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Flocculation of Deformable Emulsion Droplets
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stability against flocculation and coalescence. The stability
A simple theoretical model which allows the study of the con- of suspensions containing solid particles are usually treated

figuration and the interaction energy of a doublet of flocculated in the framework of the Derjaguin–Landau–Verwey–Over-
Brownian droplets was recently proposed (Denkov et al., Phys. beek (DLVO) theory (1–3) which accounts for the electro-
Rev. Lett. 71, 3226 (1993)) . The model assumes that the doublet

static and van der Waals interactions between the particles.configuration consists of two deformed droplets having the shape
In the past decades it has been shown that other types ofof truncated spheres separated by a planar film. In this model the
interparticle forces may also play an important role in theequilibrium film radius and thickness are determined by minimiz-
stability of dispersions—hydrodynamic interactions, hydra-ing the total pair interaction energy which is presented as a sum of
tion and hydrophobic forces, oscillatory structure forces, etc.explicit expressions for the different contributions (van der Waals,

electrostatic, steric, depletion, surface extension, etc.) . In the pres- (4, 5) . It was proven both experimentally and theoretically
ent study this simplified model is numerically verified by compari- that steric (6, 7) and depletion (8–10) interactions some-
son with the results stemming from the real shape of the inter- times have a decisive effect on the dispersion stability.
acting droplets. In order to determine the real configuration of The situation with emulsions is more complex (compared
two drops in contact we solve numerically the augmented Laplace to that of suspensions of solid particles) due to the droplet
equation of capillarity which accounts for the interaction between fluidity and deformability. It is known that these two features
the droplets. Then the total interaction energy is alternatively cal-

may have a great impact on the hydrodynamic interactionsculated by integrating the energy density along the surfaces of the
and, hence, on the dynamic properties of such systems (11–droplets. The numerical comparison shows that the equilibrium
16). They are particularly important for the kinetic stabilityfilm radius and thickness, as well as the interaction energy calcu-
of emulsions against coalescence (11–13). Along with thelated by means of the simplified model, are in very good agreement
hydrodynamic interactions, the direct interactions due to sur-with the results from the more detailed (but more complex) ap-

proach. Numerical calculations of the equilibrium line tensions face forces can be strongly affected by the deformation (17–
acting at the film periphery, as a function of the droplet radius, 19). For that reason an approach to calculation of the differ-
are performed. The obtained results are relevant also to flocs con- ent contributions (van der Waals, electrostatic, steric, deple-
taining more than two particles since the theory predicts pairwise tion, etc.) to the interaction energy, when deformation takes
additivity of the interaction energy in most cases. The results can place, was developed (20). It was assumed that the shape
be useful in gaining a deeper understanding of the processes of of two deformed drops in contact can be approximated with
stabilization or flocculation in emulsions. q 1995 Academic Press, Inc.

two truncated spheres separated by a planar film. A generalKey Words: emulsions, flocculation in; thin liquid film; line ten-
explicit expression for the van der Waals interaction energysion.
between two deformed droplets was derived (21) following
the microscopic method of Hamaker (22). The contribution
of the surface extension energy to the pair interaction poten-

1. INTRODUCTION
tial was also appropriately included. It was shown that the
stretching of the drop surface upon the deformation corre-

Emulsions are of great importance in many areas of human sponds to a soft interdroplet repulsion. All the remaining
activity such as oil recovery and the food and beverage possible interactions (electrostatic, steric, depletion, etc.)
industry. From an academic viewpoint, they provide interest- usually can be treated in the framework of Derjaguin’s ap-
ing and challenging problems, especially in relation to their proximation (2, 3, 23), which allows for the two contribu-

tions of the total interaction energy: ( i) across the flat film,
and (ii) between the spherical surfaces surrounding the1 To whom correspondence should be addressed. E-mail: DimiterPet-

sev@Ltph.cit.bg. film (20).
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190 DENKOV, PETSEV, AND DANOV

This approach was used elsewhere in a theoretical study
of the coalescence phenomenon in emulsions (24). The pro-
cesses of droplet deformation (film formation) and film thin-
ning and rupture were included as consecutive stages in the
general Smoluchowski (25) scheme of coalescence kinetics.
In this case, the hydrodynamic interactions between de-
formable droplets were also included and the effect of sur-
face fluidity was taken into account.

Some initial theoretical study of flocculating but not coa-
lescing emulsion droplets was performed recently (26). In
this paper the expressions for the energy contributions de-
rived in Ref. (20) were used to calculate the equilibrium
film thickness and radius, as well as the total interaction
energy between two flocculated Brownian droplets of mi-
crometer and submicrometer size (hereafter such a system
is denoted as a miniemulsion) . It was shown that the droplet
deformation can strongly affect the pair interaction energy.
In addition, a procedure for deriving the potential of mean
force and the radial distribution function at low volume frac-
tions (taking into account the droplet deformability) was
formulated.

