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This study is devoted to a theoretical model of the membrane-mediated interactions between inclusions 
(proteins) incorporated into lipid bilayers. The interactions are due to the overlap of the bilayer deformations 
around each of two approaching inclusions. To determine the resulting stresses in the membrane we have 
developed an appropriate model of the lipid bilayer, which has been described as an elastic layer (the 
hydrocarbon-chain region) sandwiched between two Gibbs dividing surfaces (the two headgroup regions). 
Expressions for the membrane stretching and bending elastic moduli have been derived in terms of the lipid 
monolayer tension and elastic constants. The interaction between two cylindrical inclusions have been calcu- 
lated by using both force and energy approaches. The range of this interaction turns out to be of the order of 
several inclusion radii. The results, which are in qualitative agreement with the experimental observations, can 
be applied to the interpretation of membrane processes and mechanisms, such as protein aggregation in lipid 
membranes, as well as to any process affected by the membrane stretching and bending elastic properties. 

It has been experimentally established that some integral pro- 
teins may aggregate in native membranes to form two- 
dimensional crystals. '-' Two well known examples are the 
bacteriorhodopsin in the membranes of Halobacterium 
halobium'*2 and the connexons in the communicating  cell^.^.^ 
On the other hand, many proteins are known to function in a 
non-aggregate state. Thus, the rhodopsin from retinal-rod 
membranes changes its properties significantly upon aggre- 
gation and immobilisation.6 It is widely accepted that the 
lateral heterogeneity of membrane proteins plays an impor- 
tant role in biological phenomena such as endocyto~is,~ 
immunoresponses and the processes of patching and 
capping,' enzymatic reactions'.' and intercellular inter- 
a c t i o n ~ . ~  The different types of forces leading to protein 
aggregation or disaggregation in the membranes are a matter 
for extensive studies, both experimental and theoretical. 

A particular type of non-specific interaction between inte- 
gral proteins is mediated by their lipid environment (the so- 
called 'lipid-mediated interaction "'-' 2). The main idea for 
such an interaction comes from the experimental observ- 
ations that the proteins perturb the neighbouring lipid mol- 
ecu le~ . '~ '~- '~  Theoretical models have been developed by 
Marcelja," Schroder," and Owicki et a1.22,23 The experi- 
ments with electron paramagnetic resonance (EPR) tech- 
niques showed that two distinct signals can be detected in 
natural membranes or artificially constructed lipid bilayers 
containing a given type of integral protein. The EPR spec- 
trum was explained with the presence of two different popu- 
lations of lipids: (i) the signal corresponding to hindered 
motion of lipid molecules was attributed to lipids tightly 
bound to the protein, (ii) the other signal, which was equiva- 
lent to that for the membrane without incorporated proteins, 
was attributed to the remaining lipid molecules which were 
not in contact with the protein.'4*'6.'7 From the concentra- 
tion dependence of the spectrum it was determined that 
about one layer of lipids is immobilised around each of the 
protein mo1ecules.'4~'o~21 The later experiments performed 
by means of EPR and NMR methods specified the complex 
picture of the protein-lipid interaction. It was shown that the 
exchange rate of the lipids in contact with the protein is 
about one order of magnitude lower than that for free lipids 
in the fluid lipid bilayer.2 Nevertheless, the experiments 
demonstrated that the degree of ordering and fluidity of the 

hydrocarbon chains of the bound molecules are not very dif- 
ferent from those for the free molecules (in contrast with the 
initial hypotheses"."), see ref. 8, 13, 15. The absence of con- 
siderable ordering of the lipid tails was explained' by the 
irregular shape of the protein molecules (the protein structure 
is more rigid and the lipid tails should follow the shape of the 
outer protein surface). The decreased rate of lipid exchange 
was attributed to non-specific (mainly electrostatic) inter- 
actions between the headgroups of the lipid molecules and 
the  protein^.'^,^' In some cases the immobilisation of the 
lipid molecules was explained by them being captured in the 
space between aggregated protein molecules.'~' 5 + 1  In 
general, the recent experimental studies show that in many 
cases the ordering parameter of the lipids in close vicinity of a 
protein molecule is close to that for the free  molecule^.'^*^^^^^ 
This finding does not favour the theoretical models devel- 
oped in ref. 10, 11, 22 and 23. 

Chen and Hubbe1lZ6 found experimentally that the trans- 
membrane protein rhodopsin was dispersed when in bilayers 
made with di-10 : 0. phosphatidylcholine, while it was aggre- 
gated in di-18 : 1 trans-phosphatidylcholine bilayers. The 
configurations of the proteins in the former and latter 
bilayers resemble those depicted in Fig. l(a) and (b), respec- 
tively. One can conclude that the perturbation of the bilayer 
thickness caused by the protein can lead to protein-protein 
attraction. Note that the width of the protein hydrophobic 
belt can be both smaller [Fig. l(b)] and greater [Fig. l(c)] 
than the hydrophobic thickness of the non-perturbed bilayer. 

discussed possible origins of the lateral 
protein-protein interaction. In particular, he proposed a pos- 
sible source for the interaction between two different mem- 
brane proteins, with hydrophobic belts thinner and thicker 
than the bilayer hydrophobic thickness, the so-called 
'mismatch'; Fig. l(d). He anticipated that this interaction 
could be repulsive, analogous to that between two floating 
bodies in water, which depends on the shapes of the menisci 
in a vicinity of the bodies. Note that the mechanism proposed 
by Marcelja" does not presume formation of menisci; see 
Fig. l(a). 

The effect of the mismatch of the hydrophobic regions on 
the aggregation behaviour of proteins has been studied both 
experimentally'6.' 9 3 2 7 - 2 9  and the~retically.~'.~ ' For instance, 
Lewis and Engelman' showed that bacteriorhodopsin forms 
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Fig. 1 Inclusions (membrane proteins) in a lipid bilayer: (a) the 
hydrophobic thicknesses of the bilayer and inclusions coincide; (b)- 
(d) the hydrophobic thicknesses of bilayer and inclusions are differ- 
ent: the overlap of the deformations around the inclusions lead to a 
lipid mediated protein-protein interaction 

aggregates in vesicles (prepared from lipids of different chain 
lengths) only when the mismatch is greater than 0.4 nm for 
thicker [Fig. l(b)] and 1 nm for thinner [Fig. l(c)] lipid 
bilayers. Similar protein aggregation at considerable hydro- 
phobic mismatch was detected with other natural 
proteins' 6 ,  19*28 and with artificially synthesised polypep- 
t i d e ~ . ~ ~  It was also shown in these studies that the proteins 
affect the phase transition temperature of the lipid bilayer. 

The theoretical consideration of the effect of the hydropho- 
bic mismatch turns out to be very closely related to the 
mechanical properties of the lipid bilayers. The 
experiments32p37 with vesicles from a single lipid component, 
or from a mixture of lipids, have allowed the determination of 
the elastic constants for membrane stretching and bending. It 
was shown that their values are interrelated and strongly 
dependent on the membrane t h i c k n e ~ s ~ ~ , ~ ~  and on the pres- 
ence of cholesterol.' 3734935 A variety of theoretical models 
have been proposed for estimation of the elastic con- 
st ants. 2.3 8-4 ' Generally, one can distinguish two types of 
model. The first type is based on explicit modelling of the 
interaction between the lipid molecules (van der Waals, elec- 
trostatic, etc.) and on a numerical analysis of the configu- 
rational entropy of the lipid  chain^.^'.^' Am ong these 
models, the most useful turns out to be the mean-field class of 
models where the energy and entropy of a given molecule are 
calculated by averaging over all possible chain configurations 
of the n e i g h b ~ u r s . ~ , - ~ ~  These models are very suitable for 
studying the properties of homogeneous amphiphilic aggre- 
gates (micelles, microemulsions, lipid bilayers), e.y. for calcu- 
lation of their spontaneous curvature, elastic constants or 
chain packing (chain-order parameter). Two important con- 
clusions were drawn in these studies: (i) that the CH,-group 
density and ordering are rather uniform across the 
membrane3 9 9 4 3 9 4 4  and (ii) that the lipid tails strongly interact 
with each other and create substantial mechanical 

This can be interpreted as an accumulation of 
elastic energy in the hydrocarbon-chain region, Fig. 2. 
However, at present, this type of theory is hard to apply for 
investigating complex processes such as lipid-mediated 
protein interactions. From this viewpoint the second type of 
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Fig. 2 Lipid (lecithin) bilayer drawn to scale (after ref. 57) 

phenomenological models are more versatile., 5,32,38,40,41 In 
this approach the energy variation around a given (non-per- 
turbed) state is calculated by using some phenomenological 
parameters (Young's modulus, interfacial tension, and others) 
which can be experimentally measured or calculated from 
microscopic (molecular) considerations. Some of these models 
account only for the elasticity of the hydrophobic core of the 
lipid b i l a ~ e r , ~ ~ . ~ '  while other models also consider the inter- 
facial energy at the boundary with the adjacent aqueous 

Helfrich and J a k o b s ~ o n ~ ~  calculated the energy of forma- 
tion of a concave or convex meniscus around an integral 
membrane protein (gramicidin channel). They determined the 
meniscus shape by using a modified version of H u a n g ' ~ ~ ~  
equation, which takes into account contributions due to the 
bending elasticity, surface tension and the normal compress- 
ibility of the bilayer. These authors considered quantitatively 
both solvent-free and solvent-containing (swollen) mem- 
branes. On the other hand, their theoretical analysis was 
restricted to the meniscus on a single protein and did not 
treat the protein-protein interaction. The latter was studied 
theoretically by Dan et d4' on the basis of a postulated 
model expression for the free energy per molecule of a curved 
monolayer (as a constituent part of the bilayer). The results 
obtained by these authors depend to a great extent on the 
adequacy of the model expression postulated by them (see 
discussion below). 

Here we propose an alternative theoretical approach to the 
membrane-mediated interactions between inclusions, which is 
based on a recent advance in the theory of lateral capillary 
for~es.~'-~'  A first step in this direction was made in ref. 51 
where the protein-protein interaction in a membrane was 
treated in a similar manner to the interaction between two 
colloidal particles which are partially immersed in a thin 
liquid film. However, to describe protein-protein interactions 
adequately in biomembranes the approach of ref. 51 requires 
a generalisation, at least in two directions: 

( 1 )  Solvent-free membrane should be considered and the 
elasticity of the hydrocarbon-chain region should be 
accounted for (note that the approach in ref. 51 is appropri- 
ate for a solvent-containing membrane). 

(2) Bending-moment and bending-elasticity effects should 
be taken into account along with the surface-tension effect. 

