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Particle-particle andparticle-wall capillary interactionsweremeasured as a function of the separation
distance. The “particles” were vertical thin glass cylinders and/or small glass spheres, protruding from
an air/liquid interface. The particles attract each other due to the overlapping of the menisci formed
around each of them. The force of interaction is detected by a sensitive torsion microbalance. It is based
on counterbalancing the moment of a couple of forces, acting between two pairs of particles, by the torsion
moment of a thin platinum wire. By varying the wire diameter, we accessed forces differing by several
orders ofmagnitude, from about 5 dyn at small separation between the particles down to 0.001 dyn at large
separation. The smallest force was measured with two cylinders of diameters about 300 µm. For two
spheres (diameters 1.2 mm) we obtained difference in the forces corresponding to different heights of
protrusion from the liquid surface. For interacting sphere and glass cylinder the force follows similar
trends as the forces between two spheres or two cylinders. In the case of sphere and glass wall, however,
the force first increases with decreasing the distance and then decreases close to the wall passing through
a maximum. The predictions of the theory of capillary immersion forces are in quantitative agreement
with the experimental results.

1. Introduction
For a long time capillary forces were believed to play

an important role in the interaction between colloidal
particles attached to a liquid interface.1 This importance
was stressed recently in connection with the formation of
two-dimensional arrays of fineparticles.2 Itwas observed
experimentally that, despite of their size (micrometer,3
submicrometer,4 or nanometer5), the particles confined in
a thin suspension film on a substrate form an ordered
monolayer due to a sort of long range lateral attractive
force (capillary force). This force arises in the course of
thinning the suspension film down to a thickness of less
than the particle diameter3,6 when the particles protrude
from the liquid-air interface. The cause of the lateral
capillary forces is the deformation of the liquid surface
around theparticlewhichallowed theoretical computation
of the force by solving the Laplace equation of capillarity
in relevant geometry (for a review see ref 7). The forces
acting on particles partially immersed in a wetting liquid
film on a substrate, called immersion capillary forces,
should be distinguished from the flotation capillary forces
acting on particles floating freely on a liquid interface.
The origin of the flotation forces is the particle weight
causing a deformation of the liquid surface whereas the
immersion forces are related to the wetting properties of
the particle surface rather than to gravity.7 The immer-
sion forces, being much stronger due to their origin, can

be significant even for nanometer size particles compared
to the flotation forceswhichpractically vanish forparticles
smaller in size than10µm. Herewe consider forces acting
among particles constrained on a liquid-air interface
which are a sort of capillary immersion forces.
As shown theoretically8,9 the capillary interaction

between two spherical particles can be successfully
approximated by the interaction between two vertical
cylinders used recently for experimental determination
of the capillary forces.10 The force balance developed in
ref 10allowedmeasurement of the forcebetween twoglass
capillaries immersed in liquid: one of them attached to
a stepper motor gradually approaches the other one
attached to the sensitive core of a pressure transducer.
The force was determined from the transducer output
voltage plotted on chart recorder versus the separation
distance. For a couple of capillaries of diameters 740 and
630 µmthemeasured force ranged fromabout 0.1 to 4 dyn
depending on the separation distance. At one and the
same distance the force measured for pure water was
roughly twice the force obtained for surfactant solution
which could be explained simply by twice larger surface
tension in the former case than in the latter, in agreement
with the theoretical predictions.8,9

Despite of the experimental work10 there are questions
which still remain open:
(i) About the force between spherical particles which

are much closer in shape to the real colloidal particles
than the model cylinders. There is only one attempt11 to
measure the force between two spheres attached to a
water-oil interface in an oil film spread on water.
Unfortunately, the experimental data obtained in ref 11
could not be quantitatively interpreted by means of the
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theory of capillary forces8,9 because important experi-
mental parameters (surface tension, contact angle) were
not determined. Capillary interaction between two spheri-
cal particles is studied experimentally also in the case of
liquid bridges existing between two particles placed in
another fluid, e.g. in air.12,13 However, thenature of these
forces, directed normally to the plane of the contact line,
is quite different from the lateral capillary immersion
forces investigated by us.
(ii) About the magnitude of the capillary force acting

between much smaller particles than the ones used in
refs 10 and 11. Following the analogy between spheres
and cylinders, the results from ref 10 can be related with
the interaction between spherical particles of diameter
about1mm. At thesametimetheparticles inreal colloidal
systems are typically of much smaller size (about 1-10
µmor less)whichwill lead to vanishingly smaller capillary
forces. Although it seems hard to measure such small
forces now, any lowering of the particle size could be
important for understanding the nature of these forces as
well as for proving theoretical assumptions.
To clarify points i and iiwe carried outnewexperiments

with particles of appreciably smaller size than the ones
described in literature.10,11 The smaller size implies
smaller forces. For this purpose we utilized a new
technique based on the classical torsion balances for
gravitational andelectrostatic forces14 (for a recent review
of the problem see ref 15). In this case there are two
couples of interacting particles: two of the particles are
attached to ananchor suspendedonametalwire,whereas
the other two particles are attached to holders. Ap-
proaching each other synchronously, the particles create
a couple of forces leading to a forcemoment, which is then
counterbalanced by the torsion moment of the wire. As
model particles in a couple, we used two glass cylinders
(diameters 730 or 330 µm), two spheres (diameters 1.2
mm), a sphere and cylinder, or a sphere and a plate,
mimicking solid wall. The particles are situated at a
certain distance apart on the surface of a liquid phase,
either water or water-surfactant solution. By varying
thediameter of themetalwire,weaccessed forcesdiffering
by several orders of magnitude, from about 5 dyn to less
than 0.001 dyn, with the lower limit much smaller than
themagnitude of capillary forcesmeasureduntil now.10,11
The experimental data reported here are well described
by the theory for capillary immersion forces.

