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A simple theoretical model which allows the study of the con-
figuration and the interaction energy of a doublet of flocculated
Brownian droplets was recently proposed (Denkov et al., Phys.
Rev. Lett. 71, 3226 (1993)). The model assumes that the doublet
configuration consists of two deformed droplets having the shape
of truncated spheres separated by a planar film. In this model the
equilibrium film radius and thickness are determined by minimiz-
ing the total pair interaction energy which is presented as a sum of
explicit expressions for the different contributions (van der Waals,
electrostatic, steric, depletion, surface extension, etc.). In the pres-
ent study this simplified model is numerically verified by compari-
son with the results stemming from the real shape of the inter-
acting droplets. In order to determine the real configuration of
two drops in contact we solve numerically the augmented Laplace
equation of capillarity which accounts for the interaction between
the droplets. Then the total interaction energy is alternatively cal-
culated by integrating the energy density along the surfaces of the
droplets. The numerical comparison shows that the equilibrium
film radius and thickness, as well as the interaction energy calcu-
lated by means of the simplified model, are in very good agreement
with the results from the more detailed (but more complex) ap-
proach. Numerical calculations of the equilibrium line tensions
acting at the film periphery, as a function of the droplet radius,
are performed. The obtained results are relevant also to flocs con-
taining more than two particles since the theory predicts pairwise
additivity of the interaction energy in most cases. The results can
be useful in gaining a deeper understanding of the processes of
stabilization or flocculation in emulsions.  © 1995 Academic Press, Inc.

Key Words: emulsions, flocculation in; thin liquid film; line ten-
sion.

1. INTRODUCTION

Emulsions are of great importance in many areas of human
activity such as ail recovery and the food and beverage
industry. From an academic viewpoint, they provide interest-
ing and challenging problems, especially in relation to their
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stability against flocculation and coalescence. The stability
of suspensions containing solid particles are usualy treated
in the framework of the Derjaguin—Landau—V erwey—Over-
beek (DLVO) theory (1-3) which accounts for the electro-
static and van der Waals interactions between the particles.
In the past decades it has been shown that other types of
interparticle forces may aso play an important role in the
stability of dispersions—hydrodynamic interactions, hydra-
tion and hydrophobic forces, oscillatory structure forces, etc.
(4, 5). It was proven both experimentally and theoretically
that steric (6, 7) and depletion (8—10) interactions some-
times have a decisive effect on the dispersion stability.

The situation with emulsions is more complex (compared
to that of suspensions of solid particles) due to the droplet
fluidity and deformability. It is known that these two features
may have a great impact on the hydrodynamic interactions
and, hence, on the dynamic properties of such systems (11—
16). They are particularly important for the kinetic stability
of emulsions against coalescence (11-13). Along with the
hydrodynamic interactions, the direct interactions due to sur-
face forces can be strongly affected by the deformation (17—
19). For that reason an approach to calculation of the differ-
ent contributions (van der Waals, electrostatic, steric, deple-
tion, etc.) to the interaction energy, when deformation takes
place, was developed (20). It was assumed that the shape
of two deformed drops in contact can be approximated with
two truncated spheres separated by a planar film. A general
explicit expression for the van der Waals interaction energy
between two deformed droplets was derived (21) following
the microscopic method of Hamaker (22). The contribution
of the surface extension energy to the pair interaction poten-
tial was aso appropriately included. It was shown that the
stretching of the drop surface upon the deformation corre-
sponds to a soft interdroplet repulsion. All the remaining
possible interactions (electrostatic, steric, depletion, etc.)
usually can be treated in the framework of Derjaguin’s ap-
proximation (2, 3, 23), which allows for the two contribu-
tions of the total interaction energy: (i) across the flat film,
and (ii) between the spherical surfaces surrounding the
film (20).
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This approach was used elsewhere in a theoretical study
of the coal escence phenomenon in emulsions (24). The pro-
cesses of droplet deformation (film formation) and film thin-
ning and rupture were included as consecutive stages in the
general Smoluchowski (25) scheme of coalescence kinetics.
In this case, the hydrodynamic interactions between de-
formable droplets were also included and the effect of sur-
face fluidity was taken into account.

Some initial theoretical study of flocculating but not coa-
lescing emulsion droplets was performed recently (26). In
this paper the expressions for the energy contributions de-
rived in Ref. (20) were used to calculate the equilibrium
film thickness and radius, as well as the tota interaction
energy between two flocculated Brownian droplets of mi-
crometer and submicrometer size (hereafter such a system
is denoted as a miniemulsion). It was shown that the droplet
deformation can strongly affect the pair interaction energy.
In addition, a procedure for deriving the potential of mean
force and the radial distribution function at low volume frac-
tions (taking into account the droplet deformability) was
formulated.