The aim of the present study is to provide a generalised 
and quantitative theory of capillary meniscus interactions 
between membrane proteins incorporated in a iipid bilayer. 
In the present article we consider proteins (inclusions) of 
cylindrical shape like those depicted in Fig. 1. In this case the 
deformation consists of a variation of the bilayer thickness, 
whereas the bilayer midplane remains planar [Fig. l(b)-(d)]. 
Such a mode of deformation corresponds to the squeezing 
mode observed with thin liquid  film^.^,,^^ 

phases.25,32,38,4 1 
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In Appendix A we consider the supplementary bending 
mode of bilayer deformation, which consists of bending of the 
midsurface at constant film thickness. The calculated bending 
elastic moduli can be important for the quantitative descrip- 
tion of the long-range membrane-induced interactions 
resulting from perturbations of the bilayers long-wavelength 
shape fluctuations; the latter effect has been determined theo- 
retically by Goulian et aLS4 

The key for solving the aforementioned problems is the 
formulation of a realistic and adequate rheological model of 
the bilayer membrane. It is generally accepted that a lipid 
bilayer behaves as a two-dimensional fluid at body tem- 
perature. This fact is taken into account in the two- 
dimensional hydrodynamics of motion of inclusions 
throughout a membrane.55 On the other hand, the bilayer 
exhibits elastic properties in processes accompanied by exten- 
sion or compression of the hydrocarbon chains of the lipids. 
Such a process can be an uniform stretching or squeezing 
mode of deformation [Fig. l(b)-(d)]. The situation becomes 
more complicated because it is not always appropriate to 
model the bilayer interior (Fig. 2) as an isotropic elastic 
b ~ d y . ~ ~ , ~  * 

In summary, a bilayer can exhibit different rheological 
behaviour (uiz. fluid, elastic or hybrid behaviours) depending 
on the mode of deformation. This is not surprising because a 
bilayer is neither a three-dimensional nor a two-dimensional 
continuum; and the hydrocarbon-chain region (Fig. 2) is 
neither an isotropic liquid nor a solid. A natural approach to 
the mechanics of such a complex body is to use different con- 
stitutive relations (connecting stress and strain) for the differ- 
ent independent modes of deformation. For example, in the 
case of two-dimensional convective flow the bilayer can be 
treated as a two-dimensional viscous As demon- 
strated below, the hydrocarbon-chain region can be modelled 
as an isotropic elastic body when the deformation modes rep- 
resent bending or uniform lateral stretching. Moreover, 
below we propose a hybrid rheological model for the case of 
non-uniform lateral stretching [Fig. l(b)-(d)]. However, for 
all modes of deformation we use the same 'sandwich' model 
of the bilayer structure, uiz. a three-dimensional body of 
specified rheological behaviour (the hydrocarbon-chain 
region) sandwiched between two Gibbs dividing surfaces 
modelling the two headgroup regions, Fig. 2. 

First we consider a deformation of a uniform lateral 
stretching, introduce the 'sandwich' model and then deter- 
mine the coefficient of shear elasticity of the bilayer interior. 
Next we consider non-uniform lateral stretching and derive 
the equations governing the bilayer shape. Then we calculate 
the deformation created by a single inclusion and by two 
inclusions. Finally, we calculate the lateral force between two 
inclusions like those depicted in Fig. l(b)-(d). The bending 
mode of bilayer deformation is examined in Appendix A and 
expressions for the curvature elastic moduli are derived. For 
the readers' convenience a list of notation has been provided. 

Uniform Stretching of Bilayers 
Derjaguin and O b ~ h o v ~ ~  proposed a generally accepted 
approach which treats a thin liquid film as two Gibbs divid- 
ing surfaces, whose interaction is accounted for by an excess 
disjoining pressure (surface force per unit area).57,58 Here we 
extend this approach to lipid bilayers. The main new part of 
the model is that we treat the hydrocarbon interior of the 
bilayer as an elastic medium (rather than as a liquid phase) 
which is sandwiched between two Gibbs dividing surfaces 
modelling the headgroup regions. In the case of uniform 
stretching the bilayer cannot exhibit its two-dimensional 
fluidity. Indeed, the deformations of the hydrocarbon chains 

of all lipid molecules are similar and lateral slip between the 
chains of neighbouring molecules does not take place (Fig. 3). 
That is the reason why the bilayer hydrocarbon interior can 
be treated as an isotropic elastic medium as defined in ref. 59. 
(The dissimilar case of non-uniform deformation is con- 
sidered separately in the next section.) 

Initial State of the Bilayer 

The reference state (the initial state of deformations such as 
those in Fig. 1) is a plane-parallel bilayer. This is a result of 
self-assembly of lipid molecules. Owing to the specific state of 
the hydrocarbon chains of the lipids built into a bilayer, some 
internal stresses exist in the chain region. In our approach 
they are modelled by stresses in an elastic medium. Similarly 
to the micromechanical approach to the interfaces and thin 
films,60.61 we can write the pressure tensor in the chain 
region in the form 

P = PT(e,e, + eyey)  + PNe,e, (1.1) 

(see Fig. 4 for notation). As usual, the bilayer (film) surface 
tension, 0, is excess with respect to the tangential component 
of the bulk pressure tensor.62 

[P;.'"'(z) - PT] dz - [P;.'"'(z) - Po] dz (1.2) 

where Py'  denotes the real tangential component of the pres- 
sure tensor and Po is the pressure in the bulk of the aqueous 
phase. On the other hand, P, and PT are attributes of the 
model, which can be determined as follows. 

The condition for force balance per unit area of the film 
surface reads (Fig. 4): 

Is g =  -c2 

Po = P, + n (1.3) 
where ll is the disjoining pressure accounting for the excess 
molecular interactions across the In the case of a 

- 
w w w w w w w w w w m Y w w  

Fig. 3 
volume per hydrocarbon chain 

Stretching of a lipid bilayer under the condition of constant 

Fig. 4 Forces acting in a lipid bilayer in the reference state: yb is the 
total bilayer tension, c is the bilayer (film) surface tension, Po is the 
pressure in the aqueous phase; I3 is disjoining pressure; ex, ey and e, 
are unit vectors of the coordinate axes; P ,  and P, are the normal 
and tangential components of the pressure tensor exerted on an 
element of the elastic medium (the inset) 
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lipid bilayer ll originates from the van der Waals forces.58 

where AH is the Hamaker constant and h is the film thick- 
ness; the minus sign in eqn. (1.4) indicates attraction between 
the film surfaces. For a hydrocarbon film in water A, x 

J (see e.g., ref. 57) and with h = 3 nm one calculates 
ll x -2 x lo4 Pa. Since Po = lo5 Pa (the atmospheric 
pressure), eqn. (1.3) shows that PN x 1.2 x lo5 Pa. 

The normal force balance, eqn. (1.3), can be complemented 
with a tangential force balance. Let Yb be the total tension of 
the bilayer. From a macroscopic viewpoint Yb characterises 
the bilayer as a membrane of zero thickness intervening 
between two aqueous phases of pressure Po. In the frame- 
work of the detailed model depicted in Fig. 4 the stresses 
acting in lateral directions are characterised by CT and P,. In 
view of Fig. 4 one derives 

(1.5) 

Eqn. (1.5) is a version of the Rusanov equation originally 
derived for a thin liquid film.63 The comparison of eqn. (1.2) 
and (1.5) shows that )+, does not depend on the choice of the 
reference state: 

Yb = 20 + (PO - P T ) h  

+a0 

Yb = [ P y ' ( Z )  - PO] dz (1.6) 

On the other hand, Q and P, depend on the choice of the 
reference state, but once this choice has been made all param- 
eters have well defined values for a given physical state of the 
real system. Such a formulation is typical for thermodyna- 
mics of the thin liquid films.62 

The  experiment^^^ with dense lipid monolayers adsorbed 
at the hydrocarbon/water interface show that the surface 
pressure does not depend on the length of the hydrocarbon 
chains of the lipids at any area per molecule. This implies 
that the quantity u + (Po - PT)h/2, cf: eqn. (1.5), does not 
depend on h. In other words, the difference I Po - P, I is small 
enough and the surface pressure of such monolayers is domi- 
nated by the interactions in the headgroup region. Then it is 
reasonable to define Q as the interfacial tension of a lipid 
monolayer on a hydrocarbon/water interface at the same 
temperature, composition of the aqueous phase and area per 
lipid molecule as for the bilayer. For example, from the 
experimental data in ref. 65 for 1,2-distearoyl lecithin at the 
heptane/water (with NaC1) interface one calculates Q = 14 
mN m-l  for an area per molecule of 67 A2. As the total 
membrane tension of a non-extended bilayer is very low, 
yb << CJ (tension free state, see ref. 32), from eqn. (1.5) one can 
determine P,: 

With CJ = 14 mN m-', h = 3 nm and Po = lo5 Pa then P ,  = 
9.4 x lo6 Pa. In accordance with the definition of CT, PT is an 
excess lateral pressure in the bilayer with respect to a mono- 
layer. 

The Rusanov equation, eqn. (lS), provides a simple inter- 
pretation of the tension-free state of the bilayer, uiz. the 
surface tensions of the bilayer surfaces are exactly balanced 
by the excess lateral pressure in the bilayer interior, cf: Fig. 4. 

Deformation of Stretching 

Consider a stretching of the bilayer and let us denote the 
respective changes in PN and P, by APN and APT.  Following 
the approach in Section 5 of ref. 59 for a deformation of 

uniform stretching, one can derive 

z,, = z,, = -APT; z,, = - A P N  (1.8) 
where zij (z, j = x, y ,  z) are components of the stress tensor 
(we recall that the stress equals the negative pressure). By 
using eqn. (l.S), the connection between strain and stress [ref. 
59, eqn. (4.8)], we obtain. 