2. Operation Principle of the Torsion Balance

2.1. Calculation of the Force. Here we give a brief
outline of the principle of operation of a torsion balance14
and its application of our special torsion balance for
measurement of capillary forces. Let us consider two
particles, 1′ and 1′′, attached to an anchor of arm a shown
in Figure 1a. The anchor suspended on a fine wire can
rotate around a vertical axis coinciding with the wire.
The other two particles, 2′ and 2′′, are attached to holders
in a way to form two couples with the anchor particles.
To create a couple of equal forces particles 1′ and 1′′, as
well as particles 2′ and 2′′, should be identical. Experi-
mentally the distance between the centers of particles in
a couple is maintained L′ ) L′′ ) L corresponding to a
forceF(L). Weadjust the forceperpendicular to theanchor
arm by adapting the position of the holders (Figure 1b).
Thus a moment Fa/2 with respect to the anchor center is

created, so that the total moment of the couple of forces
is

At equilibrium this moment is counterbalanced by the
torsion moment of the wire

where f is the torsion modulus; æ0 ) æ/2 is the angle of
torsion (in rad) which is equal to half of the total angle
of reflection of the light æ measured experimentally (see
Figure 1b). By equating (2.1) and (2.2), one obtains

For cylindrical wire f is given by14

where δ is the wire radius, l is the wire length, and G is
the elastic modulus of the wire material. Combining eqs
2.3 and 2.4, one can obtain the force by measuring
experimentally f and æ (see below).
2.2. Determination of the TorsionModulus. One

can follow a classical procedure14 of measuring the period

(12) Mason, G.; Clark, W. C. Chem. Eng. Sci. 1965, 20, 859.
(13) Gillespie, T.; Settineri, W. J. J. Colloid Interface Sci. 1967, 24,

199.
(14) Sivuhin, D. V. General Course of Physics; GRFML: Moscow,

1979 (in Russian).
(15) Gillies, G. T.; Ritter, R. C. Rev. Sci. Instrum. 1993, 64, 283.

Figure 1. Scheme of the experimental setup for measuring
capillary forces between particles immersed in liquidmedium:
(a) forces between two couples of interacting particles; (b) top
view demonstrating the principle of measurement.

M ) Fa (2.1)

M ) fæ0 ) f æ
2

(2.2)

F ) fæ/2a (2.3)

f(l) ) πGδ4/2l (2.4)

642 Langmuir, Vol. 12, No. 3, 1996 Dushkin et al.



of oscillations T of a solid body of known inertia moment
I suspended on the wire

Substituting (2.4) into (2.5) one obtains for the period of
oscillations

where

is a constant. It is seen from eq 2.6 that T should depend
linearly on l1/2.
For a cylinder of mass mc and radius Rc the inertia

moment is

It follows from eqs 2.5 and 2.8 that in this case

Knowing the period of oscillations, T, one can calculate
the torsion modulus f from eq 2.9 for any wire length l.
In view of eq 2.4 f should be a linear function of 1/l

where

is a torsion coefficient determined experimentally. Once
the torsionmodulus f is calculated, one canuse it to obtain
the force by eq 2.3.

3. Experimental Setup
Figure1b representsaview fromabove theexperimental setup

with the constituting parts of the balance: anchor and holders
with interacting particles (solid circles). Themirror attached to
the anchor reflects the light beam coming from the red light
emittingdiode (LED). Thescreenplacedbetween the light source
and the balance is to measure the angle, æ, of light reflection
from the mirror. The distance y between the aperture pierced
in the screencenterand theanchormirror isalwayskept constant
andequal to 40 cm. The light beampassing through theaperture
is reflected by themirror and returned back to the screen to form
a light spot of mean diameter about 1-2mm. We calculated the
angleof reflectionæbymeasuring thedistancex fromtheaperture
to the center of this light spot:

The torsion balance shown in Figure 2 consists of an anchor
with two particles attached (1) suspended on a thin platinum
wire (2),mechanism formanipulating thewire (3-9), frame (10-
12), base (13-16), twoholders forattaching theother twoparticles
(17), and a liquid trough (18). To vary the range of forces
accessible experimentally, we use combinations of anchors of
different sizeandweight (Table1) andplatinumwires of different
diameters: 25 and 100 µm(Table 2). Thewire iswound on a reel
(3) which can be rotated by the screw (5) and be fixed at a given

position by another screw (6). In this way one can vary the wire
length l, i.e. the torsion modulus f(l); cf. eq 2.10. To fix the wire
length and prevent any lateral motion, the wire is pressed
between two screws (7). At fixed wire length the anchor can be
centeredwith respect to the liquid through and to the light beam
by horizontal motion of the wire holder along the rod (10) and
by vertical motion along two vertical rods (12). In this manner
one can vary the distance between the anchor and the liquid
surface and, hence, the depth of immersion of particles 1′ and
1′′ in the liquid without changing the wire length. The anchor
can rotate around the vertical axis due to special connection
between the lower and upper part (4) of the wire holder (the two
parts can be fixed by the screw (8)).
The other two particles, 2′ and 2′′, are attached to the holders

(17) on the ring (14) which can rotate around the anchor and be
fixed to the base by two screws (15). The construction of the
holders allows movement of the attached particles in vertical
andhorizontal directionsaswell as tilting them inorder to adjust
the distance L between the particles in a couple and the depth
of immersion.
All parts of the torsion balance considered above are made of

stainless steel. The liquid trough (18) is a glass Petri dish of
inner diameter 9 cm fixed to the balance by the screws (16). The
upper part of the dish is a Teflon ring which has with water a
contact angle close to 90°, thus providing a flat interface suitable
for our measurements. The total height of the balance is about
20 cm, and at the outer diameter of the base the height is about
11 cm.
Thebalance is placed on the table of vertical opticalmicroscope

(Nikon), not depicted inFigure 1b. In thisway thewhole balance
(together with the liquid trough) can bemoved in two horizontal
directions in order to center precisely the anchor with respect to

T ) 2πxI
f

(2.5)

T(l) ) âxl (2.6)

â ) 2
δ2x2πI

G
(2.7)

Ic ) 1
2
mcRc

2 (2.8)

f ) 2π2 mcRc
2

T2
(2.9)

f ) K 1
l

(2.10)

K ) πG
2

δ4 (2.11)

æ ) arctan x
y

(3.1)

Figure 2. Scheme of the torsion microbalance for measuring
the lateral immersion force (for notations see the text).

