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Abstract—The subject of this work is the creeping motion of liquid caused by steady translation
and rotation of a solid sphere close to an interface between two fluid phases. The case of
vanishingly small Reynolds and capillary numbers is considered. We account for the intrinsic
viscous properties of the liquid boundary, characterised by dilatational and shear surface
viscosities, in the frame of the Boussinesq—Scriven model. Numerical computations are present-
ed for the velocity and pressure distributions throughout the flow domain. The drag force and
the torque exerted on the particle are obtained by means of analytical integration of the stresses
over the spherical surface. At small distances of separation between the rigid sphere and the
wall, the role of the surface viscosity becomes quite substantial: the drag and the toque can be
several times bigger than those which correspond to motion in an unbounded fluid. For steady
rotation the flow around the solid particle is restrained in a relatively narrow region, whereas
with translation the velocity field extends to large distances. Consequently, the rotating sphere
should be closer in order to start ‘feeling’ the wall. Our results are relevant for systems which
contain surfactant laden interfaces. We showed that even with low molecular weight surfactants
such interfaces can behave much like solid ones. This is particularly true for fluid boundaries
covered by proteins, as they turn out to be completely immobilised. ( 1998 Elsevier Science
Ltd. All rights reserved.
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1. INTRODUCTION

The flow of viscous liquid, resulting from the motion
of an immersed particle, can be substantially affected
by the presence of walls. This situation has important
implications in a variety of engineering problems,
such as suspension flows in pipes, or coating pro-
cesses. Earlier works devoted to theoretical investiga-
tion of the impact of plane and cylindrical walls on the
creeping motion of liquid around a particle (at low
Reynolds numbers and negligible inertia) were re-
viewed by Happel and Brenner (1965). One possible
approach to this task is to represent the forces and
torques exerted on the particle as power series in
terms of the ratio between the characteristic particle
size, a, and its distance to the wall, l. In other words,
one can seek for consecutive corrections to the case of
flow in an unbounded liquid. When the quotient a/l is
small, the so-called method of reflections is applicable
(Kim and Karrila, 1991). An iteration procedure con-
sists of applying the boundary conditions separately,

tCorresponding author.

and in succession, on one surface at a time. The latter
method was used for the first time by Smoluchowski
(1911), and was further developed by Faxén (1921)
and Wakiya (1956), who studied the motion of
a sphere in a liquid layer confined between two flat
solid walls.

Another approach was proposed by Dean and
O’Neill (1963) and O’Neill (1964). They considered
a spherical rigid particle undergoing parallel transla-
tional and rotational motion in the vicinity of a plane
hard wall. Specific bipolar coordinates were used,
which allowed the authors to impose boundary condi-
tions on both surfaces simultaneously. Thus, exact
solutions, expressed in terms of infinite series of Leg-
endre functions, were derived for the velocity and
pressure distributions. As pointed out by Goldman
et al. (1967), these solutions converge poorly (in a nu-
merical sense) if the ratio of gap width to sphere radius
is very small (for instance, below 0.001). Some errors
made by Dean and O’Neill (1963) in computation
were corrected by Goldman et al. (1967). The latter
work utilised the method of matched asymptotic ex-
pansions to explore the limit when the gap width
tends to zero. Such kind of treatment was performed
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also by O’Neill and Stewartson (1967), and by Cooley
and O’Neill (1968). Lee and Leal (1980) extended the
theory of Dean and O’Neill (1963) and O’Neill (1964)
by investigating the case when the solid sphere is
situated close to a flat surface between two immiscible
viscous liquids. Further, Berdan and Leal (1982)
showed that such an interface is subject to small
deformations, which in turn influence the drag experi-
enced by the particle (the torque is not affected, to
a first-order approximation).

Shapira and Haber (1988, 1990) studied the im-
pact of the containing walls on the low Reynolds
number hydrodynamics of a droplet moving between
two parallel plates in a quiescent fluid, as well as
in shear flow. O’Neill and Ranger (1979) derived an
exact solution for the velocity field induced by a
sphere rotating near an interface that separates two
viscous fluids.

All those works considered either solid surfaces, or
liquid boundaries which do not possess their own
intrinsic viscous properties. On the other hand, it was
long ago that Boussinesq (1913) introduced the con-
cept of surface viscosity and Scriven (1960) formulated
the general constitutive relation for the viscous stres-
ses on Newtonian interfaces of arbitrary shape. This
was done by analogy with the three-dimensional case
of bulk fluids, postulating the existence of indepen-
dent dilatational and shear interfacial viscosities.
These two quantities, although usually negligible on
bare surfaces between fluids, turned out to be of major
importance when surfactants are adsorbed on the
phase boundary (Edwards et al., 1991). Particularly
large stresses due to viscous friction within the surface
can be anticipated if the latter is covered by proteins.
As shown by Graham and Phillips (1980a, b), protein
layers exhibit dilatational and shear viscosities which
are orders of magnitude larger than those correspond-
ing to low molecular weight surfactants.

Recently Danov et al. (1995) studied the slow
motion of a solid particle confined in a thin liquid
layer whose interfaces are viscous. Direct numerical
solution was implemented for the Stokes equations
written in the original ‘two vorticities—one velocity’
formulation. The surface viscosity was found to affect
the flow properties considerably.

The purpose of the present article is to investigate
the case when a solid sphere moves parallel to a single
flat viscous interface between two immiscible fluids.
We apply the method which was originally proposed
by Dean and O’Neill (1963), O’Neill (1964), and was
subsequently elaborated by Lee and Leal (1980). The
treatment is restricted to slow motions, that is, small
Reynolds and capillary numbers. In bipolar coordi-
nates of revolution, the analytical solutions for the
fields of velocity and pressure are expressed in terms
of infinite series of associated Legendre functions. The
boundary conditions furnish some relations between
the coefficients in the series. Those coefficients are
then obtained by solving a set of linear equations
numerically. On the liquid interface the boundary
conditions include stress balances which account

for the existence of dilatational and shear surface
viscosity. Explicit results for the drag and torque are
derived by means of analytical integration of forces
and moments over the particle surface. Calculations
are presented for different values of the interfacial
viscosity parameters.