1 1 
u,, = -- ( A P N  + 2APT) - - ( A P N  - APT) (1.9) 9Ke 31 

1 1 

u,, = uyy = -- ( A P N  +  APT) -I- (APN - APT) 9Ke 6A 

(1.10) 

where uij (i, j = x, y ,  z) are components of the strain tensor 
and K, is the compressibility modulus and 1 is the coefficient 
of shear elasticity. We assume that K, B 1, as it could be 
expected for a liquid-like medium. Moreover, one can expect 
that I APT 1 + I A P N  I, see below. Then it is possible to simplify 
our treatment from the very beginning by neglecting the 
terms proportional to l/Ke 

1 1 
u,, = u,, = -- u,, = - ( A P N  - A P T )  

2 61 
(1.1 1) 

The components of the strain tensor determined by eqn. 
(1.1 1) obviously obey the incompressibility condition, u,, 
+ u,, + u,, = 0. Let us introduce the bilayer dilation per 

unit area: 

AA 
a = - =  A u,, + u,, 

The relative change in the film thickness is 

Ah 
h -"'= - a  
_ -  

(1.12) 

(1.13) 

At the last step we used the condition for incompressibility. 
Since the bilayer extension occurs at constant outer pressure, 
Po ,  differentiation of eqn. (1.3) along with eqn. (1.4) and (1.13) 
yields 

In addition, from eqn. (l.ll),  (1.12) and (1.14) one obtains 

APT = A P N  - 31a = -3(n + A)a (1.15) 

For small bilayer extensions, from eqn. (1.5) one derives in 
linear approximation 

Yb = YbO + A)'b = YbO + 2A0 + (Po - PT)Ah - hAPT (1.16) 
where YbO denotes the value of the total film tension in the 
initial state. (If the latter is a tension free state, then YbO = 0.) 
In linear approximation one can write 

A a  = E G u  (1.17) 

where EG is the Gibbs elasticity of a lipid monolayer. Finally, 
a substitution of eqn. (1.7), (1.13), (1.15) and (1.17) into eqn. 
(1.16) yields 

Yb = YbO + K s a  (1.18) 

where 

K ,  = 20 + 2EG + 3llh + 31h (1.19) 

is the stretching (elasticity) modulus of the whole bilayer. The 
disjoining pressure ll is to be substituted from eqn. (1.4). The 
first two terms in the right-hand side of eqn. (1.19) represent 
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properties of the two film surfaces, whereas the last two terms 
represent a correction accounting for the fact that the two 
monolayers are assembled to form a solvent-free bilayer. 

Fernandez-Puente et ~ 1 . ~ ~  estimated that the elasticity of 
the chain region contributes about 20 mN m-l  to the total 
stretching modulus K , .  If we can identify this contribution 
with the last term in eqn. (1.19), that is 3Ah = 20 mN m-’, 
with h = 36 A we calculate A z 2 x lo6 Pa. 

From the data for compressibility of liquid hydrocarbons 
one can estimate K, z 9 x lo8 Pa. One sees that K ,  9 A in 
consonance with our assumption. Moreover, with 
1 = 2 x lo6 Pa and ll = -2 x lo4 Pa  [see the estimate after 
eqn. (1.4)], and by using eqn. (1.14) and (1.15), one can verify 
that I APT I % I APN I. 

Note that the shear elasticity coefficient, A, affects not only 
the stretching elasticity modulus, K , ,  but also the total 
bending and torsion (Gaussian) elasticity moduli k,  and it of 
the bilayer. Therefore, in principle A can be determined from 
the measured k, or k, . The ‘sandwich’ model described above 
also provides expressions for k ,  and it: 

k ,  = 2k, - ($Boo + iBb)h + i E G  h2 + +Ah3 (1.20) 

it = 2Lc + $Boob - +Ah3 (1.21) 

Here k,  and cc are the bending and torsion elastic moduli of 
the bilayer surfaces (to be distinguished from k, and it, which 
characterise the bilayer as a whole); B ,  = Boo + Bb a + . . . is 
the series expansion of the bending moment of the bilayer 
surface for small values of the relative dilation a. Eqn. (1.20) 
and (1.21) are derived and discussed in Appendix A. 

Non-uniform stretching around Inclusions 
Rheological Model 

Comparison between Fig. 3 and 5 shows that the bilayer 
deformation around a cylindrical inclusion can be considered 
as a deformation of non-uniform stretching. In particular, the 
extension of the lipid hydrocarbon chains along the z-axis 
(Fig. 5) is greater for molecules situated closer to the inclu- 
sion, whereas the bilayer far from the inclusion is not dis- 
turbed. The volume occupied by the hydrocarbon chains of a 
separate lipid molecule (one of the many small rectangles 
depicted in Fig. 3 and 5) can be modelled as an isotropic 
elastic body. On the other hand, lateral slip between mol- 
ecules (neighbouring rectangles in Fig. 5) is possible, which in 
turn is related to the two-dimensional fluidity of the bilayer. 

Hence, modes of deformation which do not include such a 
lateral slip (e.g. two-dimensional isotropic stretching, Fig. 3, 
or bending mode, see Appendix A) can be described by using 
an elastic body constitutive relation for the bilayer interior. 
On the other hand, modes of deformation including lateral 
slip between the lipid chains (see Fig. 5) must be described by 
using an appropriate constitutive relation, which takes into 

Fig. 5 Sketch of the deformation around a cylindrical inclusion of 
radius r ,  and hydrophobic belt of width I , ;  h is the thickness of the 
non-disturbed bilayer and h, is the mismatch between the hydropho- 
bic zones of the inclusion and bilayer 

account the two-dimensional fluidity of the bilayer. With this 
end in view we first note that the bilayer interior can be con- 
sidered as an incompressible medium, 

v * u = o  (2.1) 

(u is the displacement vector) in so far as we deal with rela- 
tively low pressure variations. 

The stress tensor component in an incompressible isotropic 
elastic medium reads” 

where, as usual, A is coefficient of shear elasticity, 

uij = - 1 ( auj ;:;) 
2 g+- 

and ui (i = x, y ,  z )  is a component of the displacement vector 
u. Note that eqn. (2.3) is always valid as it is a definition of 
u i j ,  whereas eqn. (2.2) is a postulated constitutive relation 
applicable to a body which can be treated as an incompress- 
ible isotropic elastic medium. Since eqn. (2.2) does not take 
into account the two-dimensional fluidity of the bilayer, 
below we postulate another constitutive relation. The latter 
should be a ‘hybrid’ between the constitutive relations of a 
fluid and of an elastic body. In particular, zij must be iso- 
tropic in the plane x y  and simultaneously, to account for the 
elasticity of extension of the hydrocarbon chains, along the 
z-axis. These requirements are satisfied by the expression 

zij = - p h i j ;  i ,  j = x ,  y ,  z ;  ( i , j )  # (z, z) (2.4~) 

z,, = 2Auz, (2.4b) 

Here hij  is the Kronecker symbol; p has the meaning of pres- 
sure characterising the bilayer as a two-dimensional fluid ; on 
the other hand, eqn. (2.4b) is an analogue of eqn. (2.2). 

The condition for hydrostatic equilibrium yields” 

azij - = o ;  j = l , 2 , 3  axi 
(xl = x, x2 = y ,  x3 = z). Eqn. (2.1) and (2.5) form a set of four 
equations for determining the four unknown functions u, , u,, , 
u, and p .  This implies that the mechanical problem based on 
the constitutive relation, eqn. (2.4), is_ correctly formulated. 
Below we proceed with the determination of these unknown 
functions. 

Deformations in the Hydrocarbonchain Region 

Eqn. (2.5) for j  = z, along with eqn. (2.3) and (2.4b), yields 

Considerations for symmetry imply that u, must be an odd 
function of z which is to satisfy the boundary condition 

U Z  I z = h , 2  = a x ,  Y )  (2.7) 

where z = c(x,  y )  describes the shape of the upper bilayer 
surface. Then one obtains 

The continuity eqn. (2.1) can be transformed to read 

au 
aZ v ‘ U  --z 

II II - (2.9) 

where uII is the projection of the displacement vector u in the 
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plane xy and V,, is the gradient operator in the same plane: 

d d 
V,, = ex - + ey - uII = ex u, + ey u,,,; (2.10) ax ay 

We seek uII in the form 

where g is an unknown scalar function. Substituting eqn. (2.8) 
and (2.1 1) into eqn. (2.9) yields 

3 

(2.12) 

In addition, the substitution of eqn. (2.4a) into eqn. (2.5) 
yields V,,p = 0, hence p does not depend on x and y .  More- 
over, in so far as the bilayer from the inclusion(s) is not per- 
turbed (Fig. 5) and rik expresses a perturbation, one can 
conclude that p is identically zero: 

p = o  (2.13) 

To determine g we need a boundary condition at the inclu- 
sion surface. One can use the condition of impermeability of 
inclusion surface : 

(2.14) 

(at the inclusion surface). 
Here m is a normal projecting out from the inclusion 

surface and ag/am is a directional derivative. The additional 
boundary conditions, which should be imposed at the bilayer 
surfaces, are considered below. 

Deformation of the Bilayer Surfaces 

We consider the case when the two bilayer surfaces are sym- 
metric with respect to a planar midsurface (Fig. 5). Hence it is 
sufficient to describe the shape z = [(x, y )  of the upper bilayer 
surface. On the other hand, we do not impose any restriction 
on the number of the inclusions. 

Our treatment is based on the theory of liquid films of 
uneven thickness developed in ref. 62 and 66. The interfacial 
local balance of the linear momentum (for the upper bilayer 
surface) reads :62,66 

V, . u - n . (TI - TI,) l z = h , 2  + n(e, * n)e, = 0 (2.15) 

where u is the surface stress tensor, V, is the two-dimensional 
gradient operator of the film surface, which is to be distin- 
guished from the gradient operator V,, in the xy plane (the 
midsurface) ; 

n = (e, - VII W(1 + I v,, c I2P2 (2.16) 

is the unit normal out from the bilayer surface," 

TI = -PNeze, - P,U,, + T; TI, = -P,U (2.17) 

are the stress tensors inside and outside the bilayer; U is the 
spacial unit tensor, UII is the two-dimensional unit tensor in 
the plane x y ;  Po is the pressure in the aqueous phase; PN and 
P ,  characterise the stresses in a plane-parallel bilayer, 
whereas T as given by eqn. (2.4) takes into account the addi- 
tional elastic stresses due to deformation in the bilayer (Fig. 
5). Note that I-I accounts for conventional surface  force^,^^.^^ 
like the van der Waals forces, whereas the elastic stresses are 
accounted for by T. 