Table 1. Anchors Used To Measure Capillary Forces

anchor 1 anchor 2

mass, m (g) 0.136 8.921
length, a (cm) 1.0 2.8
inertia moment,
Ia (g‚cm2)

8.5 × 10-3 ( 1.2 × 10-4 1.74 ( 0.07

Table 2. Platinum Wires Used To Measure Capillary
Forces

25 µm wirea 100 µm wireb

radius, δ (µm) 12.5 50.0
maximum overload, mmax (g) 0.62 9.98
torsion coefficient, K (dyn‚cm2) 2.03085 589.48553
elastic modulus, G (dyn/cm2) 5.296 × 1011 6.005 × 1011

a Wire strength measured by suspending cylinder 1. b Wire
strength measured by suspending cylinder 2.
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the light beam. This microscope allows also optical observation
of the particles from below in transmitted light when necessary.
A horizontal optical microscope (Zeiss) is used to observe the
meniscus profile around the particles in reflected light. The
optical image from this microscope is monitored on a TV screen
and recorded by SVHS system (Sony).
We utilized two types of anchors: a smaller anchor (anchor

1), alwayssuspendedon25µmplatinumwire, andabiggeranchor
(anchor2), suspendedon100µmwire (Table1). Anchor1 consists
of two cylindrical rods, horizontal rod and vertical, connected
perpendicularly to each other. The axis of symmetry of the
vertical rod passes through the middle of the horizontal rod. On
the vertical rod a glass mirror is mounted with its reflection
surface parallel to the axis of rotation. The mirror is so small
(diameter 3.2mm;mass 0.009 g) that it cannot affect appreciably
the inertia moment of the anchor. Anchor 1 is attached tightly
to the platinum wire by special conical fitting.
Tomeasure cylinder-cylinder interaction, we attached at the

two ends of the horizontal rod two glass capillaries of equal
diametersabout330µmatadistancebetweentheglass capillaries
a ) 1.0 cm. Much thinner capillaries of diameter 100 µm can
also be used with this anchor.16 To attach spherical particles of
diameter 1.2mm,weused auxiliary glass capillaries of diameter
about 300 µm. Each glass sphere was glued at the capillary tip
by means of epoxiresine (Bison). The auxiliary capillaries were
bent in a way allowing the sphere to protrude from below from
the liuqid surface. The distance between the two spheres was
a) 3.9 cm. Similar was the construction of the glass capillaries
with spheres which are attached to the holders.
Anchor 2 consists of a metal cylinder with two symmetrical

armsandplatinumwireattached to theupper face of the cylinder.
To study cylinder-cylinder interaction, we glued two glass
capillaries of equal diameters 730 µm to the arms at a distance
between the capillaries of a ) 2.8 cm. For interactions between
spheres, two auxiliary bent glass capillaries bearing 1.2 mm
spherical particles were attached directly to the metal cylinder.
The distance between the two spheres on the anchor was a) 3.0
cm.
For interactions including spheres (sphere-sphere, sphere-

cylinder, or sphere-plate), the spheres were always attached to
the anchor whereas the respective counterparts (spheres,
cylinders, or plates) were glued to the holders.
Anchor 1 is too light to be suspended on 100 µmwire whereas

25 µm wire is too thin to resist the weight of anchor 2. We
calculated the maximum load

mmax ) πδ2pmax
which can be applied to a wire, from the limit of stretching
rigidness of platinum (pmax ) 1.27× 10-3 g/µm2).17 As seen from
Table 2 the mass of anchor 2 is close to mmax for wire L25.

4. Experimental Procedures
4.1. Materials. We used cylinders (capillaries),

spheres, and plates, all of them made of glass. The
capillaries of diameters 320 and 340 µmwere homemade
whereas the capillaries of diameter 730µmwereprepared
from microsyringe pipets of volume 2 µL (Sigma). The
total length of a capillary was about 1.5-2 cm. We used
two sets of glass spheres of closemean diameter 1200 µm.

The interaction between sphere and awallwas simulated
by attaching a microcover glass plate of dimensions 18×
18 × 0.15 mm (Matsunami) to each holder.
The glass capillaries and plates were washed with

chromic acid and distilled water prior to attachment to
theholders. Itwas also possible to clean their lower parts
immersed in the liquid before each measurement. How-
ever, the glass spheres were washed only with distilled
water prior to the measurement since the chromic acid
destroyed the epoxiresine.
The liquid phasewas either deionizedwater (Millipore)

or water solution of sodium dodecyl sulfate, SDS (Fluka),
with concentration 8 × 10-2 mol/L, same as the concen-
tration utilized in ref 10. The high surfactant concentra-
tion assures constancy of the surface tension throughout
one experiment (which may continue several hours), as
well as zero contact angle with the glass surfaces.
4.2. Determination of TorsionModulus. Thewire