2. STATEMENT OF THE PROBLEM AND GENERAL

SOLUTION

We consider a rigid sphere moving in a quiescent
fluid (region )

1
) close to the planar interface (S

2
)

beyond which there is another bulk fluid phase
()

2
)—Fig. 1. The particle radius is a, and its surface is

denoted by S
1
. The sphere can either translate with

constant velocity », parallel to the plane and along
the Oy-axis, or rotate with fixed angular velocity u,
the axis of rotation being Ox. The particle—wall dis-
tance, d, is fixed. The two bulk fluids are assumed to
be homogeneous, isothermal, Newtonian and incom-
pressible. In the volume phase )

k
the pressure is p

k
,

the velocity is v
k
, and the dynamic viscosity is g

k
(k"1, 2). The case of low Reynolds number will be
studied, so that the inertia terms in the momentum
equations are neglected. In many practically encoun-
tered systems, such as coating flows and suspensions,
the characteristic particle size is about 1 km or less,
and the relative velocity is of the order of a few cm/s,
or less. Therefore, with common liquids (and water)
the Reynolds number will be indeed small. In these
conditions the flow is governed by the Stokes’ equa-
tions for creeping motion

+p
k
"g

k
+2v

k
(1)

$ · v
k
"0 (k"1, 2) (2)

Fig. 1. Schematic picture of the studied system configura-
tion. The curves drawn in the meridional plane (u"const)
represent coordinate lines in the chosen bipolar coordinates,

x
1
, x

2
.
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where $ is the three-dimensional gradient operator.
The general form of the solution of eqs (1) and (2) in
the particular geometry (Fig. 1) was given by Dean
and O’Neill (1963), O’Neill (1964), Lee and Leal
(1980), together with the boundary conditions on flat
interface which is solid or liquid with no intrinsic
viscous properties. For better understanding of our
results we believe it is necessary to recapitulate briefly
the main equations obtained when working out the
problem. This is done below.

Let us denote by Oxyz the system of Cartesian
coordinates whose origin coincides with the centre of
the particle (Fig. 1). Cylindrical coordinates, r, u, z,
can be introduced, with u being the meridional
angle. Any plane for which u is constant will be
called meridional plane; r and z are, respectively,
the radial and the vertical coordinates. The particle
motion is assumed to be sufficiently slow, so that the
shape perturbation of the liquid—liquid phase bound-
ary (S

2
), caused by the pressures on both sides,

will be very small. As shown below, such is the
case when the capillary number is much less than
unity. Then the boundary conditions can be lin-
earised, with the zeroth-order approximation refer-
ring to perfectly flat interface. For that reason, we
shall consider the problem with non-perturbed sur-
face and shall finally calculate the first-order correc-
tion to the shape of S

2
.

The solutions of eqs (1), (2) for the velocity and
pressure can be expressed as follows (Dean and
O’Neill, 1963; O’Neill, 1964):

l
r,k

"»
*
R

k
(r, z) sinu, lu,k

"»
*
F
k
(r, z) cosu,

l
z,k

"»
*
Z

k
(r, z) sinu (3)

p
k
"

g
k
»

*
a

P
k
(r, z) sinu, k"1, 2 (4)

where l
r,k

, lu,k
and l

z,k
are the three velocity compo-

nents, corresponding to the bulk phase k, in the cylin-
drical coordinate system Oruz. The dimensionless
functions R

k
, F

k
, Z

k
and P

k
depend on r and z only.

»
*

is a characteristic velocity, which is equal to » in
the case of translation, and »

*
"ua for rotation.

Here and hereafter the radial and vertical coordinates,
r, z, are made dimensionless by scaling with the sphere
radius, a. Equations (3), (4) may be regarded as a trial
solution, suggested by the boundary conditions (cf.
Goldman et al., 1967). The specific dependence upon
u allows to reduce the dimensionality of the problem
from 3 to 2, as the meridional angle u is excluded from
eqs (1) and (2).

In cylindrical coordinates the particle surface and
the unperturbed flat interface are described by the
following equations:

S
1
: r2#z2"1, S

2
: z"!(1#d ) (5)

with d being the dimensionless gap width (distance
between the closest points of the sphere and the plane,
Fig. 1). It is convenient to introduce bipolar coordi-

nates of revolution, as proposed by Dean and O’Neill
(1963) and O’Neill (1964). In the meridional plane
u"const we exchange r and z with x

1
, x

2
:

r"
sinx

2
h

, z"!(1#d )!
sinhx

1
h

. (6)

The metric coefficient h is

h"
1

b
(cosh x

1
!cosx

2
), b"Jd(2#d ). (7)

The coordinate lines x
1
"const and x

2
"const are

mutually orthogonal circular circumferences whose
centers lie on the axes Oz and Or, respectively. In
addition, possible values of x

2
are 0)x

2
)n, where

x
2
"n corresponds to that part of the Oz-axis which

is contained between the two poles, z"!(1#d )$
b. The rest of the line Oz refers to x

2
"0. The curves

x
1
"const and x

2
"const in the meridional plane

generate coordinate surfaces of revolution by means
of rotation around Oz. In this coordinate system the
equations of the two boundary surfaces, S

1
and S

2
,

acquire the following form:

S
1
: x

1
"!c, S

2
: x

1
"0, c"ln (1#d#b)

(8)

which can be obtained from eqs (5)—(7). The bulk
region )

1
is described by !c(x

1
(0, whereas in

the volume )
2

one has 0(x
1
.

Solution of the Stokes’ problem (1)— (4) is found
after introducing auxiliary functions of r and z (cf.
Dean and O’Neill, 1963):

R
k
"º

k,0
#º

k,2
#rQ

k,1
, F

k
"º

k,0
!º

k,2 (9)

Z
k
"º

k,1
#(z#1#d )Q

k,1
, P

k
"2Q

k,1
, (k"1, 2).

Such a substitution leads to simplification of eq. (1) in
the sense that a particular equation is formulated for
each of the unknown functions in eq. (9). Thus, we are
left with a set of partial differential equations which
have to be satisfied by º

k,0
, º

k,1
, º

k,2
and Q

k,1
:

¸
m
[º

k,m
]"0, ¸

1
[Q

k,1
]"0,

(m"0, 1, 2; k"1, 2). (10)

Here the operator ¸
m

is defined as

¸
m
"

L2

Lr2
#

1

r

L
Lr

#

L2

Lz2
!

m2

r2
. (11)

In the bipolar coordinates (6), (7) one can solve eqs
(10), (11) by separation of variables. The general
solution is represented as series of exponents multi-
plied by associated Legendre functions. The latter are
conventionally expressed by the relation (cf. Arfken,
1985)

P
n,m

(m)"
1

2nn !
(1!m2 )m@2

dn`m

dmn`m
[(m2!1)n],

(n*m). (12)
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In the phase )
1

we obtain the following solutions:

º
1,m

"Jcoshx
1
!cosx

2

]
=
+
n/m
GAn,m

sinh [j
n
(x

1
#c)]

sinh (j
n
c)

!B
n,m

sinh (j
n
x
1
)

sinh (j
n
c) H P

n,m
(cosx

2
) (13)