Let a ,  and a2 be vectors of a local basis in the bilayer 
surface. Then u can be written in the form6'*62*67*68 

a = a, a, CJ"" + ap no@(") (2.18) 

where d"' and aP(") are the respective components of the 

surface stress tensor; the Greek indices take values 1 and 2 
and summation over the repeated indices is assumed. Here 
and hereafter we use the formalism of the mechanics of 
curved interfaces; see ref. 61 for a recent review. We substi- 
tute eqn. (2.16)-(2.18) into eqn. (2.15) to derive expressions for 
the normal and tangential projections of eqn. (2.15) with 
respect to the bilayer surface (cf. refs. 61 and 68) 

b,, CJ" + G Y ~ )  = [(PN - P T )  1 V,, 5 l 2  - nI(1 + I v,, c 12)- 
+ no + n * T * n (2.19) 

( P T  - PN - n)(1 + I v,, rl2)- 1'2[' ' &V - &") = 
7 ,  P 

+ n . i . a ' ;  u = l , 2  (2.20) 

where the comma denotes covariant differentiati~n;~' b,, are 
components of the curvature tensor, and no = Po - P ,  is the 
disjoining pressure of the non-deformed plane-parallel 
bilayer. The requirement for balance of the interfacial angular 
momentum implies6 9 6 7 , 6 8  

&") = -MY: (2.21) 

where Mpv(p ,  v = 1, 2) represent components of the tensor of 
the interfacial moments (torques). Assuming that the bilayer 
surfaces behave like a two-dimensional fluid we require 
lateral isotropy of the interfacial stresses 

0,' = cap, (a,,, E ap a,) (2.22) 

where CJ is the bilayer surface tension. 

be expanded in series : 
Hereafter we will assume small deformations. Then ll can 

Moreover, for small deformations the bilayer surfaces can be 
treated as Helfrich interfaces for which 

MY: = 2k, H" - (Bb/h)cv" (2.24) 

[see Appendix B for the derivation of eqn. (2.24)]; the 
meaning of Bb is the same as in eqn. (1.20). Here H is the 
interfacial mean curvature. Note that6'y7' 

2H = aPvb,, z Vi[ (2.25) 

where the last relation holds in linear approximation for 
small c. Next by using eqn. (2.4b), (2.8) and (2.21)-(2.25) we 
obtain the linearised form of eqn. (2.19), 

30 V i  [ - k, Vfi c = 2(A/h - n')c; (60 C J ~  + Bb/h) (2.26) 

where go is the value of CJ for the non-disturbed plane-parallel 
bilayer. Eqn. (2.26) can be represented in the form 

( V i  - d X V i  - d)C = 0 (2.27) 

where 4: and q; are roots of the biquadratic equation 

k,q4 - 1 7 0 4 ~  + 2(21/h - II') = 0 (2.28) 

i.e., 

1 
4:,2 = - {Go & [6: - 8kC(2J./h - 11')]1'2] (2.29) 

2kC 
Depending on the sign of the discriminant in eqn. (2.29), eqn. 
(2.28) may have four real or four complex roots. We can 
eliminate in advance all roots which give negative 4 2 ,  which 
correspond to an infinitely large energy of insertion and 
inclusion in the bilayer. [One can prove that in the latter case c cc J,(qr) around a single inclusion; then the total energy of 
deformation turns out to be infinite because of the slow rate 
of decay of the Bessel function J ,  at infinity.] The complex 
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roots for q lead to decaying oscillatory profiles, resembling 
those obtained in ref. 47 for model inclusions of translational 
symmetry. 

As c0 (and possibly k, and A) depends strongly on tem- 
perature and total membrane tension y b ,  various types of 
solutions are possible. Below we restrict our considerations 
to the case of not-too-flaccid membranes, when u0 is large 
enough to provide a positive discriminant in eqn. (2.29), i.e. 

6; > 8kC(2A/h - n’) (2.30) 

All other cases can be treated similarly by using the method- 
ology developed below. 

The estimates show that II’ is typically about 2 x 1013 N 
m-3 and is negligible compared with 2,l/h. With A = 2 x lo6 
Pa, h = 3 nm and k, z kT z 4 x J (see ref. 71), eqn. 
(2.30) yields Z0 > 6.5 mN m-’. 

4 - l  is the capillary length, determining the range of the 
deformation around an inclusion and in turn, the range of the 
lateral capillary forces between inclusions (see below). With 
the above values and Z0 = 20 mN m-l  from eqn. (2.29) two 
possible decay lengths can be calculated: q l - ’  = 2.7 nm and 
q 2 - ’  = 0.45 nm. There is a physical and a mathematical 
reason to disregard the second root, q2: (i) From a physical 
viewpoint a decay length smaller than the size of a lipid head- 
group (typically 0.8 nm) does not make sense. (ii) From a 
mathematical viewpoint the present linearised theory is valid 
when (qh,)2 << 1, see eqn. (3.6) below; this requirement may be 
violated with q = q2.  Consequently, we will work with 

1 
q2 = 4: = - {i7: - [i7; - 8kc(2A/h) - II‘]’”) 

2kc 
Z 4A/(hCo) (2.31) 

The last approximate expression is obtained by expanding 
the square root in eqn. (2.29) in series for small k,. In addi- 
tion, disregarding the solutions of eqn. (2.27) with q = q2 
implies that [ must satisfy the equation 

v,”,r = q2r (2.32) 

where q is given by eqn. (2.31). Indeed, all solutions of eqn. 
(2.32) satisfy eqn. (2.27), and all solutions of eqn. (2.27) of 
decay length q1 obey eqn. (2.32). Eqn. (2.32) is to be solved in 
conjunction with two physical boundary conditions: 4‘ = h, at 
the lipid-protein boundary and [ + 0 for r -, 0, see Fig. 5. 

Comparison between eqn. (2.12) and (2.32) shows that one 
can obtain g in the form 

1 

(2.33) 

where the unknown function f satisfies the homogeneous 
equation 

V:,f=O (2.34) 

Deformation around a Single Inclusion 
In the case of a single cylindrical inclusion (Fig. 5) [ depends 
only on the radial coordinate r, and eqn. (2.32) reduces to 

I d  
- - ( r  $) = 425 
r dr 

The solution of eqn. (3.1) along with the boundary condition 
for constant elevation at the contact line (see Fig. 5), 

[ = h, = const. (at the contact line) (3.2) 

yields 

(3.3) 

where rc is the radius of the cylindrical inclusion and K O  is a 
modified Bessel function, see e.g. ref. 72 and 73. The bound- 
ary condition of eqn. (2.14) in conjunction with eqn. (2.33) 
leads to 

(3.4) 

From eqn. (2.34) one obtains 

f = A l n r  (3.5) 

where A is a constant of integration; it is to be determined 
from the boundary condition 

Here Y ,  is the surface slope at the contact line (Fig. 5). From 
eqn. (3.4)-(3.6) one determines 

A = (2r, tan Y,)/(hq2) (3.7) 

Further, by using eqn. (2.11), (2.33), (3.5) and (3.7) one can 
calculate the components of the displacement vector u : 

u, and 5 are determined by eqn. (2.8) and (3.3), respectively. 
Finally, one can calculate the components of the strain tensor 
in cylindrical coordinates by using standard formulae : 5 9  

U, - 2  I ay r 
u,, = - = - (- - + 2 tan y, 

r hq2 r ar r2 

(3.9) 

(3.10) 

Deformation around Two Inclusions 
We consider two membrane proteins (Fig. 6)  whose lateral 
surfaces are modelled as two identical circular cylinders of 
radius r , .  Their axes of symmetry are separated at a distance 
L. The contact lines are attached to the boundaries between 
the hydrophilic and hydrophobic regions on the protein 
surface; therefore the elevation h, (unlike the running slope 
angle Y,) does not change with the variation of L. 

The geometry of the system suggests introduction of 
orthogonal bipolar  coordinate^^^ in the plane x y  : 

a sinh z . a sin w 
X =  

cosh z - cos co’ = cosh z - cos w 

I L I 

Fig. 6 Two identical cylindrical inclusions of radius I-, separated at 
an axis-to-axis distance L ;  h, characterises the ‘mismatch’ between 
the width of the inclusion hydrophobic belt and the thickness of the 
bilayer far from the inclusion 
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Each line z = const. is a cir~umference,~~ 

U 2  + y 2  = - 
sinh' z 

(x - a coth 

see Fig. 7. Let z = +zc be the equation of the intersection 
lines of the two cylinders with the plane xy. Then in accord- 
ance with eqn. (4.2) one finds 

rc = a/sinh 7,; L = 2a coth z, (4.3) 

The elimination of z, yields an expression for the parameter a 
in eqn. (4.1): 

(4.4) a = (C/4 - r y 2  

(see also Fig. 7). 
In bipolar coordinates eqn. (2.32) takes the form73 

Eqn. (4.5) is to be solved along with the boundary condition 
eqn. (3.2). When (aq)2 << 1 one can use perturbation methods 
to solve eqn. (4.5).48,49 Here we prefer to use numerical inte- 
gration of eqn. (4.3, which can be carried out for any value of 
(aq)' as described below. 

The domain of integration of eqn. (4.5) represents a rect- 
angle in the zo-plane, which is bounded by the lines o = f n  
and z = +_ z, ; in view of eqn. (4.3) we have 

z, = In[ + \i( 5 + I)] (4.6) 

Owing to the symmetry we consider only a quarter of the 
integration domain, that with 0 d z < z, and 0 < o d n. The 
additional boundary conditions implied by the symmetry are 

(4.7) 

We used the classical second-order finite-difference scheme 
for discretisation of the boundary ~ r o b l e m . ~ ~ . ~ ~  Thus eqn. 
(4.5) is represented as a system of linear equations which can 
be solved by means of one of the standard methods. We used 
the Gauss-Seidel iterative combined with suc- 
cessive over-relaxation (SOR) and Chebyshev acceleration 
techniques, see e.g. ref. 74 and 75. 

Consideration of symmetry shows that f(z, o) is an even 
function of both z and o. Therefore, the solution of eqn. 

t Y  

Fig. 7 Bipolar coordinates (7, o) in the plane xy. The circum- 
ferences 7 = f7, represent projections of the lateral surfaces of the 
two cylindrical inclusions (Fig. 6). 

(2.34) can be presented in the form 
Q) 

f(z, o) = En cosh nz cos n o  (4.8) 
n =  1 

The coefficients En can be determined by substituting eqn. 
(4.8) and (2.33) into the boundary condition, eqn. (2.14) 

1 
nnbq2 sinh nz, 

En = d o  cos n o  3 1 (4.9) 
a~ r = r c  

Next, one can determine the components of the displacement 
vector u from eqn. (2.8), (2.1 l), (2.33), (4.8) and (4.9). 

Lateral Capillary Force between Two Identical 
Inclusions 

Force Approach 

The lateral capillary force exerted on an inclusion in a lipid 
bilayer, like those depicted in Fig. 6, can be calculated by 
integrating the surface and bulk stress tensors, along the 
contact lines and particle surfaces:49 

Here C denotes the contact line; the multiplier 2 accounts for 
the presence of two identical contact lines on each inclusion; 
dl and ds are scalar linear and surface elements; v is a unit 
vector which is simultaneously normal to the contour C and 
tangential to the bilayer surface (Fig. 6); S is the lateral 
surface of the cylindrical inclusion and m is its outer-running 
unit normal. It should be noted that in the case of a single 
inclusion in the bilayer both integrals in eqn. (5.1) are equal 
to zero owing to the symmetry of the exerted stresses. 
However, the presence of a second inclusion (Fig. 6) breaks 
the symmetry and leads to a non-zero lateral capillary force 
F. By means of eqn. (2.21), (2.24), (2.25) and (2.32) one can 
derive 

- My: = --(kc, q2 - Bb/W, M (5.2) 

Then by using eqn. (2.18), (2.22), (5.1) and (5.2) one can 
formally present the lateral force F as a sum of contributions 
due to the surface tension, F'"), interfacial bending moment, 
F@), and stresses in the bilayer interior, 

= 

F'"' = 2 dZ(U,, * v)a (5.3) i 
I 

F@) = - 2(k, q2 - Bo/h) dZv V, c(UII n) (5.4) d 
F(') = dsm - T - U,, 

First we note that in bipolar coordinates the last equation 
reads 

F(') = - ds(z,,e, + z,,e,) = 0 (5-5)  I 
because z,, = - p  = 0 and z,, = 0, cf: eqn. (2.4a) and (2.13). 
The fact that F(') = 0 could be anticipated in so far as the 
lateral stresses in the bilayer have been assumed to be iso- 
tropic (condition for two-dimensional fluidity) and the 
contact lines are parallel to the bilayer midsurface, see Fig. 6. 