torsionmoduluswasdeterminedbymeasuring the period
of oscillations of a standard brass cylinder suspended on
thewire inair. Weutilized two types of cylinders: smaller
cylinder (cylinder1), always suspendedon25µmplatinum
wire, and a bigger cylinder (cylinder 1), suspended on 100
µm wire (Table 3). Cylinder 1 consists of two hemicy-
lindrical parts which can be disassembled to press the
wire end between them. In this way very thin wires, e.g.
25 µm or less,16 can be adjusted exactly in the cylinder
center. The100µmwirewasglued in thecenterof cylinder
2. We varied the period of oscillations by changing the
wire length. The oscillations, provoked by carefully
turning the cylinder toa certain initial angle,were counted
with the use of a horizontal optical microscope. The total
time t for a series of ten oscillations was measured with
accuracy 0.01 s; hence, the period of oscillation isT) t/10.
Though the amplitude of subsequent oscillations in one
series decayed with time due to friction with the air, the
periodof oscillation remainedalways constant, as it should
be.
Figure 3 plots the period of oscillationsT versus square

root of the wire length l. Each point is a mean value of
5-10 independent experiments. The standard deviation
of the data is too small to be shown in the figure because
of the very good reproducibility of T. It is seen that
according to eq 2.6 the period of oscillation of a cylinder
is a linear function of l1/2. The smaller cylinder oscillates
faster than the bigger one since it is of lower mass, i.e.
lower inertia moment Ic, and is suspended moreover on
platinum wire of lesser strength (cf. eq 2.5).
Similar experiments were done also for the free oscil-

lations of the anchors suspended on the respective wires.

(16) Dushkin, C. D.; Yoshimura, H.; Nagayama, K. Submitted for
publication in J. Colloid Interface Sci.

(17) Hampel, C. A., Ed. Rare Metals Handbook; Chapman and Hall:
London, 1961.

Table 3. Brass Cylinders for Calibration of the Torsion
Moments of Platinum Wires

cylinder 1a cylinder 2b

radius, Rc (cm) 0.40 0.75
length, Lc (cm) 0.41 2.00
mass, mc (g) 1.698 29.933
inertia moment, Ic (g‚cm2) 0.135 8.486
âc (s/cm1/2) 1.6186 0.8035
a Cylinder suspended onwireL25. b Cylinder suspended onwire

L100.

Figure 3. Periods of oscillations T of standard cylinders and
anchors suspended on platinum wires of different diameters
and different length l. The solid lines are the best fits of the
experimental data by eq 2.6.
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In this case the period T was measured by following the
motion of the light spot reflected from the mirror. As for
the cylinders, there is also a good linearity betweenT and
l1/2 (Figure 3) fromwherewe calculated the anchor inertia
moment Ia. The anchors oscillate faster since they have
much smaller inertia moments than the respectivemetal
cylinders (Tables 1 and 3). These data agree well with
the respective values obtained by calculating Ia from the
anchor geometry using known theorems.
Figure 4 shows that the torsion modulus f, calculated

by eq 2.9 from the data in Figure 3, depends linearly on
the reverse wire length 1/l (cf. eq 2.10). Knowing the
values of the torsion constantK, we estimated the elastic
moduli of the platinum wires (Table 2), which are very
close to the values reported in literature:18 G ) 5.884 ×
1011 to 7.1 × 1011 dyn/cm2. The same values can be
obtained also by eq 2.7 if the constant âc is calculated from
the slopes of the curves in Figure 3.
4.3. Measurement of the Force. First we poured

liquid in the trough (ca. 40 mL) up to the upper edge of
the Teflon ring. The thickness of the liquid layer was
about 7 mm. After that we adjusted the wire length by
winding the reel and pressing the wire. Then we leveled
the wire holder to immerse the anchor particles in the
liquid. The immersion depth for glass cylinders is about
3 mm for their lower edge. The spheres were first totally
immersed in the liquid and then the anchor was carefully
movedupuntil the particles protrude symmetrically from
the liquid surface. We adjusted the anchor mirror
perpendicular to the incident beam by rotating the wire
holder around thevertical axis. This position corresponds
to zero interaction. The next step was to immerse the
holder particles in the liquid. For spheres we adjusted
their height of protrusion the same as the height of
protrusion of the anchor spheres. ThedistanceLbetween
the particles in a couplewas then varied by slowlymoving
the holders along the liquid surface. This distance was
measured with an accuracy of 10 µmeither directly by an
electronic calliper gauge (Mitutoyo) or from the TV
monitor.
After one of the holder particles wasmoved, the anchor

rotates to angle æ′. When the second particle is moved,
this angle increases with æ′′. Hence, the total angle of
rotation is æ0 ) æ′ + æ′′. Knowing the angle æ0 ) æ/2, one
can calculate the force by means of eq 2.3. In the ideal
case of uniform response of the two couples,æ′ ) æ′′ ) æ/4,
which allowsmeasurement of the force by only one couple

of particles. To test this possibility, we approached one
of the holder capillaries alone to the respective anchor
capillary and found that æ′ ≈ æ′′ at one and the same
distance L. On the basis of these results we carried out
two types of measurements: (i) measurement of the force
F acting between the particles in the two couples together
as in most of the experiments on cylinder-cylinder and
sphere-sphere interaction; (ii) measurement of the force
F acting at a distance L between the particles in one of
the couples alone. The experiments on sphere-cylinder
and sphere-wall interactions belong to this type because
it was difficult to equally adjust and to record the two
couples simultaneously. For spheres of close protrusion,

(18) Landolt-Börnstein Physikalisch Chemische Tabellen; Springer:
Berlin, 1923; p 80.

Figure 4. Torsion modulus f of platinum wire of diameter 25
µm vs the reverse wire length. The solid line is the best fit of
the experimental data by eq 2.10. The inset shows the same
plot for platinum wire of diameter 100 µm.