Q
1,1

"

Jcosh x
1
!cos x

2
b

]
=
+
n/1
GAn,3

sinh [j
n
(x

1
#c)]

sinh (j
n
c)

!B
n,3

sinh (j
n
x
1
)

sinh (j
n
c) H P

n,1
(cosx

2
). (14)

In the volume )
2
, the results read

º
2,m

"Jcosh x
1
!cos x

2

=
+

n/m

]a
n,m

exp(!j
n
x
1
)P

n,m
(cos x

2
) (15)

Q
2,1

"

Jcoshx
1
!cosx

2
b

]
=
+
n/1

a
n,3

exp (!j
n
x
1
)P

n,1
(cos x

2
). (16)

Here m"0, 1, 2, and the separation constant, j
n
, ac-

quires discrete values

j
n
"n#1

2
, n"0, 1, 2,2 . (17)

The form of the series (15), (16) takes into account
the fact that the region )

2
contains the pole

z"!(1#d )!b, where x
1
"R. As the solution

should be finite, there are no terms exp(j
n
x
1
) in

eqs (15), (16).
Now, we encounter the problem of finding the un-

known numerical coefficients in eqs (13)—(16). Con-
nections between these coefficients can be established
by utilising the boundary conditions and the equation
of incompressibility, eq. (2). In cylindrical coordinates
we transform eq. (2) in terms of the auxiliary functions
from eq. (9):

Lº
k,0

Lr
#

Lº
k,2

Lr
#

2º
k,2
r

#

Lº
k,1

Lz
#3Q

k,1

#r
LQ

k,1
Lr

#(z#1#d )
LQ

k,1
Lz

"0, (k"1, 2).

(18)

3. BOUNDARY CONDITIONS

3.1. »elocity
First of all, we mention that the fluid is supposed to

be at rest very far from the particle (with x
1

and
x
2

simultaneously approaching zero). This condition
is automatically fulfilled given the form of eqs (13)—(16).

There is no mass transfer across the flat liquid
interface S

2
. For that reason, the normal velocity

components, l
z1

, l
z2

, on both sides of S
2
, should

vanish. In other words, Z
1
"Z

2
"0 at x

1
"0. From

eqs (9), (13) and (15) it follows that

A
n,1

"0, a
n,1

"0 for n*1. (19)

Besides, let us mention that º
2,1

"0 in the whole
phase )

2
.

On the solid surface of the sphere the velocity is
prescribed. Therefore, we specify its three components
on S

1
by writing

R
1
"F

1
"1!e!ez, Z

1
"er at x

1
"!c (20)

where e distinguishes between translation along Oy-
axis (e"0) and rotation around Ox-axis (e"1). The
condition for Z

1
can be combined with eq. (9) and

with the solutions in the phase 1, eqs (13), (14). We
substitute r and z according to eq. (6), and make use of
the identity

1

Jcosh c!cosx
2

"J2

]
=
+
n/0

P
n,0

(cosx
2
) exp(!j

n
c)

(21)

(see Jahnke et al., 1960, Section 8), in order to express
all terms in the resulting equation as infinite series of
associated Legendre functions. This yields

cosh c
=
+
n/1

B
n,1

P
n,1

(cosx
2
)

!

=
+
n/1

B
n,1

cosx
2
P
n,1

(cosx
2
)

#sinh c
=
+
n/1

B
n,3

P
n,1

(cos x
2
)

"ebJ2
=
+
n/0

exp(!j
n
c) sinx

2
P
n,0

(cos x
2
) (22)

valid for arbitrary x
2

within the range (0, n). Now
some transformations are applied in eq. (22) so as to
obtain sums which depend upon x

2
only through

P
n,1

(cosx
2
). Since P

n,1
(n"1, 2, 3,2) represent a set

of linearly independent functions, we equate the mul-
tiplying coefficients for each value of n and find

B
n,3

"

n!1

2bj
n~1

B
n~1,1

!

1#d

b
B
n,1

#

n#2

2bj
n`1

B
n`1,1

#

J2

2
e exp(!j

n
c)A

1#d#b

j
n~1

!

1#d!b

j
n`1

B n*1. (23)

The relations

b"sinh c; 1#d"cosh c (24)

have been used for the derivation.
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It is evident from eq. (20) that R
1
!F

1
"0 at

x
1
"!c. Then, substitution with eqs (9), (13) and (14)

gives

B
n,2

"

1

4bj
n~1

B
n~1,1

!

1

4bj
n`1

B
n`1,1

!

J2

2
e exp(!j

n
c)A

1#d#b

j
n~1

!

1#d!b

j
n`1

B n*2. (25)

The calculations are similar to those which led to eq.
(23), and that is why only the final result is presented
here.

From eq. (20) one has R
1
#F

1
"2(1!e!ez) at

x
1
"!c. In analogous manner, with eqs (9), (13) and

(14) there follows:

B
n,0

"!

(n!1)n

4bj
n~1

B
n~1,1

#

(n#1)(n#2)

4bj
n`1

B
n`1,1

#J2 exp(!j
n
c)C1!e!e

]Aj
n
b#

1#d#j
n
b

4j
n~1

j
n`1

BD n*0. (26)

The three eqs (23), (25) and (26) establish connections
between B

n,3
, B

n,2
, B

n,0
, and B

n,1
. Below it will be

shown that using the other boundary conditions on
the surface S

2
, as well as the equation of continuity,

eq. (2), one can express the coefficients A
n,0

, A
n,2

and
A

n,3
explicitly in terms of a

n,0
, a

n,2
, a

n,3
and B

n,1
.

At the fluid interface, S
2
, the two tangential velocity

components should acquire equal values from the
sides of the two adjacent bulk phases, )

1
and )

2
, i.e.

l
r,1

"l
r,2

; lu,1
"lu,2

for x
1
"0. On the other hand,

in cylindrical coordinates the condition for incom-
pressibility, eq. (2), reads

Ll
r,k

Lr
#

1

r
l
r,k

#

1

r

Llu,k
Lu

#

Ll
z,k

Lz
"0, k"1, 2. (27)

It can be applied in the limit zP!(1#d), x
1
P0.

Thus, we obtain

LZ
1

Lz
"

LZ
2

Lz
at x

1
"0. (28)

After transformation of eq. (28) into bipolar coordi-
nates, eqs (9), (13)—(16) are inserted there to produce
the following result:

A
n,3

"a
n,3

#

(n!1)B
n~1,1

2 sinh(j
n~1

c)
!

j
n
B
n,1

sinh(j
n
c)

#

(n#2)B
n`1,1

2 sinh(j
n`1

c)
, n*1. (29)

It is convenient to use the conditions for continuity of
tangential velocity on S

2
in the form

R
1
#F

1
"R

2
#F

2
; R

1
!F

1
"R

2
!F

2

at x
1
"0. (30)

When the first relation (30) is combined with eqs (9),
(13)—(16) and (29), one finds

A
n,0

"a
n,0

!