Still it remained unclear to what extent the model droplet
shape assumed in Refs. (19–21, 24, 26) (two truncated
spheres separated by a planar film) is correct. In the present
paper we perform numerical calculations of the actual shape
of two deformed droplets forming an equilibrium doublet
(which presents also an independent interest) . The aug-
mented Laplace equation, which accounts for the interaction FIG. 1. Geometrical configuration of the system under consideration:
between the surfaces of the two droplets, is used for that (a) the simpler model of two droplets having the shape of spherical seg-

ments separated by a planar film—see Section 2.1; (b) sketch of the realpurpose (27, 28). The energy of interaction between these
shape where smooth transition between the planar film region and thedroplets in equilibrium is determined (again numerically)
spherical surfaces is present—see Section 2.2.by taking into account the real shape and is compared with

the results from the model shape (truncated spheres) . We
show that the values of the interaction energy, the equilib- The structure of the paper is the following: In Section
rium film radius and thickness, calculated by means of the 2 the theoretical background is presented. It includes the
two approaches, are in very good agreement. This fact sup- determination of the equilibrium droplet shape (film radius
ports the accuracy of the numerical results and conclusions and thickness) in the model and real systems, as well as the
reported in Refs. (19–21, 24, 26). Furthermore, this finding calculation of the pair interaction energy. Section 3 contains
allows us to perform numerical studies of emulsions con- a numerical comparison of the droplet shape as determined
sisting of deformable droplets on the basis of the much more from the two approaches. In Section 4 the different contribu-
simple (and less time consuming) computations involving tions to the interaction energy stemming from the two ap-
the model shape rather than accounting for the actual one. proaches are compared. The thermodynamic description of
Such numerical investigation of the effect of different factors two interacting droplets and calculations of the line tensions
(Hamaker constant, electrolyte concentration, interfacial ten- acting at the film periphery are presented in Section 5. The
sion, etc.) on the flocculation behavior of micrometer- and conclusions are summarized in Section 6.
submicrometer-sized droplets is presented in the second part
of this study (29). Another aim of the present paper is to

2. THEORETICAL BACKGROUND
specify a thermodynamic description of the system of two
interacting deformable droplets. Such a treatment allows us 2.1. Configuration of the Idealized System
to ascribe the components of the interaction energy between
the droplets to appropriate thermodynamic quantities as dis- In accordance with the model proposed in Refs. (20, 26)

we assume that the two droplets have the shape of sphericaljoining pressure, film, line, and transversal tensions, etc.,
which are widely used in the thermodynamics of thin liquid segments separated by a planar film—see Fig. 1a. The drop-

let separation is characterized by the film thickness, he , andfilms (2, 3, 27, 28).
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191FLOCCULATION OF EMULSION DROPLETS, I

the deformation by the film radius, re . The indexes ‘‘e’’ DW stands for other types of interdroplet interactions
which usually can be evaluated in the framework of Derjagu-mean equilibrium values. Since only small deformations are

considered, (re /a)2 ! 1, it is shown (20, 26) that the radius in’s approximation (2, 3, 20, 23)
of curvature of the spherical segments, a , is practically the
same as of nondeformed spherical droplets of the same vol-

DW (h , r) Å pr 2 f (h) / pa *
`

h

f ( H) dH ,
ume (the actual difference is a higher order correction). For
simplicity we restrict our consideration to the case of equal
in size and interfacial tension droplets. A generalization to for

h

a
! 1, S r

aD
2

! 1, [2.4]
the case of two different drops (or to the interaction between
a droplet and a flat interface) is possible (20).

where f (h) denotes the interaction energy per unit area inAccording to the approach developed in Refs. (20, 26),
an infinite flat film of thickness h . The term proportional tothe interaction energy between the drops can be expressed
r 2 in Eq. [2.4] corresponds to the interaction across theas
planar film, while the remaining term accounts for the inter-
action between the spherical surfaces surrounding the film.W (h , r) Å W VW / W S / DW . [2.1]
It is important to note that at small deformations the contri-
butions of these two terms in the total interaction energyThe first contribution term to the total interaction potential,
are usually comparable. Most of the interparticle interac-W (h , r) , is the van der Waals energy (20) [cf. also Ref.
tions (such as electrostatic, steric, hydrophobic, or hydra-(21)]
tion) can be often expressed as exponential functions (4)

W VW (h , r)

f (h) Å B expS0 h

sD , [2.5]
Å 0 AH

12 H 2al

( l / h)2 /
2al

h(2l / h)
/ 2 lnF h(2l / h)

( l / h)2 G
where the parameter s determines the range of the interac-
tion. The parameter B is positive for repulsive interactions/ r 2

h 2 0
2r 2

h( l / h)
0 2r 2

( l / h)[2( l 0 a) / h] and negative for attractive ones. The explicit expressions for
B and s depend on the specific interaction under consider-
ation. For instance, the electrostatic interaction between two/ (h 2 / 4r 2)(

√
h 2 / 4r 2 0 h)

2h[2( l 0 a) / h]2
deformed drops can be evaluated by means of Eqs. [2.4]
and [2.5] with s being equivalent to the Debye screening

0 2r 2a(2l 2 / lh / 2ah)
h( l / h)2 [2( l 0 a) / h]2J , [2.2] length k01 . For z :z electrolyte k is defined as

k 2 Å 2e 2z 2

e0ekT
CEL , [2.6]

where l Å a /
√
(a 2 0 r 2) , and AH is the Hamaker constant.

(Note that in the last term of Eq. [3.14] in Ref. (20) a
multiplier a was omitted.) In Ref. (20) a more general ex- where e is the elementary charge, e is the relative dielectric
pression for the van der Waals interaction between two dif- permittivity of the medium, e0 is dielectric permittivity of
ferent in size truncated spheres (or between a truncated free space, kT is the thermal energy, and CEL is the electrolyte
sphere and an infinite flat wall) was derived. concentration. In the framework of the so-called ‘‘nonlinear

The surface dilational energy, W S , accounts for the in- superposition approximation’’ (1, 6) B is given by the ex-
crease of the interfacial energy during the deformation. For pression
small deformations it can be approximated with the expres-
sion (19, 20)

B Å 64 CELkTk01 tanh2S zeC0

4kT D , [2.7]

W S(r) Å g p
2

r 4

a 2 , for S r

aD
2

! 1, [2.3]
where C0 is the droplet surface potential.