Simple geometrical considerations (Fig. 6) yield 

U,, . v = m cos Y,; U,, . n = m sin Y,  (5.6) 
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In addition, by using eqn. (2.16), one obtains 

It can be proven that 

(at the inclusion contact line). 

leads to 
The substitution of eqn. (5.6)-(5.8) into eqn. (5.3) and (5.4) 

FU) = 2 dlm( 1 + I V,, 3 1 2 ) -  '/2a (5.9) i 
F(B)  = 2(k, q2 - Bb/h) dlm(m . V,, O2 

(5.10) 

As we work with small deformations, we will keep only linear 
and quadratic terms (with respect to deformation) in the 
right-hand sides of eqn. (5.9) and (5.10) and we will neglect 
higher-order terms. 

6 
x (1 + lvI,312)-1 

Thus for the x-projection of F ( B )  we obtain 

2(k,q2 - Bb/4 FLB) e, . F ( B )  = 

x d l 1 ~ 1 1 ~ 1 2  cos 4 (5.11) 

where we have used the relationships 

cos 4 =ex  * m; m VI,C = - ~ V I I ~ ~ , = z c  (5.12) 

In fact, I F y )  I = I F(B) I because of the symmetry of the system. 
Next we proceed with J;<"). In Appendix B we prove that 

the dependence of CJ on the deformation can be represented in 
the form 

d = do - +(kc q2 - Bb/h) I v,, 5 l2  
+ ( P T  - P,)C + (A/h - W)C2 (5.13) 

= h, = const. at the contour C, Taking into account that 
from eqn. (5.9) and (5.13) we derive 

00 + k,q2  - Ho/h) dl I VIlC l2  cos 4 (5.14) i FjPL -( 

where higher-order terms are neglected. It is convenient to 
use w as the integration variable. One can write4' 

for z = z, (5.15) 1 aC VIIC = e, - -; 
x az 

where 

(5.16) 

By using eqn. (5.5), (5.11) and (5.14)-(5.16) one derives the 
desired expression for the lateral capillary force 

F ,  FLB) + F'"' + F(') 

(5.17) 

Note that the force F, can be attractive or repulsive depend- 
ing on whether c0 > k , q 2  or go < k,q2 .  To calculate F ,  we 
first solve eqn. (4.5) numerically to determine the derivative 
a(/& for z = z, and then we carry out the integration in eqn. 
(5.17), again numerically. A subsequent integration yields the 
interaction energy between the two inclusions separated at a 
distance L : 

AQ(L) = F,(L) dL (5.18) 

An alternative approach, presented below, allows one to 
calculate directly the interaction energy A52. 

Energy Approach 

First note that the macroscopic theory (mechanics and 
thermodynamics) provides a general expression for the varia- 
tion of the grand thermodynamic potential, 652, rather than 
for 52 itself. In principle, one can find 52 by integrating 652, but 
such an integration is straightforward only for fluid phases or 
isotropic elastic bodies. 

In the case of curved interfaces 652 depends on three inde- 
pendent variations: C, u, and u y ,  see e.g. ref. 77, eqn. (5.7)- 
(5.8). In our case, the solution of the mechanical problem for 
the bilayer interior, coupled with the respective boundary 
conditions at the bilayer surfaces, leads to connections 
between u,, uy and C. These connections allow one to obtain 
u posteriori an expression for 52 in terms of C only. As demon- 
strated in Appendix C for the system under consideration 
(Fig. 6) this expression reads 

52 = ds[(Go - k ,  q2) I VII C l2 + 2(2A/h - n')C2] i. 
+ const. (5.19) 

where higher order terms are neglected; So denotes the whole 
area of the plane xy except the area excluded by the inclu- 
sions; the additive constant in eqn. (5.19) does not depend on 
the bilayer deformation. By using the identity 

and the Green integral theorem,69 we may write eqn. (5.19) in 
a new form 

52 = 2(G0 - k,  q2) dt( -m) * (CV,, 3)  d 
- S,b.Cd0Va[ - k,q2V,:C - 2W/h - WClr 

The integrand of the surface integral is identically zero; cf. 
eqn. (2.26) and (2.32). Next we utilise eqn. (3.2) to obtain 

SyL) = 4n(GO - k,q2)r, h, tan Yc(L) (5.20) 

where 

1 
= - IZ d o  f 1 

2m, - x  7 = T c  

(5.21) 

represents the average meniscus slope at the contact line. 
Finally, the inclusion-inclusion interaction energy is 

ASyL) SyL) - S ~ C O )  = 4n(50 - k ,  q2)  

x r,h,[tan Yc(L) - tan Y,(m)] (5.22) 
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where angle Y,(oo) is determined by eqn. (3.6). To determine 
Y,(L) we carry out the integration in eqn. (5.21) numerically. 
As proven analytically in Appendix C, eqn. (5.18) and (5.22) 
are equivalent, i.e. they must give the same curves A52 us. L. 
This fact can be used to check the precision of the numerical 
procedure. 

To calculate AQ(L) from eqn. (5.22) one is first to solve 
numerically eqn. (4.5) and then to substitute the calculated 
X,/& in the right-hand side of eqn. (5.21). In Appendix D we 
derive an asymptotic formula for ASZ(L), which reads 

A52(L) = 4n(5, - q2k,)qr, hz 

The numerical test of eqn. (5.23) shows that it gives AQ(L) 
with a good accuracy (see Fig. 12). For L 9 r,  one can 
expand the denominator of eqn. (5.23) in series and keep the 
linear term to get a simpler expression : 

(5.24) 

Eqn. (5.24) represents a good approximation for any L except 
for L < 3rc, when it gives a more negative A52 than the exact 
result. The lateral capillary force can be obtained by differen- 
tiation : 

Numerical Results and Discussion 

In this section we present results from numerical calculations 
of the capillary interaction energy and force between two 
membrane proteins incorporated into a flat lipid bilayer. In 
our model calculations we used the parameters of the bacte- 
riorhodopsin molecule, which has approximately cylindrical 
shape (see e.g. ref. 1 and 76). The geometrical parameters of 
this cylindrical molecule are known from electron microscopy 

to be r,  = 1.5 nm and 1, = 3.0 nm (cf. Fig. 5). We 
suppose that the hydrophobic a-helix regions of the bacte- 
riorhodopsin molecule are situated entirely inside the lipid 
bilayer. The respective ' three-phase contact lines' are situated 
between the hydrophobic wall of the cylinder (formed from 
packed a-helix chains) and its hydrophilic parts (the bases of 
the cylinder). As earlier we use typical values for the bilayer 
parameters: I. = 2 x lo6 N m-', 6, = 35 mN m-' and Sb = 
- 3.2 x 10- '' N [see eqn. (A.29) and (A.20) in Appendix A]. 

As an illustration in Fig. 8 we have plotted the calculated 
bilayer shape around two bacteriorhodopsin molecules at 
fixed distance L = 4r, .  Fig. 8(a) and (b) correspond to posi- 
tive and negative h , ,  respectively. Note that h, = (1, - h)/2. 
One can see from these figures that the bilayer shape pertur- 
bation is short-ranged and comparable with the capillary 
length q-'  = 2.15 nm. 

Our results for the lateral capillary force us. L/2r, for differ- 
ent bilayer thicknesses, h, are shown in two plots: Fig. 9(a) for 
h, > 0 and Fig. 9(b) for h, < 0. The values of h correspond to 
the thicknesses of the bilayer' (studied experimentally in ref. 
27). One sees that in both cases the capillary force is negative 
and corresponds to attraction between the protein molecules 
in the bilayer. Comparing the cases when h, has the same 
magnitude but the opposite signs [note that h, = 0.2 nm for 
the curve with h = 2.6 nm in Fig. 9(a), whereas h, = -0.2 nm 

2. 

p -0.1 
-iq -02  

Fig. 8 Calculated bilayer-surface shape around two cylindrical 
inclusions separated at an axis-to-axis distance L = 4rc. (a) Bilayer 
surface is convex, hJrC = 0.35; (b) bilayer surface is concave, h Jrc = 
-0.28. A = 2 x lo6 N m-2, BL = -3.2 x lo-" N, h = 1.95 nm and 
0, = 35 mN m-'. 

.E 1;1,9:n;s/, , rc = . 1.5 . nm , 

g -100 

- 
E 
c Bo' = -3.2~10-" N 
a - - 1 j O  

lo = 3.0 nm 
a = 2x10~  N m-2 
oo = 35 mN m-' 

2 a - - .- 

u 

0 0  1 0  20 3 0  4 0  

U 2rc 

U 2rc 

Fig. 9 Lateral capillary force, F , ,  as a function of the interprotein 
separation, L. The different curves correspond to different values of 
the bilayer thickness, h. The geometrical parameters of the protein 
molecules are taken from ref. 27: rc = 1.5 nm and I, = 3.0 nm; 
i = 2 x lo6 N m-', E, = -3.2 x lo-" N, 6, = 35 mN m-'. The 
bilayer is thinner (a) or thicker (b) than the bacteriorodopsin hydro- 
phobic zone. 
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-3 

-6 0 

0.0 

h = 1.55 nrn 
r, = 1.5 nrn 

. lo = 3.0 nm 

exact result 

I A = 2x106 N rn-* 

for the curve with h = 3.4 nm in Fig. 9(b)], one can conclude 
that the capillary attraction is larger by magnitude and more 
long-ranged in the case of h, < 0 (thicker bilayer). This 
finding is consonant with the observations of Lewis and 
Engelman.2 

Fig. lqa) and (b) represent the respective capillary inter- 
action energy ASZ us. the dimensionless distance, L/2r, at the 
same value of h as in Fig. 9(a) and (b). Here and hereafter we 
compare As2 with the energy of the thermal motion, kT, for 
T = 298 K. One can see that both for h, > 0 and h, < 0 the 
interaction energy is larger than the thermal energy, kT, 
except for h = 2.60 nm and h = 3.40 nm, corresponding to 
rather small values of h, . However, for the two limiting cases, 
h = 1.55 nm and h = 3.75 nm, the interaction energy is high 
enough (5-10 kT in close contact) to cause an aggregation of 
the membrane proteins. Only in these two limiting cases did 
Lewis and Engelman2 observe protein aggregation. 