(n!1)n

4 sinh(j
n~1

c)
B
n~1,1

#

(n#1)(n#2)

4 sinh(j
n`1

c)
B
n`1,1

, n*0. (31)

In much the same manner, the second eq. (30) yields

A
n,2

"a
n,2

#

B
n~1,1

4 sinh(j
n~1

c)
!

B
n`1,1

4 sinh(j
n`1

c)
, n*2.

(32)

Up to this point, we have the quantities B
n,3

, B
n,2

,
B
n,0

, A
n,3

, A
n,0

, and A
n,2

represented explicitly by
means of a

n,0
, a

n,2
, a

n,3
, and B

n,1
, the latter remaining

as unknowns. Hence, in order to determine all coeffi-
cients in the series (13)— (16) it is necessary to find
another four sequences of equations connecting a

n,0
,

a
n,2

, a
n,3

, and B
n,1

. Two of them come from the
incompressibility in the phases )

1
, )

2
, and the other

two are due to the stress conditions on the liquid
interface S

2
.

We now substitute eqs (15) and (16) into eq. (18)
with k"2, which gives the incompressibility in the
bulk volume )

2
. All terms are cast to the form of

infinite sums containing one and the same functions of
the two independent variables x

1
, x

2
. In particular,

we encounter the functions

exp (!j
n
x
1
)

1

sinx
2

[P
n~1,0

(cosx
2
)

!cosx
2
P
n,0

(cosx
2
)], (n"1, 2, 3,2). (33)

As the equation should hold for arbitrary x
1
, x

2
, the

multiplying constant factors are obliged to satisfy the
following relations for each value of n:

a
n~1,0

!2a
n,0

#a
n`1,0

!(n!1)(n!2)a
n~1,2

#2(n!1)(n#2)a
n,2

!(n#2)(n#3)a
n`1,2

#(n!1)a
n~1,3

!5a
n,3

!(n#2)a
n`1,3

"0,

n*1. (34)

Similarly, we can treat the condition for incompressi-
bility in the phase )

1
. Solutions (13), (14) are inserted

in (eq. 18) with k"1. Again, the dependence upon
x
1
, x

2
is contained in series of linearly independent

functions. However, in this case two different kinds of
such functions appear—the first one is as in eq. (33),
and the second kind reads

exp(j
n
x
1
)

1

sinx
2

[P
n~1,0

(cosx
2
)

!cosx
2
P
n,0

(cosx
2
)], (n"1, 2, 3,2).

For arbitrary x
1
, x

2
the multiplying coefficients have

to be equated separately. Therefore, we are left with
two sequences of relations for n"1, 2, 3,2 . On the
other hand, the continuity equation has already been
used once during the derivation of eq. (28). This is the
reason why we are allowed to introduce only one
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independent set of connections between the coeffi-
cients. Analogous lines of consideration can be found
in the paper by Dean and O’Neill (1963, p. 19). Thus,
from eq. (18) with k"1 we write

b

sin (j
n~1

c)
[A

n~1,0
#(n!1)A

n~1,3

!(n!2)(n!1)A
n~1,2

]#
b

sinh (j
n`1

c)

][!A
n`1,0

#(n#2)A
n`1,3

#(n#2)(n#3)A
n`1,2

]

#

sinh(j
n
c)

sinh(j
n~1

c)
[!B

n~1,0
!(n!1)B

n~1,3

#(n!2)(n!1)B
n~1,2

]#2B
n,0

#5B
n,3

!2(n!1)(n#2)B
n,2

#

sinh(j
n
c)

sinh(j
n`1

c)

][!B
n`1,0

#(n#2)B
n`1,3

#(n#2)(n#3)B
n`1,2

]

!(n!1)
cosh(j

n
c)

sinh(j
n~1

c)
B
n~1,1

#(2n#1)
cosh(j

n
c)

sinh(j
n
c)

]B
n,1

!(n#2)
cosh(j

n
c)

sinh(j
n`1

c)
B
n`1,1

"0.

Substitution with eqs (23), (25), (26), (29), (31) and (32)
into the above equation yields
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where k
n
"j

n
coth(j

n
c)!(1#d)/b. It can be verified

that if the surface S
2

is tangentially immobile (which
means zero velocity and pressure in the volume )

2
),

then eq. (35) for translation (e"0) coincides identi-
cally with eq. (23) from the work of O’Neill (1964).

3.2. ¹angential stress
Let us now pay attention to the stress conditions

imposed on the fluid boundary S
2
. We shall take into

account the intrinsic viscous behaviour of this inter-
face, which is supposed to be Newtonian. Within the
frames of the Boussinesq—Scriven theory, the consti-
tutive relation for the two-dimensional stress tensor,
T
II
, on arbitrary surface, S, reads

T
II
"cU

II
#g

d
(+

II
) v)U

II
#2g

4)
[D!1

2
(+

II
) v)U

II
]

"[c#(g
d
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4)
)(+

II
) v)]U

II
#2g

4)
D (36)

(see Slattery, 1990). Here c is the interfacial tension
and g

d
, g

4)
represent the two independent surface

viscosities corresponding to dilatation and shear, re-
spectively. The velocity of the surface material points
is denoted by v, and +

II
is the two-dimensional gradi-

ent operator, U
II

is the surface idemfactor, D is the
rate-of-strain tensor on S:

D"1
2
U

II
) [(+

II
v)#(+

II
v)T] )U

II
. (37)

The symbol ( )T means transposition. Besides,
+
II
) v"U

II
: D. In the two volume phases adjacent to

S the bulk stress tensors, T
k
, obey the equations

T
k
"!p

k
U#g

k
[(+v

k
)#(+v

k
)T], k"1, 2. (38)

Here U is the three-dimensional unit tensor. In all
practical circumstances the surface mass density is
very small owing to the extreme thinness of the inter-
facial transition zone (cf. Edwards et al., 1991). Then,
the balance of momentum transport at S reduces to
the form

+
II
)T

II
"n ) (T

2
!T

1
) (39)

where n represents the running unit normal to the
surface (directed from phase 2 towards phase 1).
T
1

and T
2

are taken on S. Equation (39) can be
resolved into tangential and normal components with
respect to S. The tangential projection reads

n ) (T
2
!T

1
) )U

II
"(g

d
!g

4)
)+

II
(+

II
) v)

#2g
4)