Still it remained unclear to what extent the model droplet
shape assumed in Refs. (19-21, 24, 26) (two truncated
spheres separated by a planar film) is correct. In the present
paper we perform numerical calculations of the actual shape
of two deformed droplets forming an equilibrium doublet
(which presents also an independent interest). The aug-
mented L aplace equation, which accounts for the interaction
between the surfaces of the two droplets, is used for that
purpose (27, 28). The energy of interaction between these
droplets in equilibrium is determined (again numerically)
by taking into account the real shape and is compared with
the results from the model shape (truncated spheres). We
show that the values of the interaction energy, the equilib-
rium film radius and thickness, calculated by means of the
two approaches, are in very good agreement. This fact sup-
ports the accuracy of the numerical results and conclusions
reported in Refs. (19-21, 24, 26) . Furthermore, this finding
alows us to perform numerical studies of emulsions con-
sisting of deformable droplets on the basis of the much more
simple (and less time consuming) computations involving
the model shape rather than accounting for the actual one.
Such numerical investigation of the effect of different factors
(Hamaker constant, electrolyte concentration, interfacial ten-
sion, etc.) on the flocculation behavior of micrometer- and
submicrometer-sized dropletsis presented in the second part
of this study (29). Another aim of the present paper is to
specify a thermodynamic description of the system of two
interacting deformable droplets. Such a treatment allows us
to ascribe the components of the interaction energy between
the droplets to appropriate thermodynamic quantities as dis-
joining pressure, film, line, and transversal tensions, etc.,
which are widely used in the thermodynamics of thin liquid
films (2, 3, 27, 28).
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FIG. 1. Geometrical configuration of the system under consideration:

(a) the simpler model of two droplets having the shape of spherical seg-
ments separated by a planar film—see Section 2.1; (b) sketch of the rea
shape where smooth transition between the planar film region and the
spherical surfaces is present—see Section 2.2.

The structure of the paper is the following: In Section
2 the theoretical background is presented. It includes the
determination of the equilibrium droplet shape (film radius
and thickness) in the model and real systems, as well as the
calculation of the pair interaction energy. Section 3 contains
a numerical comparison of the droplet shape as determined
from the two approaches. In Section 4 the different contribu-
tions to the interaction energy stemming from the two ap-
proaches are compared. The thermodynamic description of
two interacting droplets and calculations of the line tensions
acting at the film periphery are presented in Section 5. The
conclusions are summarized in Section 6.

2. THEORETICAL BACKGROUND

2.1. Configuration of the Idealized System

In accordance with the model proposed in Refs. (20, 26)
we assume that the two droplets have the shape of spherical
segments separated by a planar film—see Fig. 1a. The drop-
let separation is characterized by the film thickness, h,, and
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the deformation by the film radius, r.. The indexes ‘e’
mean equilibrium values. Since only small deformations are
considered, (r./a)? < 1, it is shown (20, 26) that the radius
of curvature of the spherical segments, a, is practically the
same as of nondeformed spherical droplets of the same vol-
ume (the actual difference is a higher order correction). For
simplicity we restrict our consideration to the case of equal
in size and interfacial tension droplets. A generalization to
the case of two different drops (or to the interaction between
a droplet and a flat interface) is possible (20).

According to the approach developed in Refs. (20, 26),
the interaction energy between the drops can be expressed
as

W(h, r) = WYW + WS + AW. [2.1]
The first contribution term to the total interaction potential,
W(h, r), is the van der Waals energy (20) [cf. also Ref.

(21)]

WYW(h, 1)
A 2a 2al h(2l + h)
- 12{(| T2 h(2 + h +2'n[ (I + h)? ]
r2 2r2 2r2

T h+h) (0 +h)[20-a)+h]
L (0°+ar”)(h + 4r® — h)
2h[2(I — a) + h]?

2r?a(2l2 + Ih + 2ah)
Ch(I+h)2[2(1 - a) + h]?} - 22

wherel = a + vV(a? — r?), and A, isthe Hamaker constant.
(Note that in the last term of Eq. [3.14] in Ref. (20) a
multiplier a was omitted.) In Ref. (20) a more general ex-
pression for the van der Waals interaction between two dif-
ferent in size truncated spheres (or between a truncated
sphere and an infinite flat wall) was derived.

The surface dilational energy, W=, accounts for the in-
crease of the interfacial energy during the deformation. For
small deformations it can be approximated with the expres-
sion (19, 20)

W) = v 50 o (F) <1 [2.3]
~72a a ' '
with y being the interfacial tension of nondeformed dropl ets.
The surface dilational energy may depend in some cases on
the Gibbs elasticity of the adsorbed monolayer. The expres-
sion containing this contribution is given by Eq. [3.25] in
Ref. (20) [cf. also Ref. (24)].
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AW stands for other types of interdroplet interactions
which usually can be evaluated in the framework of Derjagu-
in's approximation (2, 3, 20, 23)

AW(h, 1) = 7r2f(h) + 7a fo f(H) dH,

2
for 1< 1, <£> <1, [24]
a a

where f (h) denotes the interaction energy per unit area in
an infinite flat film of thickness h. The term proportional to
r? in Eq. [2.4] corresponds to the interaction across the
planar film, while the remaining term accounts for the inter-
action between the spherical surfaces surrounding the film.
It isimportant to note that at small deformations the contri-
butions of these two terms in the total interaction energy
are usually comparable. Most of the interparticle interac-
tions (such as electrostatic, steric, hydrophobic, or hydra-
tion) can be often expressed as exponential functions (4)

f(h) =B exp(— g) , [2.5]

where the parameter o determines the range of the interac-
tion. The parameter B is positive for repulsive interactions
and negative for attractive ones. The explicit expressions for
B and o depend on the specific interaction under consider-
ation. For instance, the electrostatic interaction between two
deformed drops can be evaluated by means of Egs. [2.4]
and [2.5] with o being equivalent to the Debye screening
length « ~*. For z:z electrolyte « is defined as

252
., _ 2e7z

—— Cg, 2.6
€0eKT B [26]

K

where e is the elementary charge, ¢ is the relative dielectric
permittivity of the medium, ¢, is dielectric permittivity of
free space, KT isthethermal energy, and Cg, isthe electrolyte
concentration. In the framework of the so-called ** nonlinear
superposition approximation’” (1, 6) B is given by the ex-
pression

B = 64 Co KTk tanh2<ﬂ’°) , [2.7]

aKT

where U, is the droplet surface potential.