Fig. 1 1  illustrates the dependence of ASZ on h, for a fixed 
separation, L = 2r,, between the axes of the two proteins 
(close contact). The minimum for h, = 0 should be expected. 
The three curves correspond to three different values of the 
surface tension, go. Note that the magnitude of the capillary 
interaction energy increases with the increase of go . Besides, 
the interaction is stronger for the case when the bilayer is 
thicker than the protein hydrophobic zone (h ,  < 0), as noted 
above. 

In conclusion, we note that Fig. 9-11 give an illustration of 
the order of magnitude and range of the protein-protein 
interactions, rather than a quantitative comparison between 
theory and experiment. The real experiment is too compli- 
cated and many parameter values are unknown; e.g. the tem- 
perature (and consequently the values of cro, I ,  etc.) are 
different in the separate experiments2 with bilayers of differ- 
ent thicknesses. 

Finally, we note that the two alternative procedures for 
calculating ASZ(L) based on eqn. (5.17), (5.18), (5.21) and (5.22) 
give coinciding numerical results as expected. These pro- 

-8 0 

-1 .o 

"% asymptotic formula 00 = 35 r n ~  rn-l ' 

So' = -3.2~10-" N ' 

-2.0 

-3.0 

$ -4.0 

2 -5.0 
-6.0 

-7.0 

3425 

- 8 0 '  . ' . ' I 
0 2  0 4  0 6  0 8  1 1 2  1 4  1 6  

h/lo 
Fig. 11 Capillary interaction energy, AQ, of two proteins in close 
contact (L/rc = 2) as a function of the bilayer thickness, h. The three 
curves correspond to different values of the surface tension, o0.  The 
values of the other parameters are the same as in Fig. 9. 

cedures have been used to calculate the curves in Fig. 10 and 
11.  In addition, in Fig. 12 the asymptotic formula, eqn. (5.23), 
is compared with the exact output of eqn. (5.21) and (5.22). 
One sees that the asymptotic formula provides good accu- 
racy. 

Comparison with the Theory described in Ref. 47 
Our aim is to compare our model with that by Dan et 
and to check whether the phenomenological parameters used 
in these two studies can be related. The model by Dan et 
is based on an expression for the free energy (per lipid 
molecule) of a curved lipid monolayer : 

-6 0 
00 1 0  7 0  3 0  40 

U 2rc 
001 I 

I ./ I 

k 

-2.0 
2 / rc = 1.5 nrn 

lo = 3.0 nm 
A = 2 x 1 0 ~  N m-* / 
00 = 35 mN rn-l 
&' = -3.2~10-" N 

2 0  3 0  40 

h = 3 7 5 n m  / 
-3 0 

00 1 0  
U 2rc 

Fig. 10 Capillary interaction energy, AJZ, us. the interprotein 
separation, L, for the same system as in Fig. 9. (a) Bilayers thinner 
and (b) thicker than the hydrophobic belt of the protein. 

where C is the surface area per molecule. These authors con- 
sider the simpler case of translational symmetry, that is the 
bilayer profile in Fig. 6 is translated along the y-axis; conse- 
quently r = ((x). The comparison between eqn. (6.1) and the 
H e l f r i ~ h ~ ~  expression for the energy of flexural deformation 
yields 

Further, Dan et al.47 obtain an expression for the change in 
the monolayer energy (per unit length along the y-axis) due 

L 
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to insertion of two inclusions: 

where b = h/2 and the prime denotes a / Z .  By variations 
from eqn. (6.3) one derives an equation for C: 

Comparing eqn. (6.4) with eqn. (2.26) for VII = e,d/dx and 
keeping in mind eqn. (6.2) one obtains 

In ref. 47 expressions for fo(Z), K(C)  and &(c) in terms of 
molecular parameters are provided; the substitution of these 
expression into eqn. (6.2), (6.5) and (6.6) yields 

3a,kT ~ 16a,bFkT 
c2 ' 

A=- C2 ; G o =  

(1  + 12F2) 
a3 b3kT 

2c2  
k, = - 

where the II'-term is neglected; a, = az2/24, a2 = a3 = 
az2/32, a is a molecular length scale; the molecular param- 
eters are appropriate for amphiphiles as 
(C2H4),,(OCH2CH2),0H and F = (n - rn)/(rn + n) character- 
ises the asymmetry of the amphiphile (see ref. 47 for details). 
Taking typical parameter values, u = 10 A, b = 15 A, C = 70 
A2, kT = 4 x J, from eqn. (6.7) one calculates 
A = 9.8 x lo6 Pa, which is close to the values of A estimated 
above. The dimensionless multiplier (a3 b3)/(2C2) takes the 
value 1.06 and consequently eqn. (6.7) gives k, z kT for the 
small values of F, viz. 

F = 0, 0.025, 0.1 and -0.1 (6.8) 

used in ref. 47. We recall that we also used k, x kT. 
Concerning eqn. (6.6), we first note that the surface tension 

effect is not taken into account in ref. 47; in so far as the 
term, ao(d[/dx)2, is missing in eqn. (6.3). In other words, the 
model based on eqn. (6.3) is designed for flaccid membranes. 
[Correspondingly, non-monotonic curves for r(x) and Fd(L) 
are obtained in ref. 47.1 Therefore, it is correct to set O, = 0 
in eqn. (6.6) and to compare the bending moment terms: 

Then one finds a simple relation between the bending 
moments in the two models: 

41c 8a2v2FkT 
C c4 go=-= - (6.10) 

where at the last step we used the molecular model accepted 
in ref. 47, with v = C, b being the volume per amphiphile and 
Em being the area per lipid in the non-disturbed bilayer. In 
addition, from eqn. (6.9) and (6.10) one may derive 

32a2 v2EkT 32a, bZEkT 
B, = - (6.1 1) z4 - C i  

With the parameters values used above, including the values 
E" given in eqn. (6.8), from eqn. (6.10) and (6.11) one may cal- 
culate 

B,  = (0, -0.11, -0.45 and +0.45) x lo-'' N (6.12) 

B,  = (0, 0.44, 1.8 and -1.8) x lo-" N (6.13) 

The latter values are to be compared with the values B, = 7 
x lo-" N and B, = -3.2 x lo-" N used by us, which are 
calculated from the experimental Hamaker constants and A V  
potential, see Appendix A. 

In summary, despite the quite different physical formula- 
tions of the two models, their parameters can be identified: 
see eqn. (6.2), (6.5), (6.9) and (6.10). An exception is the surface 
tension effect, which is disregarded in ref. 47 (a, is set zero). 

Concluding Remarks 
The results of the present study can be summarised as 
follows : 

(1) A 'sandwich model' of a lipid bilayer has been devel- 
oped. The bilayer is modelled as an elastic layer (the 
hydrocarbon-chain zone) sandwiched between two Gibbs 
dividing surfaces representing the two lipid head-group 
regions, see Fig. 2 and 4. Expressions for the bilayer stretch- 
ing, bending and torsion elasticities have been derived, see 
eqn. (1.19)-( 1.21). 

(2) To achieve an adequate description of the bilayer inte- 
rior as a continuous medium, different constitutive relations 
(relating stress and strain) have been used with the different 
independent modes of bilayer deformation uiz. constitutive 
relation of an isotropic incompressible elastic body, eqn. (2.2), 
for the stretching (Fig. 3) and bending (Fig. 13) modes and a 
hybrid constitutive relation, eqn. (2.4) for the squeezing mode 
(Fig. 5). The latter mode is related to the deformations 
around inclusions and to the lateral capillary forces between 
them (Fig. 6). In a more general case when the displacement 
vector can be expressed as a sum of components due to the 
various independent modes of deformation, 

' = %retching + Ubending + %queezing 

each component can be determined separately, by using the 
constitutive relation for the respective independent mode. 

(3) Equations governing the bilayer profile have been 
derived, see eqn. (2.26) and (2.32). The bilayer shape has been 
determined in the presence of one and two cylindrical inclu- 
sions, see eqn. (3.3), (3.8)-(3.11) and Fig. 8. The calculations 
were carried out for not-too-flaccid bilayers [eqn. (2.30) 
holds], when the deformations decay monotonically far from 
the inclusions. However, it should be noted that eqn. (2.26) 
predicts oscillatory decaying deformations for flaccid bilayers. 

Fig. 13 Bending deformation of an initially planar lipid bilayer; c(x, 
y )  represents the shape of the bilayer midsurface after the deforma- 
tion 

Pu
bl

is
he

d 
on

 0
1 

Ja
nu

ar
y 

19
95

. D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

B
ir

m
in

gh
am

 o
n 

31
/1

0/
20

14
 1

4:
20

:0
4.

 
View Article Online

http://dx.doi.org/10.1039/ft9959103415


J. CHEM. SOC. FARADAY TRANS., 1995, VOL. 91 3421 

(4) Expressions for the lateral force, eqn. (5.17), and inter- 
action energy, eqn. (5.22), were obtained. The calculated 
interaction energy AWL) can be of the order of several kT for 
not-too-small values of the mismatch h,, see Fig. 10 and 11. 
The range of the interaction turns out to be of the order of 
several inclusion radii. In the case of concave menisci the 
interaction is stronger compared with the case of convex 
menisci for the same inclusions with the same I h, I, Fig. 11 ; 
this result is in a qualitative agreement with experimental 
observations of Lewis and Engelman.27 

( 5 )  For calculating estimates, an asymptotic formula, eqn. 
(5.23) was derived, which compares well with the exact solu- 
tion, Fig. 12. 

(6) Our model was compared with the phenomenological 
model by Dan et and relations between the parameters 
of the two models have been obtained, eqn. (6.2), (6.5), (6.9) 
and (6.10). 

We hope that the detailed theoretical model developed in 
the present study will be helpful for interpretation of the pro- 
cesses of protein aggregation in lipid bilayers as well as for 
any processes affected by the membrane stretching and 
bending elastic properties. 

This study was supported by the Research and Development 
Corporation of Japan (JRDC) under the Nagayama Protein 
Array Project of the Programme ‘Exploratory Research for 
Advanced Technology ’ (ERATO). The authors are indebted 
to Miss Mariana Paraskova for typing the manuscript and 
drawing the figures. 