(+
II
)D) )D

II
(40)

if c, n
d

and g
4)

are constant. This assumption about
the interfacial tension, c, calls for additional dis-
cussion. Indeed, it is known that when suractants are
present on a liquid phase boundary any surface
motion accompanied with compression or expansion
can cause local variations in the concentration of the
adsorbed molecules. The change in c is proportional
to the relative dilatation (elastic behaviour) and, con-
sequently, surface gradients of c would appear (cf.
Edwards et al., 1991). In our considerations we dis-
card +

II
c in eq. (40), but still keep terms with dilata-

tional viscosity. From a physical point of view, this
situation may correspond to systems which contain
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surfactants with bulk concentration above the critical
micellization concentration (CMC). In such solutions
surfactant aggregates (micelles) exist and usually they
are capable of fast disintegration, thus providing
a source of monomers very close to the surface. As the
produced single molecules adsorb, they eliminate the
interfacial tension gradients caused by the convective
transport. The characteristic time of demicellisation
for most common surfactants is quite short, typically
of the order of milliseconds (cf. Hunter, 1987). An-
other possible case for which c can be constant is that
of small surface Peclet number (a»

*
/D

s
, where D

s
de-

notes surface diffusivity)—see the extended discussion
in the book of Edwards et al. (1991, Section 5.6). The
motion is assumed to be so slow that the molecular
surface diffusion is able to completely restore the
uniform surfactant distribution along the phase
boundary.

We apply eq. (40) for the liquid interface S
2

(Fig. 1),
which is flat in zeroth-order approximation. The rate-
of-strain tensor, D, is expressed in cylindrical coordi-
nates and sustituted into eq. (40). With account of eq.
(3), we deduce the following result for the radial com-
ponent of eq. (40):
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Here dimensionless quantities have been introduced:
b denotes the ratio of the two bulk dynamic viscosities
of the phases, b"g

2
/g

1
, and

k"
g
d

ag
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, e"
g
4)

ag
1

(42)

represent dilatational and shear interfacial viscosity
numbers, respectively. Now, eq. (41) is combined with
eqs (9), (13)— (16), and with the connections between
the coefficients, eqs. (23) (25), (26), (29), (31) and (32).
Thus, one finds for n*1
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In a similar way, we take the meridional component
of the tangential stress balance (40). At x

1
"0 (that is,

on S
2
), one has
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Using eqs (9), (13)— (16), (23), (25), (26), (29), (31) and
(32), it is obtained that
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Now, we dispose of four independent sequences of
equations for the coefficients a

n,0
(n"0, 1, 2,2), a

n,2
(n"2, 3, 4,2), a

n,3
(n"1, 2, 3,2), and B

n,1
(n"

1, 2, 3,2). These are the sets (34), (35), (43) and (45),
which can be solved numerically after being cut at
a certain large value of n. Further, by means of eqs
(23), (25), (26), (29), (31) and (32) one determines the
rest of the coefficients in the series (13)—(16). This
completes the solution of the problem because the
velocity and pressure distributions can then readily be
found through eq. (9), implementing the summation in
eqs (13)— (16) at any point of the fluid domain. All
constant coefficients necessarily converge to zero with
increasing n.

Below we consider the balance of normal stresses
on the liquid interface S

2
. It turns out that the analysis

will give us the opportunity to calculate the first-order
perturbation in the shape of S

2
.

3.3. Normal stress
We take normal projection of eq. (39), which is valid

on a surface of arbitrary shape.
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Here b is the tensor of curvature:

b"!+
II
n; 2H"b :U

II
. (47)

The scalar H is called mean curvature. If the capillary
number is a small parameter,

Ca,
g
1
»

*
c

@1 (48)

then the phase boundary S
2

is disturbed only slightly
by the motion, as at sufficiently low velocity the vis-
cous drag is much smaller than the interfacial tension,
c. One may use the approximation

2H++2
II
f (49)

where f(r, u) is the local deviation of S
2

from planar-
ity. In such circumstances the equation which de-
scribes the shape of S

2
can be represented in the form

z"!(1#d)#
1

a
f(r, u)"!(1#d )

#Ca¸(r) sinu. (50)

Here ¸ (r) is unknown function to be sought for. We
turn to dimensionless variables in eq. (46) and it be-
comes evident that, up to leading order in Ca, the
terms containing surface viscosities may be neglected.
Hence, from eqs (46) and (49), one obtains
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on S
2
. For the functions on the left-hand side of (51)

we shall use the results which refer to perfectly flat

interface (i.e., the zeroth-order approximation). In
view of eq. (9), taking also into account that º

2,1
"0

in the whole phase )
2
, and moreover, that
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/Lz"LZ

2
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As suggested by the expressions (14), (16) for Q
1,1

and
Q

2,1
, a solution of (52) can be found in the following

form:

¸"J1!cosx
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=
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). (53)

We insert (eqs 53), (14) and (16) into (52), which yields
a set of relations for the coefficients ¸

n
:
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(54)

The latter can be solved numerically as a linear sys-
tem, if cut at a given n.

4. DRAG AND TORQUE

Let us consider now the force, F, and the torque, M,
exerted on the spherical solid particle during its sta-
tionary motion. The surface S

1
(Fig. 1) is exposed to

stresses from the surrounding fluid. As demonstrated
by Happel and Brenner (1965), one may determine
F and M through integration of those stresses over
the closed surface of the body:

F"P
S1

n
1
)T

1
dS

1
(55)

M"P
S1

r
1
](n

1
)T

1
) dS

1
. (56)

Here T
1

is the bulk stress tensor in the phase )
1
,

taken on S
1

[cf. eq. (38)]. The running unit normal to
S
1

is denoted by n
1

(it is directed outwards), and r
1

is
the position vector of the surface points. In our par-
ticular system the solutions for the velocity and pres-
sure are represented by the expressions (3), (4), which
are valid both for translation and for rotation. Then,
from eqs. (55) and (56) with the help of eqs (3), (4) and
(38), one obtains the following Cartesian components
of F and M:

F
x
"0, F

y
"!f 6ng

1
a»

*
, F

z
"0 (57)

M
x
"!m8ng

1
a2»

*
, M

y
"0, M

z
"0. (58)

For the specific symmetry only the force F
y

and the
torque M

x
are non-zero. In (57) and (58) we have

introduced dimensionless drag and torque coeffi-
cients, f and m, which are given by explicit relations in
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terms of the functions R
1
, F

1
, Z

1
, and P
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Here h is the polar angle; the integration is carried out
along the surface S