For the steric interaction more rigorous (and complex)
expressions for f (h) are available (4—7; 29, Sect. 4.3; 30—
32). Other important exceptions which do not obey Eg.
[2.5] are the depletion and oscillatory interactions due to
the presence of much smaller colloid particles (micelles or
polymer molecules) in the disperse medium (4, 8—10, 26,
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FIG. 2. Contour-plot of the total pair interaction energy, W (calculated

as explained in Section 2.1), as a function of the film thickness, h, and
film radius, r. The parameters are radius of the nondeformed droplets a =
2 um, interfacial tension y = 1 mN/m, Hamaker constant Ay = 1072 J,
electrical surface potential ¥, = 100 mV, electrolyte concentration Cg =
0.2 M. The distance between two contours equals 10 kT. The minimum
W,/KT = 109.7.

33—-36). They are discussed in Sections 4.1 and 4.2 of the
second part of this study (29).

The combination of Egs. [2.1] —[2.4] (with a particular
form of f (h) depending on the type of interactionsinvolved)
alows the calculation of the interaction energy, W, as a
function of the interdroplet separation (characterized by the
film thickness, h) and of the droplet deformation (character-
ized by the film radius, r). The resulting potential surface,
W (h, r), can have complex shape when several types of
interactions are simultaneously operative. Usually at least
three interactions are acting together between two de
formable drops: (i) the long range van der Waalsinteraction,
(i) the surface extension energy which corresponds to a
soft repulsion and restricts the increase of the film radius,
and (iii) some short range repulsion (electrostatic and/or
steric) which prevents the film rupture. In addition, the pres-
ence of smaller colloidal species (micelles, polymer mole-
cules) can cause depletion or oscillatory interaction at sepa-
rations comparable with their diameter. Therefore, the func-
tion W (h, r) may have one or several (or no) local minima,
which can be analyzed by means of standard mathematical
procedures. An illustrative way to present W (h, r) isto use
a contour-plot (or three-dimensional plot) —see Fig. 2. The
specific equilibrium values of r and h for given parameters
(Hamaker constant, electrical surface potential, ionic
strength, interfacial tension, etc.) are calculated for the mini-
mum of the total interaction energy, W, = min{W(r, h,
a)}. One should note that in reality h and r can fluctuate
around their equilibrium values. In an equilibrium ensemble
of droplets the probability of finding a pair of drops in a
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configuration with given h and r is proportional to
exp[—W(h, r)]. Sincein the present study we are primarily
interested in time averaged properties of the system, we
neglect these fluctuations. For definiteness hereafter we call
““equilibrium’’ the values of h and r corresponding to a
minimum of the function W (h, r), denoting them h, and r..

Asshown in Ref. (26) one can determine the radia distri-
bution function of the system, g(z), (at low volume frac-
tions) by means of the expression

__ 4 (may)\"1 _
9(2) = T4 <2kT> af exp{ —WI[h(r), r]/KT}dr,

[2.8]

where zisthe distance between the mass centers of the drops
and T'(x) is the gamma function of Euler. Note that a given
z can be realized with a set of values of r and h. Theintegra-
tionin Eq. [ 2.8] isperformed over all possible configurations
of the doublet of droplets providing a given distance z (26).
The normalization multiplier in Eq. [2.8] is determined in
such away to ensure g(z— «) = 1. The radia distribution
function can be used to study the statistical-mechanical prop-
erties of ensembles of deformable Brownian droplets, like
osmotic pressure, phase behavior. A method for producing
emulsions containing such small and monodisperse droplets
of micrometer and submicrometer size was recently devel-
oped by Bibette et al. (37).

2.2. Configuration of the Real System

In order to describe the real shape of two droplets in
contact one should solve numerically the Laplace equation
of capillarity taking into account the interaction between the
droplets. As shown previously (27, 28) for not-too-small
droplets the interaction can be taken into account by intro-
ducing the concepts of digoining pressure, TI(H), and vari-
able interfacia tension, y(H), where H(x) is the local film
thickness—see Fig. 1b. This approach is applicable when
the interaction is of range much smaller than the droplet
radius and one can use the general form of the Derjaguin
approximation (3), i.e., to assume that TI(H) is approxi-
mately the same as for an infinite planar film of thickness
H,

T(x) = T[H(X)]. [2.9]

In this case the interfacial shape, H(x), can be determined
from the system of three equations (27, 28)
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d('yds)i(n ¢) +)—];'ySin(J5 = P, — TI(x) [2.10]
d
M2y (211
% = —TI(x) sn¢ [212]

for the three unknown functions H(x), ¢(x), and y(x) if
T1(x) is known. Here ¢(x) describes the running slope angle
of the interface and P. is the capillary pressure. The system
[2.10] —[2.12] ensures the following limiting cases:

(i) Atlarge separations between the surfaces of the drop-
lets, the interaction becomes negligible, IT — 0, and for P,
= const, Egs. [2.9] —[2.11] predict a spherical shape of the
interface. In this region y = y' = const (cf. Eq. [2.12])
and ' is the interfacia tension in the regions where the
interaction is negligible (in the present study we assume that
v' is equal to the interfacial tension of the nondeformed
drops, y).

(ii) In the central zone (x — 0) sing is very small. This
corresponds to an (amost) flat portion of the interface,
which is approximated in the ssimpler model approach (sub-
section 2.1) with planar film. Here y = y" ~ const and '
is the film surface tension which, in general, is different
from ' (see Eq. [5.1] below).