Appendix A : Bending of Bilayers 
Here we consider flexural deformations of a lipid bilayer 
under the condition for small deviations from planarity. In 
such a case the work of flexural deformation of the bilayer 
(membrane) is usually represented by means of the following 
phenomenological expression6 ‘ v 7  

A W b  = 2k, H 2  + i, K ( A 4  
where H and K are the mean and the Gaussian  curvature^;^' 
the other notation is the same as in eqn. (1.20) and (1.21). 

By means of our ‘sandwich model’ of a lipid bilayer we 
derive below an equation of the type of eqn. (A.l) and thus 
we obtain expressjons determining the phenomenological 
parameters k, and k,. In the framework of this model one can 
write 

( A 4  

Here Aw, and Awin are contributions due to the bilayer sur- 
faces and the bilayer interior, which are considered separately 
below. 

A W b  = A W s  + A W i n  

(a) Flexural Deformation of the Bilayer Interior 

The initial state is a planar bilayer. Let the equation of the 
bilayer midsurface after the deformation be 

z = c(x, Y )  64-31 

(see Fig. 13). As a bilayer subjected to such a deformation 
cannot exhibit its two-dimensional fluidity, we will treat the 
chain region as an incompressible elastic medium. In other 
words eqn. (2.1) and (2.2) hold. Then in the same way as in 
ref. 59, eqn. (1.4), one derives 

a2c a 2 c .  a2c . 
ax 8Y2’ u x y =  -z-  axay’ u,, = - 2  2; u,, = - 2  - 

ux, = uyz = 0; u,, = z (;; - + - ;;) (A.4) 

Since the free energy per unit area is5’ 

(A.5) 

the substitution of eqn. (2.2) and (A.4) in eqn. (AS) after some 
transformations yields ’ 9  79 

2 1 
3 6 

Awin = - Rh3H2 - - Ah3K ( A 4  

We have used the fact that in linear approximation one can 
write ’ 

In addition, let us denote by 

= ( u x x  + ‘ y y )  I,= - h / 2  ; a2 = ( u x x  + # y y )  1z=h/2  ; 
h / 2  

Ah = j-h/%z dz (A.8) 

the relative dilatation of the lower and upper bilayer surfaces 
and the change in the bilayer thickness. By means of eqn. 
(A.4) and (A.8) one obtains 

a2 = -al;  Ah = 0 (A.9) 

i.e. the lower surface is extended, the upper surface is com- 
pressed and the film thickness does not change (in linear 
approximation) during the considered flexural deformation. 

(6) Flexural Deformation of the Bilayer Surfaces 

The work of interfacial deformation per unit area can be rep- 
resented in the form61,77,80 

dw = yda + <dp + BdH + OdD (A.lO) 

where 

a = ap”u,,; /? = qp” (A.11) 

characterise the magnitude of surface dilatation and shear; 
up’ are components of the surface metric tensor, 

(A. 12) 

is curvature deviatoric 

(A.13) 

are the mean and the deviatoric curvatures, respectively, with 
c1 and cz being the two principle curvatures of the interface. 
B and 0 are the surface bending and torsion moments. y and 
< are the thermodynamical dilatational and shear tensions, 
which differ from the corresponding mechanical tensions, a 
and q, entering the expression for the surface stress tensor: 

a p v  = aapv  + 7 4 p v  

In general, it can be proven61v80 

1 1 
2 2 

y = a + -  BH + - O D  

(A.14) 

(A. 15) 
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(A. 16) 
1 1 
2 2 < = + - BD + - OH 

As mentioned earlier, the bilayer surfaces behave like a two- 
dimensional fluid; hence oPv should be an isotropic tensor: 

q = O  (A. 17) 

cf. eqn. (2.22) and (A.14). In keeping with eqn. (A.lO) one can 
present the elementary work of deformation of the bilayer 
surfaces in the form 

dw, = [')'A + <k dBk + Bk dHk + dDk] 
k =  1, 2, 

(A.18) 

where the indices 1 and 2 refer to the lower and upper bilayer 
surfaces, respectively. As before, we assume that the bilayer 
surfaces can be described as Helfrich interfaces for which6' 

Bk = Bo + 2(2k, + ic)Hk; 

@ k =  -2iicDk; k =  1 ,2  (A.19) 

In fact, eqn. (A.19) gives the expansion of B, and 0, for small 
curvature. B, is the bending moment of a flat bilayer surface; 
it is related to the so-called spontaneous curvature, H,, by 
means of the expression6' B, = -4k,H,; k, and Ec are the 
bending and torsion elasticities of the bilayer surfaces. By 
using eqn. (A.4), (A.7), (A.8) and (A.ll)-(A.13) in linear 
approximation one can derive 

-HI  = H2 = H ;  -D1 = D2 = D (A.20) 

( H  and D refer to the midsurface) 

ak = -hHk; P k  = -hDk; k = 1, 2 (A.21) 

In general, the bending moment of an interfacial mono- 
layer, B, , depends on the relative dilation, a :  

B,(a) = Boo + 3 1 a + O(a2) (A.22) 
da 

The last equation combined with eqn. (A.19) and (A.21) yields 
(in linear approximation) 

B, = Boo + (4k, - 215, - B b  h)Hk; Bb as, 1 (A.23) 
a = O  

In addition, from eqn. (A.16), (A.17), (A.20) and the Gibbs- 

in linear approximation one derives 
Duhem equation, dyk = EG dak + [k dpk Bk dHk + @k dDk, 

1 
2 

Yk = 0, + E ~ a k  + BoHk; [k = - BOD,; k = 1, 2 

(A.24) 

On substituting eqn. (A.19)-(A.23) into eqn. (A.18) and inte- 
grating, one obtains the desired expression for Aw,: 

A w ~  = EGhZ - - Boo + Bb h + 4k, H 2  [ G  > I  
+ (i B,h + 2ic)K (A.25) 

Finally, a combination of eqn. (A.l), (A.6) and (A.25) leads to 
eqn. (1.20) and (1.21). 

The term E G h 2 / 2  in eqn. (1.20) and (A.25) was first 
obtained by Evans and Skalak,32 who derived k, = 1/2EG h2 
by means of model considerations. As demonstrated below 
the term proportional to h turns out to be comparable in 

magnitude with E G  h2; this _term gives a considerable contri- 
bution to k, and dominates k, . 

To estimate B, we first note that (by analogy with the 
DLVO theory of disjoining pressure) the bending moment of 
a flat interface can be represented as a sum of contributions 
due to the van der Waals and electrostatic (double layer) 
forces :81 

B, = B6w + Bi' (A.26) 

Expressions for BGw and BZ' are a ~ a i l a b l e . ~ ~ ~ ~ ~  

8 
; B t  = (AV)2 (A.27) 8lT 

Here A V  is the surface potentials4 of a dense lipid monolayer 
at an oil-water interface [AV in eqn. (A.27) must be substi- 
tuted in CGSE-units, i.e. the value of A V  in volts must be 
divided by 3001; E is the relative permittivity. Since the head- 
group region contains mainly water of hydration 
(incorporated in the hydration shells around the zwitterions), 
we take E = 32, see e.g. ref. 84; yo x 50 mN m- is the surface 
tension of a pure water-hydrocarbon interface; A,, A1 and 
A2 are the compound and partial Hamaker constants:82 

where p1 and p2 are the number densities of the oil and water 
phases and aik are the constants in the intermolecular van der 
Waals potential Uik = -qk/r6. With typical parameters 
values one calculatess2 B'," x 5.3 x lo - ' '  N. With the value 
A V  x 350 mV measured in ref. 85 and 86 with lipid mono- 
layers one calculates BZ' = 1.7 x lo -"  N. In view of eqn. 
(A.26) one obtains Boo x 7 x 10- l1 N. 

Assuming that the Hamaker constant in the region of the 
hydrated lipid headgroups is close to the Hamaker constant 
of water, one estimates dBLw/da x 0. Then eqn. (A.26) and 
(A.27) imply 

(A.29) 

There is plenty of experimental data for examining the A V  us. 
cc dependence for dense lipid monolayers; thus from Fig. 3 in 
ref. 64 we calculate dAV/da = -323 mV, and then with 
A V  = 350 mV and E = 32, eqn. (A.19) yields 

with the above values of E and AV. The values of Boo and Bb 
thus calculated characterise the phosphatidylcholine head- 
groups and do not depend on the length of the hydrocarbon 
chains, cf: ref. 64. For numerical estimates we use also other 
typical parameters values; h = 3.6 nm, E G  = 40 mN m-', 
A = 3 x lo6 N m-2, k ,  x k, x 4 x J. Then the values 
of the terms in eqn. (1.20) and (1.21) ( x  J) are 

h 
2k, = 0.08; -(: Boo + H,) - 2 = -1.31; 

1 1 
- EG h2 = 2.59 ; 
2 3 

- Ah = 0.47 (A.3 1) 

1 1 
- B, h = 1.26; 
2 6 

2Lc = 0.08; - - Ah3 = -0.23 

(A.32) 
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The substitution of eqn. (A.31) and (A.32) into eqn. (1.20) and 
(1.2 1) yields 

k,  = 1.8 x J, it = 1.1 x J (A.33) 

The latter value of k, is close to the experimental values 
determined in ref. 37. Moreover, the chain elasticity contribu- 
tion, viz. Ah3/3, is ca. 25% of k , ,  which is consonant with the 
discussion in ref. 37. 

Appendix B: Derivation of eqn. (2.24) and (5.13) 
The tensor of interfacial moments (torques) can be rep- 
resented in the form6’V8’ 

where q”” is defined by eqn. (A.12). The general thermodyna- 
mic definitions of the interfacial bending and torsion 
moments are61,87 

where w f  is the work of flexural deformation per unit area of 
the interface. To obtain an explicit relation between MpV and 
the surface curvatures one needs an appropriate constitutive 
relation. The latter is provided by the Helfrich f o r m ~ l a ’ ~  

(B.3) 

where k , ,  k, and H o  are constants with respect to the curva- 
tures. Combining eqn. (B.1)-(B.3) one derives6’ 

M”’ = [(2k, + Ec)H + B0/2]a” - ~ , D q P v  (B.4) 

where B, = -4k, H,. Further, by using eqn. (1.12), (2.3), (2.8) 
and (2.9) one obtains 

w f  = 2k,(H - H,), + E,K 

a = -2[/h (B.5) 

for the specified type of deformation. Eqn. (A.12), (A.22), (B.4) 
and (BS), along with the identity by; = 2H*”, lead to the eqn. 
(2.24). Note that eqn. (2.24) holds in linear approximation for 
small deviations from planarity; quadratic and higher-order 
terms are neglected. 