Figure 5. Sketch of a couple of two interacting particles and
the surrounding meniscus: (a) cylinder-cylinder; (b) sphere-
sphere; (c) sphere-cylinder; (d) sphere-wall.
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F′ ≈ F′′ ) F within the experimental error, which makes
these experiments quite reasonable.
For pure water the liquid surface was cleaned prior to

theexperimentbysuckingout some liquid fromthesurface
with a syringe. The forcemeasurements were completed
within 30min to 1h from the cleaning in order to diminish
the effect of contamination of the water surface. Very
important for calculation of the capillary force is the
contact angle between the liquid meniscus and the
capillary wall. Although this angle is almost zero with
water, it can vary slightly due to contamination on the
water or glass surfaces. In the experiments with SDS
solution the force measurement started at least 30 min
after the surfactant solution was poured in the trough to
establish equilibrium surface tension σ ) 36.8 dyn/cm.10
The experimental error of a single force measurement

(not larger than 5%) was determined chiefly by the
accuracy of the angleæ, i.e. of the distance x on the screen
(cf. eq 3.1). Other possible sources of uncertainty can be
any interaction with the more distinct particle on the
anchorornonperpendicular locationof theholderparticles
with respect to the anchor. Our calculations showed that
botheffects can lead tonomore than7%differencebetween
the force F measured experimentally and the actual
capillary force Fc.

Allmeasurementswere carriedoutat roomtemperature
20-23 °C.

5. Experimental Results

5.1. Force of Interaction between Two Vertical
Cylinders (Figure 5a). The force between glass capil-
laries of equal diameters, 730 µm, is shown in Figure 6.
Each set of figures corresponds to a fixed wire length l.
For certain interparticle distance, L the forces obtained
at different wire length coincide within the experimental
accuracy. Forpurewater (empty figures) the force isabout
two times larger than the force for SDS solution (solid
figures) because the surface tensionofwater is twice larger
(cf. eq 6.1 below). Since the force increases appreciably
when the cylinders come close to each other, larger forces
are measured by using shorter wire of higher torsion
strength. At a distance less than 2mm the force becomes
so strong that it overcomes the wire strength and the
capillaries spontaneously stick to each other.
The force acting between glass capillaries of two times

smaller diameters than those in Figure 6 is plotted vs L

Figure 6. Capillary forceF versus the distanceL between two
interacting glass cylinders of equal radii R1 ) R2 ) 0.0365 cm.
The cylinders are immersed either in pure water (σ ) 72.4
dyn/cm, q ) 3.681 cm-1) or in SDS solution (σ ) 36.8 dyn/cm,
q) 5.163 cm-1). The force is measured by anchor 2 suspended
on 100 µm platinum wire at different wire length l. The
theoretical curves are drawn according to eq 6.1 without any
adjustable parameters.

Figure 7. Capillary forceF versus the distanceL between two
interacting glass cylinders of radii R1 ) 0.016 cm and R2 )
0.017 cm immersed either in pure water or in SDS solution.
The force ismeasuredbyanchor1 suspendedon25µmplatinum
wire at different wire length l. Theoretical curves are drawn
according to eq 6.1 without any adjustable parameters.

Figure8. Successive stages of interaction of two glass spheres
of diameters 1.2 mm immersed in SDS solution at protrusion
height h∞ ) 1.05 mm. The left sphere is attached to anchor 2
suspended on platinumwire of diameter 100 µmand length 10
cm. The right sphere is attached to the holder. Themeasured
forces are as follows: (a) L ) ∞, F ) 0; (b) L ) 0.854 cm, F )
0.074 dyn; (c) L ) 0.479 cm, F ) 0.442 dyn; (d) L ) 0.353 cm,
F ) 1.129 dyn; (e) L ) 1.2 mm, F ) ∞.
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in Figure 7. The error bars for l ) 1 cm are the standard
deviations from three successive measurements of the
force. The larger the force, the large the uncertainty of
its detection since the anchor becomes unstable at small
separations, close to the point of spontaneous sticking of
capillaries. Again, forces obtainedatdifferentwire length
coincide within the experimental accuracy and the force
for pure water is appreciably larger than the force for
SDS solution. In general, the forces in Figure 7 are about
10 times lower than the respective forces for twice larger
capillaries in Figure 6. Although the force is weaker in
the former case, the maximum distance for detection of
any force is longer (L∼ 1.2 cm) because the sensitivity of
25 µm platinum wire is much higher than that of 100 µm
wire.
5.2. Force of Interaction between Two Spheres

(Figure5b). Figure8representsphotographsof twoglass
spheres locatedonthe liquidsurfaceatdifferentseparation
distances, L. At infinite separation (single sphere in
Figure 8a) the meniscus is symmetrical and the three-
phase contact line at the particle surface is horizontal.
Themeniscus is levelingoff to thehorizontalwater surface
far from the sphere. One can expect appreciable force
whenthe twospheres comeclose to eachotheratadistance
of the order of the capillary length q-1 defined by eq 6.3
below, since the range of capillary interactions is deter-
mined by q-1 (for SDS solution q-1 ) 0.194 cm). Figure
8b is at separation of minimum detectable force with 100
µmplatinumwire (with 25µmwirewe extended this limit
up to 1.3 cm). When the separation distance is decreased,
the force becomes larger since the menisci overlapping is
stronger (Figure 8c). At very close separation (L e 2q-1)
the overlap is so strong that the inclination of the contact
line, which is the reason for the lateral capillary forces,
becomes visible (Figures 8d). Finally, the two spheres
stick to each other, Figure 8e, because the force exceeds
the torsion strength of the wire. The photographs taken
at smaller protrusion of the sphere tops (with respect to
the level of the nondisturbed liquid surface) showed that
the larger protrusion, the steeper the liquid meniscus
surrounding the particles.
When the height of protrusion decreases, the capillary

force should also decrease because the extend of the
menisci diminishes. This is supported by Figure 9
comparing the forcesmeasuredat twodifferentprotrusion
heights: h∞ ) 1.05 mm shown in Figure 8 and h∞ ) 0.8

mm. It is clearly seen that in the latter case (boxes) the
force is always smaller than the force in the former case
(circles).
5.3. Force of Interaction between Sphere and