In this way the set of Egs. [2.10] —[2.12] provides a
smooth transition from an almost planar film of thickness
h, (Fig. 1b) to a spherical surface which is not perturbed
by the interaction far from the contact region. In the frame-
work of this description, the thermodynamic film radius, r.,
is defined as the crossection of the extrapolated spherical
surface with the plane H = h, (27, 28). We stress here that
the notations hy and r, mean film thickness and film radius
in the framework of the approach based on the augmented
Laplace equation, while h, and r refer to the model truncated
sphere shape.

In order to solve numericaly Egs. [2.10] —-[2.12], we
need to specify three boundary conditions for the unknown
functions. It is convenient to start the numerical integration
from a point xz which corresponds to large local intersurface
separation (Fig. 1b). Due to the negligible interaction in
this region, the interface has a spherical shape which is
characterized by its radius, a5, and its geometrical center,
Yo. Notethat as = a (aisthe radius of nondeformed spherical
droplets of the same volume). Once a; and Y, are specified
(see below) one can start the numerical integration with the
following boundary conditions:

He = H(xe) = 2(Yo — Vai — x3) [2.13]

Xg

tan ¢(xg) = -

[2.14]
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V(%) = 7'+ 5 1(Hy). [2.15]

The interaction energy per unit area, f (h), in an infinite flat
film of thickness h is related to the digoining pressure
through the expression

f(h) = f: TI(H)dH. [2.16]

Equations [2.13] and [2.14] are geometrica relationships
accounting for the spherical shape in this region. Equation
[2.15] is strictly applicable only for a planar film, but can
be used in the present case as far as the lope angle at the
point Xz is small and the Derjaguin approximation isjustified
(27, 28).

In order to determine the geometrical parameters which
characterize the spherical surface, y, and a;, we used the
following two conditions. Since the fluids are incompress-
ible, we know the total volume of the droplet,

H 2 _
V:ﬂﬂas:}fﬂwxz(mdmw,
3 2 3

ho
p=as+vaZ—-x3. [217]

Here a is the radius of nondeformed drops and x(H) is the
function describing the drop shape in the regionz hy < y <
Ys. Another condition stems from the requirement of me-
chanical equilibrium of the doublet. In the absence of outer
forces this corresponds to the restriction

g
F= f IT1(x)2 wxdx = 0, at equilibrium. [2.18]
x=0

The following numerical procedure was used. Initial val-
ues of y, and a; are prescribed (we used y, = a; = a). The
system [2.10] —[2.12] with boundary conditions [2.13] —
[2.15] isintegrated (using a Runge—Kutta scheme) to deter-
mine the first approximation to the interfacial shape in the
region xg = x = 0. The remaining portion of the interface
isassumed to be spherical with radius as. Then the condition,
Eq. [2.18], is checked. If F < O (which corresponds to net
interdroplet attraction) the value of y;, is reduced and vice
versa. Simultaneously a new value of a; is ascribed from the
numerical solution of Eq. [2.17]. The new values of y, and
as are used for determination of the subsequent approxima-
tion of the interfacial shape. The integration procedure is
repeated until such values of y, and a; are found which
simultaneously satisfy Eqgs. [2.17] and [2.18]. We should
emphasize that this procedure is extremely sensitive with
respect to the initial value of y, (due to the nonlinearity of
Egs. [2.10] —[2.12]) and requires very small steps to be
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used, otherwise the solution could be missed and the numeri-
cal procedure may become divergent. If carefully applied,
the procedureis convergent and provides the unique solution
of al set of equations [2.10] —[2.18].

Once the droplet shape is determined, one can proceed
with the calculation of the different components of the inter-
action energy. The surface extension energy is proportional
to the area increase upon deformation:

Xg
WS = 27[27rf Xyl + tan? ¢(x) dx
0

+ 2ma.p — 47ra2} . [2.19]

The remaining components are calculated by means of the
Derjaguin approximation (3)

WYW = 27 fXB xV1 + tan? ¢(x) [ L] dx
0

 127H2(x)
[2.20]
WE = 27 fOXB /1 + tan? é(x) [B exp(—kH)]dx,
[2.21]

where B and « are given by Egs. [2.6] and [2.7].

The calculations show that the obtained interfacial shapes
(and interaction energies) depend slightly on the value of
Xg if the latter lies in the interval 0.35 < xg/a < 0.5. The
points in this region satisfy simultaneously the two require-
ments: (i) negligible interaction between the drop surfaces
(large separation, H) and (ii) small meniscus slope, sin}
< 1. However, for small drops (e.g., of radius smaller than
2 pm) these two conditions can not be satisfied at the same
time and this approach cannot be applied. The main reason
for this problem is the very long range of van der Waals
interactions which cannot be satisfactorily described by Der-
jaguin approximation for small drops. It ispossible in princi-
pleto avoid the use of any approximationsin the calculations
of the VW interaction by using a numerical approach for
obtaining the interaction between two axisymmetrycal bod-
ies with arbitrary profiles (20). One should bear in mind,
however, that this calculation has to be combined with the
determination of the actual droplet profile from the Laplace
eguation which leads to enormous computational difficulties.
Still we performed some calculations using this very heavy
but exact procedure and found that above 2 um, the approxi-
mate consideration of the van der Waals interactions could
be used without lack of accuracy. Hence for extensive nu-
merical calculations we used the approach based on the ap-
proximate consideration of the van der Waals interactions
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which is much simpler and less time consuming. On the
other hand, the approximate model approach described in
Section 2.1, Eq. [2.2], can be applied for much smaller
droplets because the van der Waals interaction is calculated
exactly for the assumed geometry (i.e., the Derjaguin ap-
proximation is not used in this case). Therefore, numerical
comparison between the two approaches is performed only
for droplets of micrometer size or even larger.