For the steric interaction more rigorous (and complex)
expressions for f (h) are available (4–7; 29, Sect. 4.3; 30–with g being the interfacial tension of nondeformed droplets.

The surface dilational energy may depend in some cases on 32). Other important exceptions which do not obey Eq.
[2.5] are the depletion and oscillatory interactions due tothe Gibbs elasticity of the adsorbed monolayer. The expres-

sion containing this contribution is given by Eq. [3.25] in the presence of much smaller colloid particles (micelles or
polymer molecules) in the disperse medium (4, 8–10, 26,Ref. (20) [cf. also Ref. (24)] .
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192 DENKOV, PETSEV, AND DANOV

configuration with given h and r is proportional to
exp[0W (h , r)] . Since in the present study we are primarily
interested in time averaged properties of the system, we
neglect these fluctuations. For definiteness hereafter we call
‘‘equilibrium’’ the values of h and r corresponding to a
minimum of the function W (h , r) , denoting them he and re .

As shown in Ref. (26) one can determine the radial distri-
bution function of the system, g(z) , (at low volume frac-
tions) by means of the expression

g(z) Å 4
G(1/4) Spa 2g

2kT D1/4 1
a * exp{0W [h(r) , r] /kT}dr ,

[2.8]

FIG. 2. Contour-plot of the total pair interaction energy, W (calculated
where z is the distance between the mass centers of the dropsas explained in Section 2.1) , as a function of the film thickness, h , and
and G(x) is the gamma function of Euler. Note that a givenfilm radius, r . The parameters are radius of the nondeformed droplets a Å
z can be realized with a set of values of r and h . The integra-2 mm, interfacial tension g Å 1 mN /m, Hamaker constant AH Å 10020 J,

electrical surface potential C0 Å 100 mV, electrolyte concentration CEL Å tion in Eq. [2.8] is performed over all possible configurations
0.2 M. The distance between two contours equals 10 kT . The minimum of the doublet of droplets providing a given distance z (26).
We /kT Å 109.7.

The normalization multiplier in Eq. [2.8] is determined in
such a way to ensure g(z r `) Å 1. The radial distribution
function can be used to study the statistical-mechanical prop-33–36). They are discussed in Sections 4.1 and 4.2 of the
erties of ensembles of deformable Brownian droplets, likesecond part of this study (29).
osmotic pressure, phase behavior. A method for producingThe combination of Eqs. [2.1] – [2.4] (with a particular
emulsions containing such small and monodisperse dropletsform of f (h) depending on the type of interactions involved)
of micrometer and submicrometer size was recently devel-allows the calculation of the interaction energy, W , as a
oped by Bibette et al. (37).function of the interdroplet separation (characterized by the

film thickness, h) and of the droplet deformation (character-
ized by the film radius, r) . The resulting potential surface,

2.2. Configuration of the Real SystemW (h , r) , can have complex shape when several types of
interactions are simultaneously operative. Usually at least

In order to describe the real shape of two droplets inthree interactions are acting together between two de-
contact one should solve numerically the Laplace equationformable drops: ( i) the long range van der Waals interaction,
of capillarity taking into account the interaction between the(ii ) the surface extension energy which corresponds to a
droplets. As shown previously (27, 28) for not-too-smallsoft repulsion and restricts the increase of the film radius,
droplets the interaction can be taken into account by intro-and (iii ) some short range repulsion (electrostatic and/or
ducing the concepts of disjoining pressure, P(H) , and vari-steric) which prevents the film rupture. In addition, the pres-
able interfacial tension, g(H) , where H(x) is the local filmence of smaller colloidal species (micelles, polymer mole-
thickness—see Fig. 1b. This approach is applicable whencules) can cause depletion or oscillatory interaction at sepa-
the interaction is of range much smaller than the dropletrations comparable with their diameter. Therefore, the func-
radius and one can use the general form of the Derjaguintion W (h , r) may have one or several (or no) local minima,
approximation (3), i.e., to assume that P(H) is approxi-which can be analyzed by means of standard mathematical
mately the same as for an infinite planar film of thicknessprocedures. An illustrative way to present W (h , r) is to use
H ,a contour-plot (or three-dimensional plot) —see Fig. 2. The

specific equilibrium values of r and h for given parameters
(Hamaker constant, electrical surface potential, ionic

P(x) Å P[H(x)] . [2.9]strength, interfacial tension, etc.) are calculated for the mini-
mum of the total interaction energy, We Å min{W (r , h ,
a)}. One should note that in reality h and r can fluctuate

In this case the interfacial shape, H(x) , can be determinedaround their equilibrium values. In an equilibrium ensemble
of droplets the probability of finding a pair of drops in a from the system of three equations (27, 28)
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193FLOCCULATION OF EMULSION DROPLETS, I

d(g sin f)
dx

/ 1
x
g sin f Å Pc 0 P(x) [2.10]

g(xB) Å g l / 1
2

f ( HB) . [2.15]

dH

dx
Å 2 tan f [2.11]

The interaction energy per unit area, f (h) , in an infinite flat
film of thickness h is related to the disjoining pressure
through the expressiondg

dx
Å 0P(x) sin f [2.12]

f (h) å *
`

h

P(H)dH . [2.16]for the three unknown functions H(x) , f(x) , and g(x) if
P(x) is known. Here f(x) describes the running slope angle
of the interface and Pc is the capillary pressure. The system Equations [2.13] and [2.14] are geometrical relationships
[2.10] – [2.12] ensures the following limiting cases: accounting for the spherical shape in this region. Equation