Cylinder orGlassWall (Figure 6c,d). Photographs of
a partially immersed glass sphere and a glass cylinder
approaching each other are shown in Figure 10. The
measured force, plotted vsL inFigure 11, followsa similar
trend as for two spheres or two cylinders.
The photographs in Figure 12 are side views of a

partially immersed glass sphere and a glass plate (solid
wall) approaching each other. The perturbation created
by thewall extends toa largerdistance than the respective
perturbations created by the cylinder (cf. Figure 10) or
the sphere (Figure 8). This means stronger interaction
between the sphere and the wall leading to larger force
plotted in Figure 13. Each set of data was obtained by
one couple of particles. The sphereapproaches themiddle
of the wall perpendicularly to its surface. The experi-
mental data for the force in Figure 13 exhibit maximum
near the wall surface due to the fact that at L < 0.1 cm
the sphere is immersed deeper in the meniscus on the

Figure 9. Dependence of the capillary force F on the distance
L between two glass spheres of uniform diameter 1.2 mm
immersed in SDS solution. The platinum wire is of diameter
100 µm and length 10 cm. Each set of data corresponds to
differentprotrusionheighth∞. The curvesareplottedbymeans
of eq 6.1 at different contact angles. The dotted vertical line
corresponds to the closest approach.

Figure 10. Successive stages of interaction of a glass sphere
of diameter 1.2 mm and glass cylinder of diameter 0.73 mm
immersed partially in solution of SDS. The protrusion height
of the sphere is h∞ ) 1.2 mm and of the cylinder is hc ) 0.95
mm (the other parameters are the same as in Figure 8). The
measured forces are as follows: (a) L ) ∞, F ) 0; (b) L ) 0.897
cm, F ) 0.025 dyn; (c) L ) 0.5 cm, F ) 0.246 dyn; (d) L ) 0.406
cm, F ) 0.491 dyn; (e) L ) 0.965 mm, F ) ∞.
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wall (Figure12e,f). Consequently, thecontact lineshrinks,
thus decreasing the force of interaction.

6. Discussion

6.1. Comparison with Other Experiments. First
we compare our results for the capillary force between
the larger cylinders of radii 365µmwith the experimental
data from ref 10 obtained with two different cylinders of
radii 315 and 370 µm. Our data are in good agreement
with the data of the other authors10 (see Figure 14)
although the cylinder diameters are not exactly the same.
Nevertheless, one should emphasize the difference in the
operational principle and construction of the two force
balances,whichcan lead todifference in theirapplicability.
Thebasicdifference insensitivity comes fromthedetection
system: we measure the force by the torsion of a metal
wire whereas in ref 10 the force is detected by pressure
transducer. By decreasing the wire diameter, we can
decrease sufficiently the lower limit of forces accessible
with our balance. For example, with Pt wire of diameter
10 µm, torsion constant K ≈ 0.05 dyn‚cm2, and length l
≈ 10 cm one can detect in principle forces down to about
10-4 dyn (10-9 N).16
One cannot compare quantitatively our data for the

capillary force between two spheres with the data of
Camoin et al.11 because, as mentioned above, neither the
size or the spheres nor the liquid interface utilized by
these authors are close to our system. Moreover, impor-
tant experimental features of their system like the
interfacial tension three-phase contactangle, and the radii
of the contact lines are unknown. Bearing in mind the
magnitude of the forces detected by them, it seems that
our torsionbalance is of better sensitivity than thebalance
described in ref 11. Moreover, in our experiment the
spherical particles protrude from below from the liquid-
air interface in contrast to their systemwhere theparticles
enter the interface from above. One can expect that the
attachment of a spherical particle to a fiber can lead to
somechange in thewettingpropertiesof thespheresurface
in the vicinity of contact. Hence, entering the liquid
interface from the air side as in ref 11 is less convenient,
especially for small spherical particles and small protru-
sion heights.
6.2. Comparison of Theory and Experiment:

Cylinder-Cylinder Interaction. The predictions of
linear theory for the capillary force between two cylin-
ders7-9 is inquantitativeagreementwithourexperimental

data plotted inFigures 6 and7 (see the respective curves).
According to this theory the capillary force actingbetween
two cylinders, 1 and 2, immersed partially in a liquid is
given by the equation

Here σ is the surface tension of the liquid; Qi is the so-
called capillary charge

whereψi is themeniscus slopeangle at theparticle contact
line (Figure5a);K1 is themodifiedBessel functionof second
kind, first order; and

Figure11. Dependence of the capillary forceF on the distance
Lbetweenaglass sphereofdiameter1.2mmandaglass cylinder
of diameter 0.73 mm immersed in SDS solution. Each set of
data is obtained by one couple of particles. The platinumwire
is of diameter 100 µm and different length l. The height of
sphere protrusion h∞ varies between 0.9 and 1.2 mm. The
vertical dotted line corresponds to the closest approach.

Figure 12. Successive stages of interaction of a glass sphere
of diameter 1.2 mm and a vertical glass plate immersed in
solution of SDS. The protrusion height of the sphere is h∞ )
1.15 mm and of the wall is hw ) 2.1 mm. The platinum wire
has diameter 100 µm and length 5 cm. The measured forces
are as follows: (a) L ) ∞, F ) 0; (b) L ) 0.472 cm, F ) 1.277
dyn; (c)L) 0.236 cm,F) 4.693 dyn; (d)L) 0.113 cm,F) 6.331
dyn; (e) L ) 0.084 cm, F ) 5.466 dyn.