3. COMPARISON OF THE INTERFACIAL SHAPE IN
THE REAL AND IDEALIZED SYSTEMS

The model droplet shape in the idealized system (trun-
cated spheres) is characterized by three geometrical quanti-
ties determined by minimization of the pair interaction en-
ergy as explained in Section 2.1: the spherical segment ra-
dius, a (which is practically equal to the radius of the
nondeformed droplets—see below), the film radius, r., and
the film thickness, h.. One can also define the equilibrium
film—meniscus contact angle (see Fig. 1a) through the rela-
tionship

ae = arc sin (re/a). [3.1]
The contact angle is a quantity which is often used in the
thermodynamic description of thin liquid filmsfor character-
izing the interaction energy (see Section 5).

On the other hand, the real shape is completely character-
ized by the function H(x) determined in accordance with
the procedure described in Section 2.2. For comparison with
the model system one can use the thermodynamic film thick-
ness, hy, and radius, r.. These quantities correspond to h, and
r. in the model approach, respectively. The thermodynamic
contact angle, a., (which should be compared with the con-
tact angle in the model approach, «.) is found from a coun-
terpart of Eq. [3.1],

ae. = arc sin(r./as). [3.2]

In Fig. 3 we compare the calculated profile of the droplets
in the region of contact (the full curve) with the model shape
(the dashed curve). The interactions taken into account are
surface extension, van der Waals, and electrostatic (see Egs.
[2.1] —-[2.7] and [2.10] —[2.21]). The parameters of the
droplets used in these calculations are radius of the nonde-
formed droplets a = 2 um, interfacial tension y = 1 mN/
m, Hamaker constant A, = 10~%° J, electrical surface poten-
tia ¥, = 100 mV, and electrolyte concentration Cg. = 0.2
M. One sees from the figure that the agreement between the
curves is very good. In particular, a thermodynamic film
thickness hy, = 5.86 nm, versus modéd film thickness, h, =
5.92 nm, was determined. For the thermodynamic film radius
and contact anglewe obtained r, = 161.9 nm and a = 4.64°,
while for the respective values from the model approach we
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FIG. 3. Comparison of the droplet shape determined by the two ap-
proaches. The full curve represents the droplet shape obtained by numerical
integration of Laplace equation of capillarity (Section 2.2). The dashed
curve represents the simpler model shape (spherical segments separated by
a planar film) with film thickness and radius calculated as explained in
Section 2.1. The parameters are the same as those in Fig. 2.

caculated r. = 147.8 nm and . = 4.24°. The calculations
showed that the radius of curvature of the spherica droplet
surface increases very dlightly upon the deformation: a; =
2.0000066 pum. Therefore, the use of the radius of the nonde-
formed droplets, a, when calculating the interaction energy
between two deformed droplets (see Eq. [2.4]) isjustified.

Comparison of the film thickness and radius, and three-
phase contact angle obtained by the numerical (hy, r¢, and
a¢) and mode (he, re, and a,) approaches is presented in
Table 1 and Fig. 4 for droplets of radii between 1 and 10
pum. As seen in the table, the results are in a rather good
agreement. The model values of the film radius and contact
angle are slightly smaller than the numerical ones. This fact
is connected with the presence of negative line tension, x
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in the numerica approach (see the last column in the table),
which takes into account the difference between the actual
and model shapes. As discussed in Section 5, in the model
approach the line tension is identically zero. The film radius
calculated by means of the model approach (26) sharply
decreases for submicron droplets due to the increased capil-
lary pressure. This effect is analyzed in detail in the frame-
work of the model approach in the second part of this study
(29). The dlight rise of the dimensionless film radius ob-
tained by solving the Laplace equation (full curve) may be
due to a numerical inaccuracy for small droplets connected
with the long range of the van der Waals interactions (see
the discussion at the end of subsection 2.2). We did not
make comparison for submicrometer droplets because of the
same reason.

4. COMPARISON OF THE INTERACTION ENERGIES
CALCULATED BY MEANS OF THE TWO APPROACHES

Thetotal interaction energy is animportant quantity which
determines many equilibrium and nonequilibrium properties
of the system. In the present study we discuss only the
interaction energy in an equilibrium doublet of droplets in
the absence of outer force. Note that for small deformations
of the droplets, (r/a)? < 1, theinteraction energy is additive
and many of the conclusions can be applied to multiparticle
interactions appearing in flocs of droplets. The case when
an outer force (e.g., gravity) is present along with the surface
forcesis described in a separate study (38), where the inter-
action between a fluid particle (droplet, bubble) and a fluid
interface is considered in detail.