(i) At large separations between the surfaces of the drop- [2.15] is strictly applicable only for a planar film, but can
lets, the interaction becomes negligible, P r 0, and for Pc be used in the present case as far as the slope angle at the
Å const, Eqs. [2.9] – [2.11] predict a spherical shape of the point xB is small and the Derjaguin approximation is justified
interface. In this region g Å g l Å const (cf. Eq. [2.12]) (27, 28).
and g l is the interfacial tension in the regions where the In order to determine the geometrical parameters which
interaction is negligible (in the present study we assume that characterize the spherical surface, y0 and as , we used the
g l is equal to the interfacial tension of the nondeformed following two conditions. Since the fluids are incompress-
drops, g) . ible, we know the total volume of the droplet,

( ii ) In the central zone (x r 0) sinf is very small. This
corresponds to an (almost) flat portion of the interface,

V Å 4
3
pa 3 Å 1

2 *
HB

h0

px 2(H)dH / pp 2(3as 0 p)
3

,which is approximated in the simpler model approach (sub-
section 2.1) with planar film. Here g Å g f É const and g f

p Å as /
√
a 2

s 0 x 2
B . [2.17]is the film surface tension which, in general, is different

from g l (see Eq. [5.1] below).
Here a is the radius of nondeformed drops and x(H) is theIn this way the set of Eqs. [2.10] – [2.12] provides a
function describing the drop shape in the region 1

2 h0 £ y £smooth transition from an almost planar film of thickness
yB. Another condition stems from the requirement of me-h0 (Fig. 1b) to a spherical surface which is not perturbed
chanical equilibrium of the doublet. In the absence of outerby the interaction far from the contact region. In the frame-
forces this corresponds to the restrictionwork of this description, the thermodynamic film radius, rc ,

is defined as the crossection of the extrapolated spherical
surface with the plane H Å h0 (27, 28). We stress here that F Å *

xB

xÅ0

P(x)2 pxdx Å 0, at equilibrium. [2.18]
the notations h0 and rc mean film thickness and film radius
in the framework of the approach based on the augmented

The following numerical procedure was used. Initial val-Laplace equation, while he and re refer to the model truncated
ues of y0 and as are prescribed (we used y0 Å as Å a) . Thesphere shape.
system [2.10] – [2.12] with boundary conditions [2.13] –In order to solve numerically Eqs. [2.10] – [2.12], we
[2.15] is integrated (using a Runge–Kutta scheme) to deter-need to specify three boundary conditions for the unknown
mine the first approximation to the interfacial shape in thefunctions. It is convenient to start the numerical integration
region xB § x § 0. The remaining portion of the interfacefrom a point xB which corresponds to large local intersurface
is assumed to be spherical with radius as . Then the condition,separation (Fig. 1b). Due to the negligible interaction in
Eq. [2.18], is checked. If F õ 0 (which corresponds to netthis region, the interface has a spherical shape which is
interdroplet attraction) the value of y0 is reduced and vicecharacterized by its radius, as , and its geometrical center,
versa. Simultaneously a new value of as is ascribed from they0 . Note that as§ a (a is the radius of nondeformed spherical
numerical solution of Eq. [2.17]. The new values of y0 anddroplets of the same volume). Once as and y0 are specified
as are used for determination of the subsequent approxima-(see below) one can start the numerical integration with the
tion of the interfacial shape. The integration procedure isfollowing boundary conditions:
repeated until such values of y0 and as are found which
simultaneously satisfy Eqs. [2.17] and [2.18]. We shouldHB å H(xB) Å 2(y0 0

√
a 2

s 0 x 2
B) [2.13]

emphasize that this procedure is extremely sensitive with
respect to the initial value of y0 (due to the nonlinearity oftan f(xB) Å xB√

a 2
s 0 x 2

B

[2.14]
Eqs. [2.10] – [2.12]) and requires very small steps to be
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194 DENKOV, PETSEV, AND DANOV

used, otherwise the solution could be missed and the numeri- which is much simpler and less time consuming. On the
other hand, the approximate model approach described incal procedure may become divergent. If carefully applied,

the procedure is convergent and provides the unique solution Section 2.1, Eq. [2.2] , can be applied for much smaller
droplets because the van der Waals interaction is calculatedof all set of equations [2.10] – [2.18].

Once the droplet shape is determined, one can proceed exactly for the assumed geometry (i.e., the Derjaguin ap-
proximation is not used in this case) . Therefore, numericalwith the calculation of the different components of the inter-

action energy. The surface extension energy is proportional comparison between the two approaches is performed only
for droplets of micrometer size or even larger.to the area increase upon deformation:

3. COMPARISON OF THE INTERFACIAL SHAPE INW s Å 2gF2p *
XB

0

x
√
1 / tan2 f(x) dx

THE REAL AND IDEALIZED SYSTEMS

The model droplet shape in the idealized system (trun-/ 2pasp 0 4pa 2G . [2.19]
cated spheres) is characterized by three geometrical quanti-
ties determined by minimization of the pair interaction en-
ergy as explained in Section 2.1: the spherical segment ra-

The remaining components are calculated by means of the dius, a (which is practically equal to the radius of the
Derjaguin approximation (3) nondeformed droplets—see below), the film radius, re , and

the film thickness, he . One can also define the equilibrium
film–meniscus contact angle (see Fig. 1a) through the rela-W VW Å 2p *

XB

0

x
√
1 / tan2 f(x) F0 AH

12pH 2(x) Gdx
tionship

ae Å arc sin (re /a) . [3.1][2.20]

W EL Å 2p *
XB

0

x
√
1 / tan2 f(x) [B exp(0kH)]dx , The contact angle is a quantity which is often used in the

thermodynamic description of thin liquid films for character-
izing the interaction energy (see Section 5).[2.21]