F ) 2πσqQ1Q2K1(qL) (6.1)

Qi ) Ri sin ψi, i ) 1, 2 (6.2)
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is the reverse capillary length, where g is the acceleration
due to gravity and ∆F is the density difference between
liquidandair (in our experiments∆F )1g/cm3). Equation
6.1 is derived assuming small meniscus slope over the
entire fluid surface and thin cylinders, i.e. sin2 ψ , 1. The
capillary length q-1 can be considered as a decay length
of the lateral capillary force because at large values of the
distanceL,K1(qL) decays roughlyexponentiallywithdecay
length q-1.
Since the contactangleat the cylinderwall iskeptnearly

zero in our experiments, the slope angle will be ψi = π/2
(sinψi=1),whichallows replacement ofQi in eq6.1 simply
byRi. The theoretical curves inFigures 6and7aredrawn
according to this equation without any adjustable pa-
rameter. It is seen that the theory agrees fairly well with
the experiment especially at large separations (L > q-1).
Thediscrepancybetweenthe linear theoryandexperiment
at small separations (L ∼ q-1) appears because the
assumptions made when deriving eq 6.1 are no longer
valid. To describe the force in this case one should solve

numerically and nonlinearized Laplace equation of cap-
illarity. The thinner the cylinders, the closer the linear
theory and the experiment. This is confirmed also for
much thinner cylinders.16
Capillary Interaction between Two Spheres. As

for two cylinders, the lateral capillary force between two
spherical particles is given by eq 6.18,9 where Qi is
determined by

In eq 6.4 ri is the radius of the contact line given by

where R is the contact angle and Ri is the sphere radius.
Since the spherical particles in our experiments are of
very close radii, 2R1 ) 0.1179 cm and 2R2 ) 0.1199 cm,
we considered for simplicity two similar particles of one
and the same radius R ) (R1R2)1/2 ) 0.05945 cm. Then
ψ1 ) ψ2 ) ψ and r1 ) r2 ) r.
By variation of the distance between the particles, L,

the slope angleψ in eq 6.5 and the contact line radius r(L)
also vary. At a given value of the elevation of the particle
center, h0, and contact angle, R, we calculated the values
of the geometrical parameters r, b, h, andψ, determining
the particle position by using eq 6.5 and the following
three equations8,9

where γe ()1.78...) is the number of Euler-Masceroni,K0
is the modified Bessel function of zeroth order, and b and
h are mean values taken along the contact line8,9 (for
definition see Figure 5b). Solving the set of equations
(6.4-6.8) we obtained the dependence Q(L) and then
calculated the lateral capillary force from eq 6.1.
Since the particles are of fixed vertical position, the

heighth0 remains thesameas for thesingle spherewithout
capillary interaction

(L f ∞, cf. Figure 8a) where

Equation 6.11 was derived by Derjaguin19 long ago.
To determine the contact angle, R, the following

experimental values of the parameters were used: b∞ )
0.073 cm for h∞ ) 0.105 cm (circles) and b∞ ) 0.045 cm for
h∞ ) 0.08 cm (squares); see Figure 9. Then we calculated
by eqs 6.9-6.12 particle contact angles R ) 16° and R )
23°, respectively. Since for one and the same couple of
particlesRshouldbeconstant,weattributed thisdifference
inR to the experimental error inmeasuring b∞ andh∞.We
proved numerically that small differences in b∞ and h∞
within the experimental error can lead to significant

(19) Derjaguin, B. Dokl. Akad. Nauk USSR 1946, 51, 517.

Figure13. Dependence of the capillary forceF on the distance
L between glass sphere of diameter 1.2 mm and glass plate
immersed in SDS solution. The platinum wire is of diameter
100 µm and length l ) 5 cm. The two sets of data are obtained
by two runs with one couple of particles. In both cases the
height of sphere protrusion is h∞ ≈ 1.05 mm. The solid and
dashed curves are calculated by theory without usage of any
adjustable parameters. The vertical dotted line corresponds
to the closest approach.

Figure 14. Comparison of the capillary forcemeasured in our
experiment between two interacting glass cylinders of equal
radii R1 ) R2 ) 0.0365 cm with data from ref 10 for glass
cylinders of close radii,R1 ) 0.0315 cm andR2 ) 0.037 cm. Our
data (the empty figures) are the same as in Figure 6. The
theoretical curve is drawn according to eq 6.1 with the cylinder
radii values 0.0365 cm.

q )x∆Fg
σ

(6.3)

Qi ) ri sin ψi, i ) 1, 2 (6.4)

ri ) Ri sin(R + ψi) (6.5)

b ) R[1 - cos(R + ψ)] (6.6)

h(L) ) Q ln 4
γeqr(1 + cos ψ)

+ QK0(qL) (6.7)

h0 ) h(L) + b(L) - R (6.8)

h0 ) h∞ + b∞ - R (6.9)

b∞ ) R[1 - cos(R + ψ∞)] (6.10)

h∞ ) Q∞ ln
4

γeqr∞(1 + cos ψ∞)
(6.11)

r∞ ) R sin(R + ψ∞) (6.12)
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deviations in the calculated R up to (6°. In spite of this
inaccuracy we processed further the experimental data
for the force by the asymptotic expression (6.1). The
results are given in Figure 9 by the solid curve for b∞ )
0.073 cm and by the dashed curve for b∞ ) 0.045 cm. The
theorydescribeswell themeasured force at comparatively
large distances (qL . 1); however, at short distances eq
6.1 underestimates the capillary force. This discrepancy
between the linear theory and the experiment is due to
the large meniscus slope around the particles as well as
to their large radii compared to the capillary length q-1.
Better coincidence with the experiment can be achieved
only by solving the nonlinear Laplace equation of capil-
larity.
Capillary Interaction between Cylinder and

Sphere. For the capillary force acting between vertical
cylinder of radius Rc and a spherical particle of radius Rs
(Figure 5c) we used again the approximate expression
(6.1). The only difference with respect to the case of two
spheres is that the capillary charge of the cylinder does
not depend on L (cf. eq 6.2). The procedure of calculating
the capillary charge of the sphere is the sameas described
in theprevious subsectionwhere eq6.7 shouldbe replaced
with