1
, where r"sin h, z"cos h. We

chose to scale the drag force F
y

in eq. (57) using the
Stokes (1851) result for a rigid spherical particle trans-
lating with a constant velocity in an unbounded in-
compressible viscous liquid. In the latter case
f"1, m"0, according to our notation [cf. eqs (57)
and (58)]. Similarly, the torque M

x
in eq. (58) is scaled

with the Kirchhoff formula for steady rotation of
a sphere in an unbounded fluid (see Lamb, 1945), then
f"0, m"1. If the particle moves (translates or ro-
tates) in the vicinity of the flat interface S

2
(Fig. 1),

neither f nor m will be zero, and they can strongly
deviate from unity. Below it will be shown that far
away from S

2
the correct limiting values of f and

m are approached.
In order to transform the right-hand sides of eqs

(59), (60) we substitute with the auxiliary functions
from eq. (9), and with the final solutions eqs (13), (14).
The boundary conditions for the three velocity com-
ponents on the solid surface S

1
are also taken into

account. Thus, we arrive at the following expressions:
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After having determined the numerical coefficients in
the series (13) and (14) up to a cetain large value of n, it
is straightforward to carry out the summation in eqs

(61) and (62). Thus, one can calculate f and m either
for translation or for rotation. Let us emphasize that
eqs (57)—(62) hold in both cases.

Any sufficiently slow motion can be represented as
a superposition of elementary translations and rota-
tions, since the governing equations and the boundary
conditions are linear if the Reynolds and the capillary
numbers vanish. We shall discuss in more details the
realistic situation when a solid sphere, S

1
, which is

close to a large fluid interface, S
2
, experiences an

external force due to gravity, directed along the Oy-
axis (Fig. 1). In steady-state conditions, the particle
translates parallel to the flat surface with constant
velocity »

C
, and rotates around the Ox-axis with

angular velocity u
c
. The buoyancy force is counter-

balanced by the viscous friction:
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6ng
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6ng

1
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c
. (63)

Here *o is the difference between the densities of the
particle and the medium (phase )

1
), g is the gravity

acceleration. The two drag coefficients, f
53!/4

and f
305

,
quantify the respectively forces which emerge because
of the translation and rotation (cf. eq. (57)), note that
»*"au

c
for rotation). Similar arguments lead to the

balance of torques in the form

0"m
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8ng
1
a2»

c
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305
8ng

1
a3u

c
. (64)

The net torque should be zero, m
53!/4

and m
305

refer to
the corresponding elementary motions [cf. eq. (58)].
For a rigid sphere which moves under the action of
buoyancy in an unbounded liquid the Stokes law is
applicable:
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na3g"6ng

1
a»

S50,%4
(65)

with »
S50,%4

being the stationary velocity in this case.
Combining eqs. (63)—(65), one derives

»
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f
305

m
53!/4

!f
53!/4

m
305

. (67)

The latter expressions allow us to calculate how much
the steady velocities change due to the presence of the
wall.

5. NUMERICAL RESULTS AND DISCUSSION

In this section we investigate the influence of the
surface viscosity of the liquid-phase boundary
S
2

upon the flow properties, drag and torque, at
different distances of particle-wall separation,
d (Fig. 1). The computations have been carried out
according to the following scheme: First, we solve the
linear set of eqs (34), (35), (43) and (45), for the coeffi-
cients a

n,0
(n*0), a

n,2
(n*2), a

n,3
(n*1), and

B
n,1

(n*1). The Gauss—Seidel method is convenient
for this system, which is predominantly diagonal. The
adopted maximum value of n, at which the equations
are cut, is connected with d. In general, at large d (of
the order of 1) n"100 suffices, whereas for d&0.001
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Fig. 2. Vetor plot of velocity in the plane x"0. The liquid interface, located at z"0, is non-viscous
(k"e"0); b"g

2
/g

1
"0.907. The particle translates at d"0.1.

Fig. 3. Vector plot of velocity in the plane x"0. The liquid interface, located at z"0, is viscous
(k"e"100); b"g

2
/g

1
"0.907. The particle translates at d"0.5.

much more terms have to be taken, we use n up to
10,000.

Second, we substitute into eqs (23), (25), (26), (29),
(31) and (32) to determine B

n,3
(n*1), B

n,2
(n*2),

B
n,0

(n*0), A
n,3

(n*1), A
n,0

(n*0), and A
n,2

(n*2).
Having found all coefficients in the series (13)— (16), we
perform the summations and obtain the three velocity
components and the pressure at each point of the flow
domain in the phases )

1
and )

2
[cf. eqs (3), (4) and

(9)]. In order to calculate the surface deformation, the
linear set (54) is solved for the unknown constants
¸
n
(n*1) which are after that inserted into eqs (53)

and (50). The latter expression gives us the perturbed
shape of S

2
. The drag and torque coefficients, f and m,

are determined by means of the explicit formulae (61),
(62).

In Fig. 2, the velocity vector field is presented for
the case of translation, with non-viscous interface
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Fig. 4. Vector plot of velocity in the plane x"0. The liquid interface, located at z"0, is non-viscous
(k"e"0); b"g

2
/g

1
"0.907. The particle rotates at d"0.1. The arrow heads are not drawn to scale, but

have equal size.

S
2
[k"e"0, cf. eq. (42)]. S

2
is positioned at z"0

and d is 0.1. One can see that the influence of the
particle motion is far reaching, it extends to distances
of the order of several sphere diameters. In addition,
velocity of considerable magnitude is observed in the
lower phase, )

2
. Comparison can be made with the

flow when the surface S
2

is viscous. The latter situ-
ation is illustrated in Fig. 3 for k"e"100, d"0.5.
We assume equal dilatation and shear viscosities be-
cause this is so in most systems of practical import-
ance (cf. Edwards et al., 1991). Figure 3 shows that the
fluid in the bulk )

2
is nearly at rest. Moreover, the

velocity in the continuous phase )
1
turns out to decay

faster as receding from the particle (compare with
Fig. 2). It should be mentioned that for common low
molecular weight surfactants the interfacial viscosity
is between 10~4 and 1 sp (surface poise"g/s)—see
Edwards et al. (1991). On the other hand, for proteins
g
d

and g
4)

can range from 10 up to 103—104 sp (cf.
Graham and Phillips, 1980a, b). With micron-sized
particles, a&10~4 cm, eqs (42) provide an estimate
k&e'102, if g

1
&0.01 g/(cm s). In general, the be-

haviour of the viscous surface at k!e'102 is very
close to that of a solid wall, as can be inferred from
Fig. 3. Further numerical results described below sup-
port such a conclusion.