On the other hand, the real shape is completely character-
ized by the function H(x) determined in accordance withwhere B and k are given by Eqs. [2.6] and [2.7] .
the procedure described in Section 2.2. For comparison withThe calculations show that the obtained interfacial shapes
the model system one can use the thermodynamic film thick-(and interaction energies) depend slightly on the value of
ness, h0 , and radius, rc . These quantities correspond to he andxB if the latter lies in the interval 0.35 õ xB/a õ 0.5. The
re in the model approach, respectively. The thermodynamicpoints in this region satisfy simultaneously the two require-
contact angle, ac , (which should be compared with the con-ments: ( i ) negligible interaction between the drop surfaces
tact angle in the model approach, ae ) is found from a coun-(large separation, H) and (ii) small meniscus slope, sin2f
terpart of Eq. [3.1] ,! 1. However, for small drops (e.g., of radius smaller than

2 mm) these two conditions can not be satisfied at the same
ac Å arc sin(rc /as ) . [3.2]time and this approach cannot be applied. The main reason

for this problem is the very long range of van der Waals
interactions which cannot be satisfactorily described by Der- In Fig. 3 we compare the calculated profile of the droplets

in the region of contact ( the full curve) with the model shapejaguin approximation for small drops. It is possible in princi-
ple to avoid the use of any approximations in the calculations (the dashed curve). The interactions taken into account are

surface extension, van der Waals, and electrostatic (see Eqs.of the VW interaction by using a numerical approach for
obtaining the interaction between two axisymmetrycal bod- [2.1] – [2.7] and [2.10] – [2.21]) . The parameters of the

droplets used in these calculations are radius of the nonde-ies with arbitrary profiles (20). One should bear in mind,
however, that this calculation has to be combined with the formed droplets a Å 2 mm, interfacial tension g Å 1 mN/

m, Hamaker constant AH Å 10020 J, electrical surface poten-determination of the actual droplet profile from the Laplace
equation which leads to enormous computational difficulties. tial C0 Å 100 mV, and electrolyte concentration CEL Å 0.2

M. One sees from the figure that the agreement between theStill we performed some calculations using this very heavy
but exact procedure and found that above 2 mm, the approxi- curves is very good. In particular, a thermodynamic film

thickness h0 Å 5.86 nm, versus model film thickness, he Åmate consideration of the van der Waals interactions could
be used without lack of accuracy. Hence for extensive nu- 5.92 nm, was determined. For the thermodynamic film radius

and contact angle we obtained rc Å 161.9 nm and ac Å 4.647,merical calculations we used the approach based on the ap-
proximate consideration of the van der Waals interactions while for the respective values from the model approach we
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195FLOCCULATION OF EMULSION DROPLETS, I

in the numerical approach (see the last column in the table) ,
which takes into account the difference between the actual
and model shapes. As discussed in Section 5, in the model
approach the line tension is identically zero. The film radius
calculated by means of the model approach (26) sharply
decreases for submicron droplets due to the increased capil-
lary pressure. This effect is analyzed in detail in the frame-
work of the model approach in the second part of this study
(29). The slight rise of the dimensionless film radius ob-
tained by solving the Laplace equation (full curve) may be
due to a numerical inaccuracy for small droplets connected
with the long range of the van der Waals interactions (see
the discussion at the end of subsection 2.2) . We did not
make comparison for submicrometer droplets because of the

FIG. 3. Comparison of the droplet shape determined by the two ap- same reason.
proaches. The full curve represents the droplet shape obtained by numerical
integration of Laplace equation of capillarity (Section 2.2) . The dashed
curve represents the simpler model shape (spherical segments separated by 4. COMPARISON OF THE INTERACTION ENERGIES
a planar film) with film thickness and radius calculated as explained in CALCULATED BY MEANS OF THE TWO APPROACHES
Section 2.1. The parameters are the same as those in Fig. 2.

The total interaction energy is an important quantity which
determines many equilibrium and nonequilibrium propertiescalculated re Å 147.8 nm and ae Å 4.247. The calculations

showed that the radius of curvature of the spherical droplet of the system. In the present study we discuss only the
interaction energy in an equilibrium doublet of droplets insurface increases very slightly upon the deformation: as Å

2.0000066 mm. Therefore, the use of the radius of the nonde- the absence of outer force. Note that for small deformations
of the droplets, (r /a)2 ! 1, the interaction energy is additiveformed droplets, a , when calculating the interaction energy

between two deformed droplets (see Eq. [2.4]) is justified. and many of the conclusions can be applied to multiparticle
interactions appearing in flocs of droplets. The case whenComparison of the film thickness and radius, and three-

phase contact angle obtained by the numerical (h0 , rc , and an outer force (e.g., gravity) is present along with the surface
forces is described in a separate study (38), where the inter-ac ) and model (he , re , and ae ) approaches is presented in

Table 1 and Fig. 4 for droplets of radii between 1 and 10 action between a fluid particle (droplet, bubble) and a fluid
interface is considered in detail.mm. As seen in the table, the results are in a rather good

agreement. The model values of the film radius and contact It is instructive to compare not only the total interaction
energy but also the values of its components. For deformableangle are slightly smaller than the numerical ones. This fact

is connected with the presence of negative line tension, x droplets like those shown in Fig. 3, one has three contribu-

TABLE 1
Comparison of the Results Obtained by the Approach Based on (i) the Numerical Integration of the Augmented Laplace Equation

Presented in This Paper and (ii) the Model Approach (Postulated Shape of Spherical Segments) Developed in Ref. (26)

h0 he rc re t 1 102 x 1 1013

W/kT WVW/kT WEL/kT WS/kT [nm] [nm] [nm] [nm] ac ae [mN/m] [N]
a
mm (i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii) (i)