(the subscripts “s” and “c” refer to the sphere and the
cylinder, respectively). Equation 6.13 is derived by using
superpositionapproximation for themeniscusshapewhich
is valid even for largemeniscus slopearound theparticles,
but only at large interparticle distances.10
The experimental runs in Figure 11 correspond to

various vertical positions of the spherical particle defined
by h∞ and three-phase contact angle at the cylinder wall
Rc ) 0°. The contact angle of the spherical particle Rs was
determined fromb∞andh∞asdescribed for two interacting
spheres. Knowing the capillary charge of the cylinder,Qc
) Rc ) 0.0365 cm, we calculated the capillary force by eq
6.1. The theoretical curves practically coincide because
thegeometrical parameters for thedifferent runsare close
to each other. The linear theoryand the experiment agree
well at large separations L whereas the discrepancy at
small L is due again to nonlinear effects.
Capillary Interaction between Sphere and Wall.

For a spherical particle of radius R protruding from the
liquid surface at a distance L from a vertical planar wall
(Figure 6d) the three-phase contact angles at the wall
and the sphere are Rw and Rs, respectively. The lateral
capillary force between floating spherical particle and a
wall is given by the approximate expression20

valid at small meniscus slope and relatively large dis-
tances,L. rc. Thedifferencebetween theparticle floating
on the liquid surface and the particle fixed in vertical
direction is just in the expression for Qs. Below we
generalize eq 6.14 for the case of large meniscus slopes
around the particle and the wall and large distance L
compared with the capillary length q-1.
It is known, that far from a single wall the meniscus

shape decays exponentially,10

where

At small meniscus slope angle at the wall ψw eq 6.15
reduces simply to

which is used when deriving (6.14). By using eq 6.15
instead of 6.16, one can derive a counterpart of eq 6.14,
viz.

which is valid for largemeniscus slope and largeparticle-
wall separations. The dependence ofQs onL is calculated
as described for two sphereswhere eq 6.7 is replacedwith
its counterpart

It is worth noting that the above equations describe well
the magnitude of the measured capillary force only at
large separations (qL g 1).
The prediction of eq 6.17 and the experimental data for

the capillary force between glass plate and a sphere are
seen in Figure 13. The contact angle at the sphere wall
Rs was calculated as described previously for a single
sphere atRw ) 0. The results presented by solid curve (b∞
) 0.064 cm) and dashed curve (b∞ ) 0.070 cm) practically
coincide. At small distances the approximate expression
cannot predict the experimentally observed maximum of
the force;most probably this effect can be described again
by the exact solution of the nonlinear Laplace equation.

7. Conclusions
Themain results of our experimental study on capillary

forces can be summarized as follows:
(i) We measured capillary forces between particles

immersed partially in liquid by a special version of the
classical torsionmicrobalance constructed by us (Figures
1 and 2). Two of the particles are attached to an anchor
suspended on a platinum wire, whereas the other two
particles are attached to holders synchronously ap-
proaching the anchor. By varying the wire strength and
type of the anchor,we candetect forces fromseveral dynes
to<1mdyn,whichallowsus to access very small capillary
forces. Using this balance, we measured the capillary
attraction between two glass cylinders, two spheres, a
sphere and cylinder, and a sphere and wall immersed
partially either in pure water or in surfactant solution;
see Figure 5.
(ii) The experimental results for two cylinders of

diameters 730 µm are in good agreement with data for a
similar systemobtainedbyanother type of force balance10
(Figure 14). For linear theory for capillary forces agrees
quantitatively with the data especially at not too small
separations between the particles (Figure 6). The agree-
ment ismuchbetter for cylinders of diameters about twice
as small (320-340 µm), even at small separations (Figure
7). At one and the same separation the force for pure

(20) Kralchevsky, P. A.; Paunov, V. N.; Denkov, N. D.; Nagayama,
K. J. Colloid Interface Sci. 1994, 167, 47.

(21) Velev, O. D.; Denkov, N. D.; Paunov, V. N.; Kralchevsky, P. A.;
Nagayama, K. J. Colloid Interface Sci. 1994, 167, 66.

hs(L) ) Qs ln
4

γeqrs(1 + cos ψs)
+ QcK0(qL) (6.13)

F(L) ≈ πσ[2qQs
2K1(qL) + 2Qs tan ψwe

-qL/2 +

q(rs tan ψwe
qL/2)2] (6.14)

z(L) ) 1
q
De-qL, qL . 1 (6.15)

D ) 4(tan ψw

4 ) exp(-4 sin2
ψw

4 )

z(L) ) 1
q
tan ψwe

-qL (6.16)

F(L) ≈ -πσ[2qQs
2K1(qL) + 2QsDe

-qL/2 +

q(rsDe
-qL/2)2] (6.17)

hs(L) ) 1
q
De-qL + Qs ln

4
γeqrs(1 + cos ψs)

+ QsK0(qL)

(6.18)
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water is about twice larger than the force for surfactant
solution which comes from the difference in the surface
tension.
(iii) For two spheres of diameters 1.2 mmwemeasured

the force at different heights of protrusion of a sphere
fromthe liquid surface and found that at larger protrusion
the force is also larger. The linear theory predicts the
force well at large separation between the spheres and
fails at close separation due to nonlinear effects (Figure
9).
(iv)Wemeasuredalso the capillary forcebetweensphere

and glass cylinder and between sphere and glass wall.
While in the first case the force exhibits similar trends as
the force between two spheres or two cylinders (Figure
11), in the second case the force first increases with

decreasing the distance and then decreases passing
through a maximum (Figure 13).
Wehope that these experimental findings canbeuseful

for understanding the capillary interaction between
colloidal particles and protein macromolecules. As men-
tioned above, such forces play a role for the aggregation
of particles in two-dimensional arrays on substrate.3-5
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