In Fig. 4 we plot the velocity distribution for the
case of rotation, when the interface S

2
is non-viscous

and d"0.1. In contrast to translation, now the velo-
city is appreciable only in a close vicinity of the
particle. The influence of the motion upon the fluid in
the lower phase )

2
is minor. Nevertheless, it is inter-

esting to note that a vortex exists in the bulk of )
2
.

Fig. 5. Vector plot of velocity at the liquid-phase boundary,
which is non-viscous (k"e"0); b"g

2
/g

1
"0.907. The

particle translates at d"0.1 above the plane.

The coordinates of its centre in Fig. 4 are x"0, y"0,
z+!0.7.

Figure 5 shows the velocity on a non-viscous sur-
face S

2
, as induced by translation of the sphere situ-

ated at a distance d"0.1 above the plane. It is con-
firmed that the motion extends to a relatively large
region, see also Fig. 2. Different is the case of rotation,
which becomes evident from Fig. 6. Far away from
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Fig. 7. Contour plot of the pressure in the plane x"0. The liquid interface, located at z"0, is non-viscous
(k"e"0); b"g

2
/g

1
"0.907. The particle translates at d"0.5. Contours are drawn at levels 0, 0.1, 0.3,

0.5, 0.7, 0.9, 1.1, 1.3, and 1.5, positive and negative.

Fig. 6. Vector plot of velocity at the liquid-phase boundary,
which is non-viscous (k"e"0); b"g

2
/g

1
"0.907. The

particle rotates at d"0.1 above the plane. The arrow heads
are not drawn to scale, but have equal size.

the particle we see the existence of very small velocity
directed towards negative y.

The pressure distribution calculated for translation,
with k"e"0 and d"0.5, is presented in Fig. 7 as

a contour plot. In accord with the expectations, the
pressure is positive in front of the particle (upstream),
and is negative behind it (downstream), p

i
"0 at infin-

ity (i"1, 2). The pressure changes in the phase )
2
are

much weaker than those inside )
1
. This is a conse-

quence from the fact that the fluid in )
2

moves tan-
gentially, being dragged by the surface. In contrast, for
rotation (Fig. 8) higher pressure develops in )

2
, it is

comparable with that above the non-viscous interface.
The pattern of the liquid motion is more complicated
in the latter case (Fig. 4). The impact of the viscous
properties of S

2
on the pressure distribution is

illustrated in Figs 9 and 10. Both for translation and
for rotation we observe that a moderate surface vis-
cosity (k"e"10) reduces the pressure in the lower
phase substantially. Particularly pronounced is the
effect for rotation—compare Figs 10 and 8. The pres-
sure in the region )

1
is influenced as well. It increases

close to the sphere when the interface S
2

becomes
viscous.

Figures 11 and 12 show the pressure within the
liquid surface S

2
, taken from the side of the upper

phase )
1
. The two pictures correspond to translation,

d"0.1. Higher values of the pressure are found with
k"e"10, compared to the case without surface vis-
cosity. The same trend can be extracted also from
Figs 7—10.

Computed deformations of the plane interface S
2

(non-viscous), due to translation and rotation of the
spherical particle, are drawn in Figs 13 and 14. It is
evident that for rotation the peaks are sharper, and
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Fig. 8. Contour plot of the pressure in the plane x"0. The liquid interface, located at z"0, is non-viscous
(k"e"0); b"g

2
/g

1
"0.907. The particle rotates at d"0.5. Contours are drawn at levels 0, 0.1, 0.2, 0.3,

0.5, 0.7, and 0.9, positive and negative.

Fig. 9. Contour plot of the pressure in the plane x"0. The liquid interface, located at z"0, is viscous
(k"e"10); b"g

2
/g

1
"0.907. The particle translates at d"0.5. Contours are drawn at levels 0, 0.1, 0.3,

0.5, 0.7, 0.9, 1.1, 1.3, and 1.5, positive and negative.
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Fig. 10. Contour plot of the pressure in the plane x"0. The liquid interface, located at z"0, is viscous
(k"e"10); b"g

2
/g

1
"0.907. The particle rotates at d"0.5. Contours are drawn at levels 0, 0.1, 0.2, 0.3,

0.5, 0.7, 0.9, 1.1, and 1.3, positive and negative.

Fig. 11. Contour plot of the pressure at the liquid-phase boundary, which is non-viscous (k"e"0);
b"g

2
/g

1
"0.907. The particle translates at d"0.1 above the plane. Contours are drawn at levels 0, 0.4,

0.8, 1.2, 1.6, and 2.0, positive and negative.
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Fig. 12. Contour plot of the pressure at the liquid-phase boundary, which is viscous (k"e"10);
b"g

2
/g

1
"0.907. The particle translates at d"0.1 above the plane. Contours are drawn at levels 0, 0.8,

1.6, 2.4, 3.2, 4.0, 4.8, 5.6, and 6.4, positive and negative.

Fig. 13. Deformation of the liquid-phase boundary, which is non-viscous (k"e"0); b"g
2
/g

1
"0.907.

The particle translates at d"0.1 above it. Note that the positive y-axis is directed to the left.

the magnitude of the deviation from planarity is high-
er. The dimensionless quantity plotted on the vertical
axis is ¸ (r) sin u, cf. eq. (41). Since the capillary num-
ber Ca is very small, one has f/a@1.

We investigate in more detail the behaviour of the
drag and torque coefficients, f and m, at different
conditions. Figure 15(a) presents the drag coefficient
for translation, as a function of the particle—wall
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Fig. 14. Deformation of the liquid-phase boundary, which is non-viscous ((k"e"0); b"g
2
/g

1
"0.907.

The particle rotates at d"0.1 above it.

Fig. 15. (a) Dimensionless drag coefficient for translation, as a function of the particle—wall distance;
(b) dimensionless torque coefficient for translation, as a function of the particle—wall distance.
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Fig. 16. (a) Deimensionless drag coefficient for rotation, as a function of the particle—wall distance;
(b) dimensionless torque coefficient for rotation, as a function of the particle—wall distance.

separation distance. As can be anticipated, with de-
creasing d the drag force increases if S

2
possesses

surface viscosity. At very large d all curves approach
the value f"1, which refers to motion in an un-
bounded liquid. The higher the surface viscosity, the
greater the drag, with the limiting case being a solid
wall. For the latter case we compare the results from
our calculations with those of Goldman et al. (1967),
and the full agreement is confirmed. When the inter-
face is non-viscous, f is slightly below 1, which is
explained by the circumstance that the bulk viscosity
in the phase )

2
is assumed to be a bit lower than

g
1
: b"0.907. This corresponds, for example, to aque-

ous medium )
1
, and the phase )

2
composed of n-

decane, at 20°C.
The torque coefficient for translation, Fig. 15(b),

generally exhibits the same trends with changing

d and the surface viscosity. m approaches zero at
d<1, as it should be. In general, the values of the
torque coefficient are roughly one order of magnitude
smaller than f, with all conditions being the same.
With low or zero interfacial viscosity m is negative, as
the friction from the side of )

2
is smaller than that in

)
1

above the particle. In other words, the induced
moment is directed towards the positive x-axis. Fig-
ure 16 shows the respective dependencies for rota-
tional motion. Appreciable drag force is observed
even for small surface viscosities. The torque coeffic-
ient is not very sensitive to k and e, especially for high
values of those parameters [Fig. 16(b)]. The curve for
k"e"100 practically coincides with that which re-
fers to a solid wall.