1 046.9 042.6 070.7 065.0 12.4 11.6 11.3 10.8 5.65 5.78 84.2 72.9 4.837 4.187 8.42 7.29 00.95
2 0117.5 0109.7 0200.0 0192.1 37.6 36.8 44.8 45.6 5.86 5.92 161.9 147.8 4.647 4.247 8.10 7.39 01.13
3 0210.6 0200.4 0386.3 0379.9 75.4 75.5 100.3 103.9 5.95 5.97 237.8 222.4 4.557 4.257 7.93 7.41 01.23
4 0325.9 0314.7 0629.4 0628.2 125.8 127.8 177.8 185.8 6.00 5.98 312.8 297.0 4.487 4.267 7.82 7.42 01.31
5 0463.5 0452.4 0929.5 0947.0 188.7 195.7 277.2 298.9 6.03 6.02 387.3 373.9 4.447 4.297 7.75 7.48 01.37
6 0623.3 0613.7 01286.3 01315.1 264.3 274.6 398.8 426.7 6.06 6.03 461.6 447.8 4.417 4.287 7.69 7.46 01.42
7 0805.2 0798.6 01700.1 01739.5 352.5 366.1 542.3 574.8 6.07 6.04 535.7 521.0 4.397 4.277 7.65 7.44 01.46
8 01009.4 01006.9 02170.6 02229.5 453.3 472.3 708.0 750.3 6.09 6.04 609.6 593.6 4.377 4.267 7.62 7.42 01.50
9 01235.7 01238.6 02698.0 02748.3 566.6 584.7 895.7 925.0 6.10 6.05 683.4 665.4 4.367 4.247 7.61 7.39 01.54

10 01484.2 01493.6 03282.4 03327.5 692.8 710.7 1105.4 1123.2 6.11 6.05 757.1 736.3 4.347 4.227 7.57 7.36 01.57

Note. The droplet parameters are AH Å 10020 J, g Å 1 mN/m, CEL Å 0.2 M, C0 Å 100 mV.
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196 DENKOV, PETSEV, AND DANOV

FIG. 4. Dimensionless film radius (a) and film thickness (b) as functions of the droplet radius. The remaining parameters used in the calculation
are the same as in Fig. 2. rc and h0 correspond to the thermodynamic film radius and thickness while re and hc correspond to the model approach.

tions to the energy—van der Waals, electrostatic, and sur- shown to be accurate enough (see subsection 2.2) . The dis-
crepancy between the two approaches is due mainly to theface extension. For such droplets (of radius a Å 2 mm—

see Table I) we calculated from the real shape the following artificial shape in the approach based on the idealized geome-
try. As seen from the figure and the table, the agreement isvalues: W VW/kT Å 0200, W S /kT Å 44.8, and W EL/kT Å

37.6. The respective values from the model shape are W VW/ very good in the whole range of radii studied—the relative
error is less than 10% and sharply decreases with increasedkT Å 0192.1, W S /kT Å 45.6, and W EL/kT Å 36.8. The

comparison shows that the van der Waals interaction calcu- droplet size. The results stemming from the two approaches
are compared in Table 1. As seen in the table, the differentlated from the simpler model shape of the droplets is slightly

underestimated (the relative error is about 4%). The other contributions to the interaction energy also agree very well
for the whole range of droplet radii studied.two contributions are calculated more accurately (relative

error about 2%). As a final result, for the total interaction In order to analyze the forces acting in the film region we
present in Fig. 6 the disjoining pressure, P, as a function ofenergy we calculate W /kT Å 0117.5 using the real drop

shape and We /kT Å 0109.7 using the simple model. This the film thickness, h , and of the radial coordinate, x . The
parameters are the same as in Fig. 3. The plot of P(h) (Fig.makes a relative error of 7.1%.

As seen from the results presented in Table 1, one may 6a) is typical for the interplay of DLVO forces—van der
Waals attraction at larger distances and electrostatic repul-have an important contribution from the surface extension

when the interaction energy between two deformed droplets sion at small distances. The deep minimum at very small
separation, when the van der Waals forces are divergent andis considered. Its relative contribution to the total interaction

potential can be very important and, as seen from the calcula-
tions, can be comparable to (and even larger than) the elec-
trostatic repulsion. Physically, the surface extension energy
corresponds to a soft repulsion between the droplets which
tends to restrict the growth of the planar film.

In Fig. 5 we compare the total interaction energy calcu-
lated by the two models for droplets of radii between 1 and
10 mm. The solid curve is calculated from the actual droplet
shape (Section 2.2) while the dashed curve corresponds to
the simpler model approach described in Section 2.1. Al-
though theoretical, the two approaches are subject to certain
restrictions and approximations. These approximations and
restrictions are the reason for the discrepancy between them.
The approach based on the idealized geometry bears the
disadvantages of implying artificially a shape of a truncated
sphere, while the approach using the Laplace equation bears

FIG. 5. Interaction energy vs droplet radius. The full curve corresponds
the problem with the van der Waals interactions in the frame- to the result obtained by solving the augmented Laplace equation and the
work of the Derjaguin approximation and is questionable dashed curve to the model approach. The parameters are the same as those

in Fig. 2.around 1 mm sized droplets. Above 2 mm, however, it was
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197FLOCCULATION OF EMULSION DROPLETS, I

FIG. 6. Plot of the disjoining pressure P as a function of (a) the surface-to-surface separation H (for flat interacting surfaces) , and (b) the radial
coordinate x , i.e., the pressure profile along the film radius. The parameters are the same as those in Fig. 2 and the coordinates correspond to those
specified in Fig. 3. The vertical dashed line in (b) denotes the thermodynamic film radius.