It is instructive to compare not only the total interaction
energy but al so the values of its components. For deformable
droplets like those shown in Fig. 3, one has three contribu-

TABLE 1
Comparison of the Results Obtained by the Approach Based on (i) the Numerical Integration of the Augmented Laplace Equation
Presented in This Paper and (ii) the Model Approach (Postulated Shape of Spherical Segments) Developed in Ref. (26)

ho he re le X102 x x 108
WIKT WYWIKT WE-/KT WS/KT [nm] [nm] [nm] [nm]  « Qe [MN/m] [N]
a
pmo (i) (i) 0] (i) (OZN (D) 0} (if) (T (1) R O (1) R () R (1) B O B (1) 0]
1 —46.9 —42.6 -70.7 -650 124 116 11.3 108 565 578 842 729 483 418 842 729 -095
2 -1175 -109.7 -2000 —-1921 376 36.8 44.8 456 586 592 1619 1478 464 424 810 739 -—-1.13
3 -2106 -2004 —-3863 —-3799 754 755 1003 1039 595 597 237.8 2224 455 425 793 741 -123
4 —-3259 3147 -6294 6282 1258 1278 1778 1858 6.00 598 3128 297.0 448 426° 782 742 -131
5 —-4635 —4524 -9295 -947.0 188.7 1957 2772 2989 6.03 6.02 387.3 3739 444 429 775 748 137
6 —623.3 —-613.7 -1286.3 -—1315.1 2643 2746 3988 4267 6.06 6.03 461.6 4478 4.41° 428 7.69 746 —-142
7 —-8052 —-798.6 -—1700.1 -17395 3525 366.1 5423 5748 6.07 6.04 5357 5210 439 427° 765 744 -146
8 -—1009.4 -1006.9 —-2170.6 —22295 4533 4723 7080 7503 6.09 6.04 609.6 5936 4.37° 426° 7.62 742 —-150
9 12357 -—-12386 —-2698.0 -—2748.3 566.6 584.7 8957 9250 6.10 6.05 6834 6654 4.36° 424 761 739 154
10 -—-1484.2 -14936 -—-32824 -33275 6928 710.7 11054 11232 6.11 6.05 757.1 7363 4.34° 422° 757 736 —-157

Note. The droplet parameters are Ay, = 100 J, y = 1 mN/m, Cg. = 0.2 M, ¥, = 100 mV.
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FIG. 4. Dimensionless film radius (a) and film thickness (b) as functions of the droplet radius. The remaining parameters used in the calculation
are the same as in Fig. 2. r. and h, correspond to the thermodynamic film radius and thickness while r. and h, correspond to the model approach.

tions to the energy—van der Waals, electrostatic, and sur-
face extension. For such droplets (of radius a = 2 um—
see Table |) we calculated from the real shape the following
values; WYW/KT = —200, WS/KT = 44.8, and WE-/KT =
37.6. The respective values from the model shape are WY/
KT = —192.1, WS/KT = 45.6, and WF/KT = 36.8. The
comparison shows that the van der Waals interaction calcu-
lated from the simpler model shape of the dropletsis slightly
underestimated (the relative error is about 4%). The other
two contributions are calculated more accurately (relative
error about 2%). As afinal result, for the total interaction
energy we calculate W/KT = —117.5 using the rea drop
shape and W,/KT = —109.7 using the simple model. This
makes a relative error of 7.1%.

As seen from the results presented in Table 1, one may
have an important contribution from the surface extension
when the interaction energy between two deformed droplets
is considered. Its relative contribution to the total interaction
potential can be very important and, as seen from the calcula-
tions, can be comparable to (and even larger than) the elec-
trostatic repulsion. Physicaly, the surface extension energy
corresponds to a soft repulsion between the droplets which
tends to restrict the growth of the planar film.

In Fig. 5 we compare the total interaction energy calcu-
lated by the two models for droplets of radii between 1 and
10 pm. The solid curve is calculated from the actual droplet
shape (Section 2.2) while the dashed curve corresponds to
the simpler model approach described in Section 2.1. Al-
though theoretical, the two approaches are subject to certain
restrictions and approximations. These approximations and
restrictions are the reason for the discrepancy between them.
The approach based on the idealized geometry bears the
disadvantages of implying artificially a shape of a truncated
sphere, while the approach using the Laplace equation bears
the problem with the van der Waalsinteractionsin the frame-
work of the Derjaguin approximation and is questionable
around 1 um sized droplets. Above 2 um, however, it was

shown to be accurate enough (see subsection 2.2). The dis-
crepancy between the two approaches is due mainly to the
artificial shape inthe approach based on the idealized geome-
try. As seen from the figure and the table, the agreement is
very good in the whole range of radii studied—the relative
error is less than 10% and sharply decreases with increased
droplet size. The results stemming from the two approaches
are compared in Table 1. As seen in the table, the different
contributions to the interaction energy also agree very well
for the whole range of droplet radii studied.

In order to analyze the forces acting in the film region we
present in Fig. 6 the digoining pressure, I1, as a function of
the film thickness, h, and of the radial coordinate, x. The
parameters are the same asin Fig. 3. The plot of I1(h) (Fig.
6a) is typical for the interplay of DLVO forces—van der
Waals attraction at larger distances and electrostatic repul-
sion at small distances. The deep minimum at very small
separation, when the van der Waals forces are divergent and

1600 T T T T T T T T

1400

1200

1000

800

—W/KT

600

400

a (pm)

FIG.5. Interaction energy vsdroplet radius. The full curve corresponds
to the result obtained by solving the augmented Laplace equation and the
dashed curve to the model approach. The parameters are the same as those
in Fig. 2.
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FIG. 6. Plot of the digoining pressure IT as a function of (@) the surface-to-surface separation H (for flat interacting surfaces), and (b) the radial
coordinate x, i.e., the pressure profile aong the film radius. The parameters are the same as those in Fig. 2 and the coordinates correspond to those
specified in Fig. 3. The vertical dashed line in (b) denotes the thermodynamic film radius.

strongly predominate, is not shown in the figure. The plot
of the function T1(x) presented in Fig. 6b shows that the
droplets repel each other (the electrostatics prevails) in the
film region, while the van der Waals attraction dominates
in the regions around the film. Therefore, the attachment of
the droplets is due to the attraction between the spherical
surfaces around the film (5) and not to the interaction across
the film. This means that the equilibrium can not be ex-
plained without accounting for the interaction between the
surfaces around the film. In the thermodynamic description
thisistaken into account by introducing the so-called ‘‘trans-
versa tension,”’ T (27, 28). The net interaction force (inte-
grated throughout the droplet surfaces) is zero in this case
as imposed by Eq. [2.18].