Next we proceed with the derivation of eqn. (5.13). First we 
note that the vectors of a covariant local basis in the upper 
bilayer surface can be expressed in the form66 

v = 1, 2 (B.6) 

where the vectors el and e2 form a basis in the plane xy.  
Then by using eqn. (2.4), (2.8), (2.13), (2.16) and (B.6) one can 
transform the last term in eqn. (2.20) to read 

a, = e, + e, <, ,; 

n T - a, = 2(2A/h)5[, ,(1 + I VII[ 1,)- ‘ I 2  (B.7) 

On substituting eqn. (2.22), (2.23), (5.2) and (B.7) into eqn. 
(2.20) one derives 

v,, 0 + ( k ,  4, - Bb/W * v,, c 
= ( P T  - Po)V,,[ + (2A/h - l-I’)VII c2 (B.8) 

where higher-order terms are neglected. Moreover, in linear 
approximation one can write 

On substituting eqn. (B.9) into eqn. (B.8) and integrating one 
finally derives eqn. (5.13). The constant of integration is obvi- 
ously the surface tension cro of the non-disturbed plane- 
parallel bilayer of thickness h. 

Appendix C : Expression for the Grand Thermodynamic 
Potential 

Following an heuristic approach we present the bilayers 
grand thermodynamic potential down as the grand potential 
of a thin liquid film of surface tension Q and reference pres- 
sure PT (cf. ref. 51): 

(C-1) 

where S symbolises the bilayer surface, and Kn and I$”, 
denote, respectively, the volume of the bilayer interior and 
the outer aqueous phase. The effect of hydrocarbon chain 
elasticity and the curvature effects are contained implicitly in 

5 2 ~ 2  dsa- dVPT- dVP0 J: L i n  L o u t  

cr. Indeed, by using eqn. (5.13) one obtains 

1 
dso = b d l j ( l  + IvI,<l2)C~o - 5 - Bb/N 

+ ( P T  - Po)[ + (2A/h - n’)[’] 
where the meaning of So is the same as in eqn. (5.19). 
tion, 

Ii:“T + Lou? = S,d.[ [+;d..T + l : p P O ]  

VI, c 1, 

In addi- 

b = h/2 
where the exact position of the plane z = z ,  is not important 
since it does not affect the final result. Now one can easily 
derive eqn. (5.19) from eqn. (C. 1). 

The validity of eqn. (5.19) can be verified by checking the 
correctness of its predictions. Thus by using variations at 
fixed boundaries from eqn. (5.19) one derives 

5 ,  V,Z, [ - k ,  q2Vi  [ = 2(2A/h - IT’)< 
which is equivalent to eqn. (2.26) in view of eqn. (2.32). More- 
over, by using variations at movable boundaries one can 
derive 

(C.2) 

652 
st 
-= - F ,  

where F ,  and D are defined by eqn. (5.17) and (5.19), respec- 
tively; the proof is as follows. 

Let C ,  and C ,  be the contours in the plane xy cut by the 
left- and right-hand side inclusion, respectively (Fig. 7). Let us 
translate the right-hand side inclusion at a distance 6L along 
the x-axis, while the position of the left-hand side inclusion 
remains fixed. Correspondingly, the contour C ,  transforms 
into Cz, whereas the contour CI remains fixed. This varia- 
tion causes a change in the bilayer profile [(x, y) with 6[(x, y).  
Let us denote 

sc, = s a x ,  Y )  for (x, Y )  E c,; 
s c z  = 6C(X, Y )  for (x, Y )  E c; (C.4) 

by, = sc IC, ; s<z = Icz + * P I 1  0 ICZ (C.5) 

In addition, one can write88 

where 6r is the vector of displacement of contour C , .  In our 
case 6r = (6L, 0). In so far as we deal with fixed positions of 
the contact lines at the inclusion surfaces, we can write 

C.6) 

x = 4 0 ;  Y = A 0  (C.7) 

sy, = 6[, = 0 
Besides, we express the equation of contour C ,  in the form 

where 1 is the natural parameter of length along C ,  . Then, in 
the same way as in ref. 51, one can prove that the variation 
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652, corresponding to the variation 6L, can be presented in 
the form 

where 

@ = (60 - kc q2) I VII 1' + 2(l/h - n')c2 (C.9) 
is the integrand of eqn. (5.19). Further, one can derive 

6@ = 2[-(6, - kcq2)V:,{ + 2(2l/h - n'>y]sy 
+ a60 - k c  q2)V11 * W I I  OK1 (C. 10) 

By using eqn. (C.5)-(C.10) and Green's integral theorem, one 
obtains 

(C.  1 1) 

As usual, m is the unit tangent to C, , which can be expressed 
as follows 

dy dx 
dl dl 

rn = ex cos 4 - ey sin + = - ex - - ey (C.12) 

With the help of eqn. (C.12) one derives 

Note that dc/dl= 0 because the contact line is horizontal. 
Then eqn. (C. 11) reduces to 

which was to be proven. At the last step we utilised eqn. 
(5.16), (5.17) and (C.12). 

Appendix D : Asymptotic Formula for the Interaction 
Energy 

Here we seek the solution of eqn. (2.32) which satisfies the 
boundary condition 

rtc, = r1c2 = hc (D.1) 
where C, and C, symbolise the contact lines of the two inclu- 
sions, Fig. 7. We will make use of the method of reflections, 
which was introduced by Smoluchowski in 1911 and 
extended to various hydrodynamic problems by Happel and 
Brenner.89 Following this method we take as a zeroth-order 
approximation the solution for a single inclusion, cf: eqn. 
(3.3): 

[\")= A , K , ( q ~ r ~ ) ;  [Lo)= A o K , ( J r  - L I )  (D.2) 

A ,  = hc/Ko(qrc); the coordinate origin is chosen to be the 
intersection point of the axis of the left-hand side inclusion 
with the plane xy; L = I L I; the subscripts 1 and 2 symbolise 
the left- and right-hand side inclusion, respectively. Then the 
simple superposition approximation yields 

(D.3) 
One can check that (\') satisfies the boundary condition at 
C,, and <\') the conditions at C , ,  but [ as given by eqn. (D.3) 

c = QO) + [LO) 

does not satisfy the boundary condition either at C, or at C ,  . 
The aim of the method of reflections is to remove this draw- 
back. This is achieved by using a series of correction terms, 
each of them satisfying eqn. (2.32) with appropriate boundary 
conditions. The first correction term is 

CYTr) = - 4 ~ , ( q l r l ) ,  (D.4) 

c"'I , = -('0'1 2 c1 x -AoKo(qL); rc 4 L (D.5) 

which is to satisfy the boundary condition 

1 c  

One sees that [\') is intended to remove the violation of the 
boundary condition at C ,  introduced by (Lo) in eqn. (D.3). 
From eqn. (D.4) and (D.5) one determines 

A 1 = Ao Ko(qL)/Ko(qr~) 

r',''<r> = --A,Ko(q I r - L I) 

(D.6) 

A symmetric correction at C, is provided by the function 

(D.7) 

The next-order corrections, satisfying the boundary condition 

[ i ' )  Ici = - el') I c i  z - [ A ,  K,(qL)] ; i, j = 1, 2; i # j 

(D.8) 

r - L1) (D.9) 

(D.lO) 

way; thus one 

c(ii)(r) = A j K o ( q l r l ) ;  cy)(r) = A j K , ( q J r  - L J )  (D.ll) 

with 

A j  = Aj-lKo(qL)/Ko(qrc);  j = 1, 2, 3, ... (D.12) 

Then the method of reflections" provides the following gen- 
eralisation of eqn. (D.3): 

W 

e(r) = 1 Cew) + cY)(r)I (D. 13) 

On substituting eqn. (D.ll) and (D.12) into eqn. (D.13) and 
summing over the resulting series one derives 

j = O  

With the above expression for ((r) we next determine 
tan Yc(L) from eqn. (5.21), which can be transformed to read 

tan Yc(L)  = -- (D. 15) 
r = r c  

In keeping with eqn. (D.14) one obtains 

where 

r 2  = Ir - L (  = (L? + r2 - 2Lr cos +)'I2 (D.16) 

Further we calculate dr,/dr at r = rc and expand the result in 
series, keeping the linear term with respect to rc/L. Then from 
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eqn. (D.15) we calculate 

The substitution of eqn. (3.6) and (D.17) into eqn. (5.22) yields 
eqn. (5.23). 

List of Notation 
parameter of the bipolar coordinates, eqn. (4.4) 
surface metric tensor 
vector of the local surface basis 
Hamaker constant 
half of the non-disturbed bilayer thickness 
surface curvature tensor 
interfacial bending moment 
bending moment of flat interface 
deviatoric curvature, eqn. (A. 13) 
unit vectors of the axes in the x y  plane 
Gibbs elasticity of a lipid monolayer 
lateral inclusion-inclusion force 
thickness of the bilayer hydrocarbon-chain zone 
meniscus elevation at the contact line, Fig. 6 
mean curvature 
Boltzmann constant 
bending elasticity of the bilayer surface 
torsion elasticity of the bilayer surface 
bending elasticity of the bilayer as a whole 
torsion elasticity of the bilayer as a whole 
Gaussian curvature 
bending elastic modulus of Dan et 
bulk compressibility modulus 
bilayer stretching elastic modulus, eqn. (1.18) 
modified Bessel functions of the zeroth and first 
order 
width of the inclusion (protein) hydrophobic belt 
axis-to-axis distance between two inclusions 
unit normal to the lateral inclusion surface, Fig. 6 
Tensor of the surface moments (torques) 
unit normal to the inclusion surface 
components of the pressure tensor 
reverse capillary length, eqn. (2.3 1) 
deviatoric curvature tensor 
radius of a contact line 
temperature 
stress tensor inside and outside the bilayer 
displacement vector 
strain tensor 
spatial unit tensor 
unit tensor in the plane x y  
surface potential 
work of flexural deformation per unit area 
relative dilatation, eqn. (1.12) 
relative shear, eqn. (A. 1 1) 
thermodynamic surface tension 
bilayer tension 
Kroneker symbol 
relative permittivity 
perturbation in bilayer thickness, Fig. 6 
mechanical surface shear tension 
interfacial torsion moment, eqn. (A.lO) 
bending moment in the model by Dan et aL4’ 
bulk shear elasticity in the hydrocarbon-chain zone 
unit tangent to the bilayer surface, Fig. 6 
thermodynamic surface shear tension, eqn. (A. 10) 
disjoining pressure 
mechanical surface tension 

eqn. (6.2) 

surface tension of the non-disturbed bilayer 
area per lipid molecule 
bipolar coordinate, Fig. 7 
stress tensor component 
azimuthal angle, eqn. (5.12) 
(average) meniscus slope angle, eqn. (5.21), Fig. 6, 7 
bipolar coordinate, Fig. 7 
grand thermodynamic potential 
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