strongly predominate, is not shown in the figure. The plot Other important characteristics of the film are its thickness,
radius, and contact angle, which can be determined experi-of the function P(x) presented in Fig. 6b shows that the

droplets repel each other ( the electrostatics prevails) in the mentally in many cases. From these quantities one can obtain
information about the equilibrium disjoining pressure andfilm region, while the van der Waals attraction dominates

in the regions around the film. Therefore, the attachment of interaction energy due to the relationships (27, 28)
the droplets is due to the attraction between the spherical
surfaces around the film (5) and not to the interaction across P(h) Å Pc , at equilibrium [5.2]
the film. This means that the equilibrium can not be ex-
plained without accounting for the interaction between the g f Å g l cos ac 0

x

rc

, [5.3]
surfaces around the film. In the thermodynamic description
this is taken into account by introducing the so-called ‘‘trans-
versal tension,’’ t (27, 28). The net interaction force (inte- where x is called line tension. As shown in Refs. (27, 28)
grated throughout the droplet surfaces) is zero in this case Eq. [5.3] is equivalent to a force balance at the film periph-
as imposed by Eq. [2.18]. ery in the direction tangential to the contact. The force bal-

ance in normal direction is provided by the transversal line5. THERMODYNAMIC DESCRIPTION OF THE
tension, t, introduced by Kralchevsky and Ivanov (27):DOUBLET OF DROPLETS. LINE AND

TRANSVERSAL TENSIONS
t Å g l sin ac . [5.4]

5.1. General Thermodynamic Relationships
The thermodynamics of thin liquid films is very well de-

In fact the line and transversal tensions are linear counter-veloped and described in the literature. For reviews the
parts of the surface tension and disjoining pressure (27). Inreader can refer to (3, 5, 28, 39). We follow the so-called

‘‘detailed approach’’ which is most convenient when the
interaction between the film surfaces is considered (5, 28,
39–41). According to it, the liquid film consists of a phase
which is identical to that of a disperse medium sandwiched
between two Gibbs film surfaces of zero thickness (see Fig.
7) . The interaction between the film surfaces is accounted
for by the disjoining pressure (force per unit area) , P, or
by the free interaction energy per unit area, f , which are
interrelated by means of Eq. [2.16]. The tension of the
film surfaces, g f , is different from the tension of the single
interface, g l , due to the interaction between the droplets,

g f (h) Å g l / 1
2 *

`

h

P(h *)dh * Å g l / 1
2

f (h) . [5.1]
FIG. 7. Sketch of the film–meniscus transition region.
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particular, t can be expressed as a linear excess of the dis-
joining pressure,

t Å 1
rc

*
XB

0

[Pc U(rc 0 x) 0 P(x)]x dx , [5.5]

where xB denotes a point which corresponds to very large
separation of the film surfaces (negligible interaction—see
subsection 2.2 and Fig. 1b), Pc is the capillary pressure, and
U(x) is the Heaviside function

U(x) Å 0, for x õ 0

U(x) Å 1, for x ú 0. [5.6]
FIG. 8. Plot of the line tension x (full curve) , tc (dashed curve), and

te (dotted curve) as functions of the film radius. The remaining parametersThese general considerations are also valid in the case of
are the same as those in Table 1.

thin films formed between two deformed droplets like those
shown in Fig. 1.

the two approaches are physically equivalent but that based
5.2. Line and Transversal Tensions on Eqs. [5.1] and [5.3] is much more sensitive towards

inaccuracies in the numerical procedure, while the second
Although a number of papers have been published dealing

(Eq. [5.7]) does not suffer from such disadvantages (see
with the theoretical calculation (42–44) and experimental

Ref. (27) for discussion).
measurement (45–49) of the line tension x (or similar quan-

In Fig. 8 we plot the dependence of x on the film radius
tities related to x) , the value and even the sign of x are

(the solid curve) . The parameters of the droplets are the
subject to much discussion in the literature. The experimen-

same as in Fig. 2 except the droplet radius which is varied
tal difficulties are connected with the need for very precise

from 1 mm to 10 mm. (The effect of gravity is neglected in
measurement of the variation of the three-phase contact

these calculations, although it may become important for the
angle with the film radius under well defined conditions (see

larger droplets.) One sees from Fig. 8 that x is negative;
Eq. [5.3]) . In some studies very large values (of the order

i.e., it tends to increase the film radius and contact angle in
of 1007 N or even larger) of the line tension were measured

the numerical approach. It is a monotonically decreasing
(45–48) with drops on solid surfaces or with small bubbles

function of the film (and droplet) radius. The magnitude of
attached to water surface. These large values are usually

x is about 10013 N and changes twice when the film radius
explained as a result of some dynamic nonequilibrium effects

is varied from 84 to 757 nm. These low values of the line
(46–48). On the other hand, the theoretical calculations of

tension mean small difference between the model and real
x usually predict equilibrium values which are several orders

shapes in the considered system and are about one order of
of magnitude smaller (42).

magnitude less compared to those reported by de Feijter and
The system under consideration allows us to calculate x Vrij (42). This can be explained by (i) the small size of

in a rather rigorous way and to investigate theoretically its
the droplets studied, ( ii ) the absence of any outer force, and

variation with the droplet and film radii. Equations [5.1] and
(iii ) the equilibrium configuration (no dynamic effects are

[5.3] can be used to calculate x from the thermodynamic
present) .