Figure 17 illustrates the surface viscosity effect and
its connection with the distance between the particle
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Fig. 17. (a) Dimensionless drag coefficient for translation, as a function of the surface viscosity, k"e,
b"g

2
/g

1
"0.907; (b) dimensionless torque coefficient for rotation, as a function of the surface viscosity,

k"e, b"g
2
/g

1
"0.907.

and the liquid interface. We see that for small d the
influence of the surface viscosity is quite substantial
for translation. In the case of rotation d is the pre-
dominant factor determining the torque [Fig. 17(b)].
It is not surprising that at d"1 the surface viscosity is
virtually immaterial and m+1. Indeed, for rotation
the fluid motion is confined in a narrow zone around
the sphere and the velocity decays very fast (cf. Fig. 4).
We study also the role of the bulk viscosity, varying
b with k"e"0, Fig. 18. The numerical values for
f and m are comparable in magnitude to those ob-
tained at different surface viscosities (cf Fig. 17). Again
the particle—wall distance is found to be of major
importance, when it is small b becomes a factor of
increasing influence. If the phase )

2
is a gas (b"0),

then the drag associated with translation falls mark-
edly below 1 [Fig. 18(a)].

The stationary velocities of the two elementary
motions of the solid sphere when it is subjected to
buoyancy force are plotted in Fig. 19. The translation
is considerably retarded when the interface is viscous
and d is small. On the other hand, with lower bulk
viscosity in the region )

2
and with vanishing surface

viscosity the particle can move faster compared to the
case of unbounded liquid (»

c
'»

S50,%4
). Generally, the

rotation turns out to be quite slow—Fig. 19b. Its
direction can change depending on the surface viscos-
ity. One may easily foresee that near the viscous or
solid wall the vector of the angular velocity will point
to the negative x-axis. Both for translation and for
rotation k"e"100 leads to results close to those
when the surface S

2
is rigid. Finally, one can discuss

the role of the bulk viscosity (that is, b). Data are
presented in Fig. 20 for k"e"0. Again, the effects of
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Fig. 18. (a) Dimensionless drag coefficient for translation, as a function of the bulk viscosity parameter,
b"g

2
/g

1
, k"e"0; (b) dimensionless torque coefficient for rotation, as a function of the bulk viscosity

parameter, b"g
2
/g

1
, k"e"0.

d and b are interrelated. The cases of highly viscous
phase )

2
(large b), and gaseous phase (b"0) are

clearly distinguished. At small values of b one ob-
serves »

c
'»

S50,%4
and u

c
'0.

6. CONCLUDING REMARKS

This article is focused on the role of the intrinsic
viscous properties of a liquid surface, which influences
the flow in the two adjacent bulk phases. The creeping
motion caused by a rigid sphere which translates or
rotates parallel to the interface is considered. The
liquid boundary is supposed to be Newtonian, it pos-
sesses dilatational and shear surface viscosities. The
stress on it obeys the Boussinesq—Scriven constitutive
relation. To solve the hydrodynamic problem we ap-
ply a method similar to that used previously by other

authors for solid or non-viscous interfaces. The
boundary condition for the tangential stress balance
is augmented with account for the viscous friction
within the surface. The velocity components and the
pressure in the fluid, as well as the drag and the torque
experienced by the particle, are determined numer-
ically.

At small distances between the sphere and the wall,
one observes a substantial influence of the surface
viscosity: it leads to increase of the drag and torque,
and retards the motion when a constant external force
(for example, buoyancy) is applied to the particle. For
steady rotation the flow around the solid sphere is
restrained in a narrow region, whereas in the case of
translation the velocity field extends to large distan-
ces. Consequently, the rotating particle should be
closer in order to start ‘feeling’ the liquid interface.
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Fig. 19. (a) Velocity of stationary translation of the particle under the action of gravity, scaled by the
Stokes velocity in an unbounded fluid, as a function of the particle—wall distance; (b) angular velocity of
stationary rotation of the particle under the action of gravity force, times the radius, scaled by the Stokes

velocity in an unbounded fluid, as a function of the particle—wall distance.

The bulk viscosity is found to play a role as well. If the
phase beyond the wall is less viscous, and for small
surface viscosity, the drag can be smaller than that
corresponding to motion in an unbounded liquid. The
torque can change its sign depending on the proper-
ties of the bulk and the interface.

Our results can be important for systems which
contain surfactant-loaded liquid boundaries. Such
a boundary can affect the motion of a micron-sized
particle in much the same way as a solid wall—see the
estimtes in Section 5 above. The influence can be
substantial even with low molecular weight surfac-
tants, it should be particularly high for adsorbed
proteins, as the latter immobilise the liquid interface
completely.

Many experimental methods for measuring the in-
terfacial viscosities have been developed, some of
them are reviewed by Edwards et al. (1991). We shall
mention here a recent work which opens a new route
to solving this problem, being to some extent connec-
ted with the results described in the present paper.
Petkov et al. (1995) were able to obtain the drag
coefficient by measuring the particle velocity and cal-
culating the lateral capillary force which is operative
when a solid sphere is attached to a liquid surface.
(The particle is partially immersed in both phases and
forms a contact angle.) Having found the drag coeffic-
ient, one may rely on theoretical computations to fit
the value using certain interfacial viscosity numbers.
This can represent a new method for determination of
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Fig. 20. (a) Velocity of stationary translation of the particle under the action of gravity, scaled by the
Stokes velocity in an unbounded fluid, as a function of the bulk viscosity parameter, b"g

2
/g

1
, k"e"0;

(b) angular velocity of stationary rotation of the particle under the action of gravity force, times the radius,
scaled by the Stokes velocity in an unbounded fluid, as a function of the bulk viscosity parameter,

b"g
2
/g

1
, k"e"0.

the surface viscosity. Similar ideas can be applied for
the case of a particle attached below or above the
liquid boundary without touching it (for example,
under the action of gravity force). Then, the calcu-
lations included in this article will be of help in order
to interpret the data for the drag coefficient.
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