 4 5

arraw 3cale
040

2 E—H—b—'m . I DT
== 2 2T - S S =S I
b T/ - ~ T TN \\\ \\‘ T e T e e
bl 7\\? S LD T oo
e A s

U e K ﬁ S e et
FToID DD DN oD T
e N 5

I e S
) rllll!llll[llll!l‘lilll!IUIHIIH17'1HlﬂlH!IIH!lillpullllulrllllll1 1| .1_q
(b -5 -4 -3 -2 -1 0 1 2 3 4 5
Fig. 2. Velocity field for a droplet moving in the plane x = 0 for zy = —15and z, =20; K, = 1.0 and
E;=10,K, =10and £, = 1.0,K, = 0.1 and E, = 0.1, 2/ = 1.0 and two different values of the drop bulk

viscosity ratio: (a) u? = 0.t and (b) = p¢ = 1.0.

the droplet is as high as the film viscosity [Fig. 6(a)],
one observes that the upper vortex inside the droplet
is larger because more liquid is present above the
droplet than below. Reducing the film viscosity by
50% does not change the picture qualitatively but the
absolute values of the velocity inside the droplet de-
crease due to the reduced friction. The absolute value
of the velocity is in the above cases comparatively
small, because energy dissipation at the droplet-film
interface is large due to the higher surface viscosity
number at this interface.

The corresponding pressure distributions depicted
in Fig. 7(a) and (b) show more clearly that changing
the film viscosity does not, virtually, alter the flow
pattern outside the droplet but significantly influences
the flow inside. When comparing Fig. 7(b) with Fig.
5(a), which differ only in the magnitude of the lower
surface viscosity number, one notes that the surface

CES 50-18-H

properties do have an intluence on the whole flow
field outside the droplet. For higher value of the
surface viscosity, the pressure reaches higher values
and especially in the region directly below the droplet
one observes high pressure gradients.

3.2. Influence of the motion inside the droplet on the
bulk viscosity ratios

Figure 8 represents some blow-ups of the situation
inside the droplets in order to give the reader a better
resolved picture of the different effects. Figure 8(a) and
(b) refer to the same situation as in Fig. 2(a) and (b)
when the lower surface viscosity number is ten times
higher than the upper one and the droplet viscosity
gets increased by a factor ten. From these pictures one
can see more clearly that the effect of having less
liquid below the droplet than above, which would
weaken the lower vortex in the droplet and the higher
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Fig. 3. Velocity field for a droplet moving in the plane x = 0 for z, = — 1.5 and z, = 2.0, K, = 1.0 and
E,=10,K,=10and E;, = 1.0, K, = 0.1 and E;, = 0.1, u* = 1.0 and two different values of the film bulk
viscosity ratio: (a) u/ = 0.5 and (b) 4/ = 0.003.

friction with the lower interface, which drives this
vortex, almost balance each other. Hence, an almost
symmetrical flow pattern is resulting. The balance of
the two effects is not changed when increasing the
droplet viscosity, only the energy dissipation grows
and therefore the absolute values of the velocity drop.

From Fig. 8(c)—(e) one can observe that a decrease
of the film viscosity relative to the droplet viscosity
and the surface viscosity eventually leads to the disap-
pearance of the upper vortex. This is due to the fact
that the influence of different amounts of fluid above
and below the droplet is less important at low film
viscosities whereas the influence of the higher surface
viscosity at the lower interface remains the same.
However, it has to be noted that such a change in the
characteristic of the flow pattern occurs only when the
film viscosity is more than one order of magnitude

smaller than the droplet and the surface viscosity. We
would like to point out that these variations of the
viscosity ratios are not of purely academic interest but
refer to practically important situations, i.e. Fig. 8(b)is
comparable to a droplet of light oil moving in water
whereas Fig. 8(e) would represent an emulsion with
heavy oil.

3.3. Shapes of the film and the droplet

The presence of a droplet in a film with a thickness
comparable to the droplet diameter will of course lead
to a deformation of the film surface. This deformation
is shown for two different cases in Fig. 9, the black
arrow indicating the relative velocity between the
droplet and the film. When the film viscosity is small
compared to the droplet and the surface viscosity, the
deformation is a lot larger than in the case when all
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and E, = 10,K, =10and E, = 1.0, K, = 0.1 and E, = 0.1, ;/ = 1.0 and two different values of the drop
bulk viscosity ratio: (a) u? = 0.1 and (b) u? = 1.0.
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Fig. 5. Pressure distribution for a droplet moving in the plane x = Ofor z, = ~1.5and z, = 2.0, K, = 1.0
and £, = 1.0, K, = 10and E, = 1.0, K, = 0.1 and E, = 0.1, 4* = 1.0 and two different values of the film
bulk viscosity ratio: (a) 4/ = 0.5 and (b) u/ = 0.003.
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Fig. 6. Velocity field for a droplet moving in the plane x = 0 for z; = —1.5 and z, = 2.0, K, = 1.0 and
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Fig. 7. Pressure distribution for a droplet moving in the plane x = 0for z; = —1.5and z; = 20, K, = 1.0

and E;,=10,K, =01and E, =01, K,=01and E, = 0.1, u? = 1.0 and two different values of the film

bulk viscosity ratio: (a) i/ = 1.0 and (b) u/ = 0.5.