5. THERMODYNAMIC DESCRIPTION OF THE
DOUBLET OF DROPLETS. LINE AND
TRANSVERSAL TENSIONS

5.1. General Thermodynamic Relationships

The thermodynamics of thin liquid films is very well de-
veloped and described in the literature. For reviews the
reader can refer to (3, 5, 28, 39). We follow the so-called
‘‘detailed approach’’ which is most convenient when the
interaction between the film surfaces is considered (5, 28,
39-41). According to it, the liquid film consists of a phase
which isidentical to that of a disperse medium sandwiched
between two Gibbs film surfaces of zero thickness (see Fig.
7). The interaction between the film surfaces is accounted
for by the digoining pressure (force per unit area), I1, or
by the free interaction energy per unit area, f, which are
interrelated by means of Eq. [2.16]. The tension of the
film surfaces, ", is different from the tension of the single
interface, ', due to the interaction between the droplets,

f _ | 1‘ - ’ r__ | 1‘
yi(h) = v +2J.h M(h)dh' = y' + 2 f(h). [51]

Other important characteristics of the film are its thickness,
radius, and contact angle, which can be determined experi-
mentally in many cases. From these quantities one can obtain
information about the equilibrium disjoining pressure and
interaction energy due to the relationships (27, 28)

Ti(h) = P, a equilibrium [5.2]

f

yi=4 COSaC—rK, [5.3]

Cc

where y is called line tension. As shown in Refs. (27, 28)
Eq. [5.3] is equivalent to aforce balance at the film periph-
ery in the direction tangentia to the contact. The force bal-
ance in normal direction is provided by the transversal line
tension, 7, introduced by Kralchevsky and Ivanov (27):

7 =1v"sna.. [5.4]

In fact the line and transversal tensions are linear counter-
parts of the surface tension and disjoining pressure (27). In

FIG. 7. Sketch of the film—meniscus transition region.
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particular, = can be expressed as a linear excess of the dis-
joining pressure,

1 (%
T:r_cfo [P. O(rc — x) — I(x)]x dx, [55]

where xg denotes a point which corresponds to very large
separation of the film surfaces (negligible interaction—see
subsection 2.2 and Fig. 1b), P, is the capillary pressure, and
O(x) is the Heaviside function

O(x) = 0,
O(x) =1,

forx <O

for x > 0. [5.6]

These general considerations are also valid in the case of
thin films formed between two deformed droplets like those
shown in Fig. 1.

5.2. Line and Transversal Tensions

Although anumber of papers have been published dealing
with the theoretical calculation (42—44) and experimental
measurement (45-49) of thelinetension x (or similar quan-
tities related to x), the value and even the sign of x are
subject to much discussion in the literature. The experimen-
tal difficulties are connected with the need for very precise
measurement of the variation of the three-phase contact
angle with the film radius under well defined conditions (see
Eq. [5.3]). In some studies very large values (of the order
of 1077 N or even larger) of the line tension were measured
(45-48) with drops on solid surfaces or with small bubbles
attached to water surface. These large values are usually
explained as aresult of some dynamic nonequilibrium effects
(46-48). On the other hand, the theoretical calculations of
x usually predict equilibrium values which are several orders
of magnitude smaller (42).

The system under consideration allows us to calculate x
in a rather rigorous way and to investigate theoretically its
variation with the droplet and film radii. Equations [ 5.1] and
[5.3] can be used to calculate x from the thermodynamic
film radius and thickness determined by exploiting the proce-
dure described in subsection 2.2 (see aso Table 1). How-
ever, instead of Egs. [5.1] and [5.3], we used an expression
derived by Kralchevsky and Ivanov (27),

B : 2 P2 id
o (Fa) - () o
0 X COS ¢ X COS ¢
which is more accurate for numerical processing. The first
term of the integrand corresponds to the actual shape of the
interface with smooth transition between film and meniscus,

while the second one (with index id) corresponds to the
idealized case of planar film with contact angle. In principle
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FIG. 8. Plot of the line tension x (full curve), 7. (dashed curve), and

T (dotted curve) as functions of the film radius. The remaining parameters
are the same as those in Table 1.

the two approaches are physically equivalent but that based
on Egs. [5.1] and [5.3] is much more sensitive towards
inaccuracies in the numerical procedure, while the second
(Eg. [5.7]) does not suffer from such disadvantages (see
Ref. (27) for discussion).

In Fig. 8 we plot the dependence of x on the film radius
(the solid curve). The parameters of the droplets are the
same as in Fig. 2 except the droplet radius which is varied
from 1 um to 10 um. (The effect of gravity is neglected in
these calculations, although it may become important for the
larger droplets.) One sees from Fig. 8 that x is negative;
i.e., it tends to increase the film radius and contact angle in
the numerical approach. It is a monotonically decreasing
function of the film (and droplet) radius. The magnitude of
x is about 10~ N and changes twice when the film radius
is varied from 84 to 757 nm. These low values of the line
tension mean small difference between the model and real
shapes in the considered system and are about one order of
magnitude less compared to those reported by de Feijter and
Vrij (42). This can be explained by (i) the small size of
the droplets studied, (ii) the absence of any outer force, and
(iii) the equilibrium configuration (no dynamic effects are
present).