film radius and thickness determined by exploiting the proce-
Although the effect of x on the equilibrium configuration

dure described in subsection 2.2 (see also Table 1). How-
of the doublet is detectable for micron size droplets, it is

ever, instead of Eqs. [5.1] and [5.3] , we used an expression
not very substantial. For instance, if the contribution of the

derived by Kralchevsky and Ivanov (27),
line tension x is neglected in Eq. [5.3] , the three-phase
contact angle and the film radius (calculated from Eqs. [3.2] ,
[5.1] – [5.3]) for droplets of radius a Å 2 mm would be acx Å rc *

`

0
FSg sin2f

x cos fD 0 Sg sin2f

x cos fD
idGdx , [5.7]

Å 4.247 and rc Å 147.8 nm instead of the values 4.647 and
161.9 nm quoted in Table 1. One sees that these values are
the same as those obtained by the model approach (26) —which is more accurate for numerical processing. The first

term of the integrand corresponds to the actual shape of the see Table 1. Hence, the effect of x on the total interaction
energy slightly changes the values of the film radius andinterface with smooth transition between film and meniscus,

while the second one (with index id) corresponds to the contact angle. For larger droplets the relative contribution
of the line tension is even less important. However, it canidealized case of planar film with contact angle. In principle
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be more pronounced for smaller droplets. The quantitative The values calculated from Eq. [5.11] are plotted in Fig. 8
with a dotted line. One sees from the figure that the predic-evaluation of this contribution for submicrometer droplets

is not possible in the framework of the present model as tions of the approximate expression [5.11] are in a very
good agreement with the exact values calculated from theexplained in subsection 2.2.

One should note that the simpler model from Ref. (26) real shape of the droplets.
At the end of this section we discuss briefly the theoreticalfails to predict the value of x. Indeed, the combination of

Eqs. [5.1] , [5.3] from the present study and Eq. [9] from approach previously developed by Churaev et al. (43) in
the framework of the present consideration. These authorsRef. (26) gives (keeping the leading terms)
gave the first description of the shape of two interacting
deformable droplets. Essentially, their method is very similarg f É g l cos ae[1 / O(r 4

e /a 4)] . [5.8]
to ours (solving of the augmented Laplace equation). Still
several differences can be outlined: ( i) Churaev et al. (43)(Note that the van der Waals contribution is incorporated
neglected (for simplicity) the variation of the film surfacein f (h) in the present study, while in Ref. (26) it was consid-
tension with the film thickness (cf. Eq. [2.12]) . ( ii ) Theered separately.) One can conclude from this consideration
numerical calculations were based on a model disjoiningthat the effect of x is probably responsible for the difference
pressure isotherm which does not take into consideration thebetween the film radii calculated from the two approaches—
specific long-range decay of the van der Waals interactionssee Table 1.
(43). ( iii ) The interaction energy of the droplets was notFor the system under consideration, the transversal ten-
determined in Ref. (43). Since we are interested mostly insion, t, plays a very important role because it ensures the
the influence of different factors on the interaction energymechanical equilibrium of the doublet of droplets. As dem-
(see Ref. (29)) calculations with more realistic isotherm areonstrated in Fig. 6b, the interaction in the film region is
appropriate. The verification of the model approach (26)predominantly repulsive. The value of t is determined
performed in the present paper needs a standard as accuratemostly from the attractive interaction between the curved
as possible.surfaces surrounding the planar film. In Fig. 8 we plot the

dependence of the line tension tc (as calculated from the
6. CONCLUSIONSnumerical approach) on the film radius (the dashed curve).

One sees from the figure that t is almost constant when
An approach for determination of the actual shape andvarying the film (or droplet) radius.

interaction energy of a doublet of two deformable dropletsContrary to the case of the line tension x, the transversal
is presented. It consists of numerical integration of the aug-tension, t can be calculated by using the simple model de-
mented Laplace equation which accounts for the interactionscribed in Section 2.1. If we introduce the model droplet
between the droplets. This procedure allows us to obtainshape in Eq. [5.5] and replace the thermodynamic radius,
the film radius, thickness, and contact angle, as well as therc , with the film radius from the simple model, re , one obtains
different contributions to the interaction energy. Some calcu-
lations for micrometer-sized droplets are performed and

te Å 0
1
re

*
`

re

P(x)x dx É 0 a

re
*

`

h

P(H)dH compared with a simpler model (20, 26), which assumes
that the droplets have the shape of spherical segments sepa-
rated by a planar film. It is shown that the results from the

Å 0 a

re

f (h) , [5.9] two approaches are in very good agreement in wide range
of droplet sizes. Also, the numerical solution of Laplace
equation is unapplicable for a doublet of submicrometer-where we have used the fact that in the film region P Å Pc sized droplets. Therefore, one should use the simpler modeland the remaining surface is assumed to be spherical (see
(26) in that region. A detailed analysis of the effect of differ-also Eq. [2.16]) . However, according to Eq. [9] in Ref.
ent factors on the pair interaction energy and droplet defor-(26), in equilibrium f (h) can be expressed as
mation is presented in the second part of this study (29).

The line and transversal tensions are calculated by means
of the two approaches and compared. The first quantity ac-f (he ) Å 0g l r 2

e

a 2 Å 0g
l sin2ae . [5.10]

counts for the difference in the numerically calculated and
the postulated (spherical segments) shapes. The second

From Eqs. [5.9] and [5.10] one obtains the following ex- quantity accounts for the interaction between the curved re-
pression for the transversal tension, te , in the framework of gions of the droplet surfaces surrounding the planar film.
the model approach: The consideration of the line and transversal tensions allows

complete thermodynamic description of the system in the
framework of the two approaches.te Å g sin ae . [5.11]
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