Table 1. Drag coefficient for z, = —1.5 and z, = 2.0, K, = 10 and E, = 1.0, K, = 0.1

and E, = 0.1 and p* = 1.0

ul Shapira and Haber

K,=10and E, =10

K,=01land E, =01

1.0 7.43500 3.12725 244373

0.5 8.10382 3.37691 2.66822

0.2 8.79429 3.98537 3.11351

0.003 9.49253 8.55732 8.17554
Table 2. Drag coefficient for z, = —1.5 and =z,

and E, =0.1 and u

20, K, =10 and E, = 1.0, K, = 0.1
=10

d

u Shapira and Haber

K,=10and E, =10

K,=0.tand E, =0.1

7.43500 3.12725
7.21687 3.10910
6.21775 3.00772

2.44373
243453
2.38109
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viscosities are of the same order of magnitude. This is
easy to understand when looking at the pressure dis-
tributions corresponding to Fig. 9(a) (7(a)), and Fig.
9(b) (5(b)).

K. D. DaNoOV er al.

3.4. Drag coefficient

We produced Tables 1 and 2 to allow a comparison
between our results and the results of Shapira and
Haber (1988, 1990) for a viscous droplet with a free

srrow scales

o 0.15

(a) -1 5 U

arvow scaler

e 0.15

.5 1

Fig. 8(a) and (b).
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surface, moving between two solid walls. In Table viscosity to droplet viscosity decreases, the drag coef-
1 we consider the influence of the film viscosity on the  ficient increases for all sorts of interfaces. One can see
drag coefficient for two different values of the lower  from the calculated values that the drag exerted on the
surface viscosity numbers. When the ratio of film particle for cases where the film viscosity is of the

asrrow scale
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atrow scale:
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Fig. 8(c) and (d).
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Fig. 8. Change of the vorticity inside the droplet for z; = —1.5 and z, =20, K; = 1.0 and E, = 1.0,
K, =10 and E, =10, K, =0.1 and E, =0.1 vs the bulk viscosity ratios: (a) u! = 1.0, u¢= 0.1,

(b) 4/ = 1.0. ¥ = 1.0, (c) ¥ =05 p* = 1.0, (d) p/ =02 p! = 1.0 and () pf =0.003, y* = 1.
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Fig. 9. Disturbances of the interface contours for the film boundaries for z; = — 1.5, z, = 2.0, K; = 1.0 and

E,=10, K, =01 and E, =01, K, =01 and E, = 0.1: viscosity ratios: (a) p/ = 1.0, ¢ = 1.0 and
(b) uf = 0.003, ut = 1.0,
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Fig. 10. Disturbances of the droplet interface for low viscous

interfaces and for z; = —1.2 and z, = 2.8: (-——-—) unper-

turbed surface; (— — —) capillary number 0.1; (- - —) capil-
lary number 0.2 and (. ...) capillary number 0.3.

same order of magnitude as the droplet and the sur-
face viscosity, is considerably smaller for mobile sur-
faces than for rigid walls. However, if the film viscosity
is very small compared to the droplet and the surface
viscosity, the situation is very similar to the one cal-
culated by Shapira and Haber and hence the drag
coefficients are very much alike.

From Table 2 one can deduce that when the film
viscosity is kept constant and larger than the droplet
viscosity, there is almost no influence of the droplet
viscosity numbers. Increasing the surface viscosity
leads to higher drag coefficients which will eventually
reach the values of Shapira and Haber for solid walls.

4. CONCLUSIONS

The presented method for the calculation of the
fluid flow inside and outside an interfacial viscous
droplet moving in a thin liquid film proved to be
appropriate to investigate in detail the influence of
various parameters relevant in such systems in detail.
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It could be shown that the type and amount of sur-
factants, resulting in varying surface viscosities at
the film surface as well as the droplet surface, does
have a considerable influence on the flow pattern as
well as on the drag coefficient of the moving drop.
Besides, the calculations could shed some light on
the mechanisms governing the behaviour of tech-
nically important systems, for example, emulsions of
light and heavy oil in water. However, the resultant
information on the behaviour of a single fluid particle
in the film is of particular importance to coated films.
The comparison with the calculations of Shapira and
Haber (1988, 1990) revealed the strong influence of the
surface properties on the drag exerted on the droplet.
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