Although the effect of x on the equilibrium configuration
of the doublet is detectable for micron size droplets, it is
not very substantial. For instance, if the contribution of the
line tension x is neglected in Eq. [5.3], the three-phase
contact angle and the film radius (cal culated from Egs. [ 3.2] ,
[5.1] —[5.3]) for droplets of radius a = 2 um would be «.
= 4.24° and r. = 147.8 nm instead of the values 4.64° and
161.9 nm quoted in Table 1. One sees that these values are
the same as those obtained by the model approach (26) —
see Table 1. Hence, the effect of x on the total interaction
energy dlightly changes the values of the film radius and
contact angle. For larger droplets the relative contribution
of the line tension is even less important. However, it can
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be more pronounced for smaller droplets. The quantitative
evaluation of this contribution for submicrometer droplets
is not possible in the framework of the present model as
explained in subsection 2.2.

One should note that the simpler model from Ref. (26)
fails to predict the value of x. Indeed, the combination of
Egs. [5.1], [5.3] from the present study and Eq. [9] from
Ref. (26) gives (keeping the leading terms)

v~ y' cosadl + O(ré/a)]. [5.8]
(Note that the van der Waals contribution is incorporated
inf (h) inthe present study, whilein Ref. (26) it was consid-
ered separately.) One can conclude from this consideration
that the effect of x is probably responsible for the difference
between the film radii calculated from the two approaches—
see Table 1.

For the system under consideration, the transversal ten-
sion, 7, plays a very important role because it ensures the
mechanical equilibrium of the doublet of droplets. As dem-
onstrated in Fig. 6b, the interaction in the film region is
predominantly repulsive. The value of 7 is determined
mostly from the attractive interaction between the curved
surfaces surrounding the planar film. In Fig. 8 we plot the
dependence of the line tension 7. (as calculated from the
numerical approach) on the film radius (the dashed curve).
One sees from the figure that = is amost constant when
varying the film (or droplet) radius.

Contrary to the case of the line tension y, the transversal
tension, 7 can be calculated by using the simple model de-
scribed in Section 2.1. If we introduce the model droplet
shape in Eg. [5.5] and replace the thermodynamic radius,
r., with the film radius from the simple model, r., one obtains

0

I1(H)dH

evh

Te = —%f M(x)x dx ~

- _ ré f(h), [5.9]

e

where we have used the fact that in the film region IT = P,
and the remaining surface is assumed to be spherical (see
also Eq. [2.16]). However, according to Eg. [9] in Ref.
(26), in equilibrium f (h) can be expressed as

re

f(he) = —v' Py = —v' sinae.

[5.10]

From Egs. [5.9] and [5.10] one obtains the following ex-
pression for the transversal tension, 7., in the framework of
the model approach:

Te = 7Y SN . [5.11]
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The values calculated from Eq. [5.11] are plotted in Fig. 8
with a dotted line. One sees from the figure that the predic-
tions of the approximate expression [5.11] are in a very
good agreement with the exact values calculated from the
real shape of the droplets.

At the end of this section we discuss briefly the theoretical
approach previously developed by Churaev et al. (43) in
the framework of the present consideration. These authors
gave the first description of the shape of two interacting
deformable droplets. Essentialy, their method isvery similar
to ours (solving of the augmented Laplace equation). Still
severa differences can be outlined: (i) Churaev et al. (43)
neglected (for simplicity) the variation of the film surface
tension with the film thickness (cf. Eqg. [2.12]). (ii) The
numerical calculations were based on a model digoining
pressure isotherm which does not take into consideration the
specific long-range decay of the van der Waals interactions
(43). (iii) The interaction energy of the droplets was not
determined in Ref. (43). Since we are interested mostly in
the influence of different factors on the interaction energy
(see Ref. (29)) calculations with more realistic isotherm are
appropriate. The verification of the model approach (26)
performed in the present paper needs a standard as accurate
as possible.

6. CONCLUSIONS

An approach for determination of the actual shape and
interaction energy of a doublet of two deformable droplets
is presented. It consists of humerical integration of the aug-
mented Laplace equation which accounts for the interaction
between the droplets. This procedure alows us to obtain
the film radius, thickness, and contact angle, as well as the
different contributions to the interaction energy. Some calcu-
lations for micrometer-sized droplets are performed and
compared with a simpler model (20, 26), which assumes
that the droplets have the shape of spherical segments sepa-
rated by a planar film. It is shown that the results from the
two approaches are in very good agreement in wide range
of droplet sizes. Also, the numerical solution of Laplace
equation is unapplicable for a doublet of submicrometer-
sized droplets. Therefore, one should use the simpler model
(26) inthat region. A detailed analysis of the effect of differ-
ent factors on the pair interaction energy and droplet defor-
mation is presented in the second part of this study (29).

The line and transversal tensions are calculated by means
of the two approaches and compared. The first quantity ac-
counts for the difference in the numerically calculated and
the postulated (spherical segments) shapes. The second
quantity accounts for the interaction between the curved re-
gions of the droplet surfaces surrounding the planar film.
The consideration of the line and transversal tensions allows
complete thermodynamic description of the system in the
framework of the two approaches.
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