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In the first part of this study we described the process of destabilization of foam films by mixed (silica-
silicone oil) antifoam drops as observed with a high-speed video camera. The drops formed oil bridges,
which stretched with time and eventually ruptured the foam films. Remarkably, two types of bridges could
be distinguished: (i) mechanically unstable ones, which stretched and ruptured the films within several
milliseconds, and (ii) metastable ones, that existed for a much longer period (up to several seconds). The
stability of oil bridges is theoretically analyzed in the current article, which presents a further development
of the model by Garrett (J. Colloid Interface Sci. 1980, 76, 587). The deformation of the foam film surfaces,
which was previously neglected, is explicitly taken into account. The effect of several governing factors
(three-phase contact angles, film thickness, size of the bridge, presence of spread oil layer) on the evolution
and stability of the oil bridges is analyzed. The calculations show that the bridge stability depends primarily
on two factors: (i) the contact angle oil-water-air and (ii) the relative size of the bridge (with respect to
the film thickness). Mechanically stable bridges can be formed at any value of the three-phase contact
angle if the relative size of the bridge is below a given critical value. Above the critical size, the bridge
stability is determined by the contact angle (i.e., by the corresponding bridging coefficient B, as introduced
by Garrett). The reduced stability of the bridges in the presence of a prespread oil layer is explained by
an accumulation of oil in the bridge (from the spread layer), which leads to an actual increase of the size
of the bridge. The theoretical predictions are compared with the experimental results and are discussed
from the viewpoint of the mechanisms of antifoam action.

Introduction

In the first part of this study1 we applied several
complementary experimental methods to reveal what is
the actual mechanism of foam destruction by mixed
(silica-silicone oil) antifoams in solutions of sodium dioctyl
sulfosuccinate (AOT). The results showed that the anti-
foam particles (emulsified drops or lenses floating on the
solution surface) made unstable bridges in the foam films.
The bridges stretched with time due to uncompensated
capillary pressures across the oil-water and oil-air
interfaces (see below for details) and eventually became
perforated and ruptured, resulting in subsequent de-
struction of the entire foam film (see Figure 11 in ref 1).
For brevity, hereafter we denote this mechanism of film
destruction as the “bridging-stretching” mechanism.

Two particular and somewhat unexpected features of
the bridging-stretching mechanism emerged from the
observations on our experimental system. First, we could
distinguish two types of bridges: (i) inherently unstable
bridges, which rapidly stretched and ruptured the film
within several milliseconds, and (ii) metastable bridges,
which survived for a much longer period (from a fraction
of a second up to several seconds), during which a slow
change in the bridge shape was observed, followed by a
sudden and ultrarapid bridge expansion and film rupture.
We interpret the latter process as a transition of the
bridges from a mechanically metastable configuration to
an unstable one (more precise definitions of these terms
are given below). Second, we observed a strong dependence

of the bridge stability on the presence of a prespread oil
layer located on the surfaces of the foam film. In the
absence of prespread silicone oil, the entry of an antifoam
particle (most probably containing both oil and silica)
typically lead to spreading of oil from the particle without
film rupture; that is, the formed oil bridges were relatively
stable. On the contrary, in the presence of a spread oil
layer (even as thin as several nanometers) the formed oil
bridges were either metastable or inherently unstable.
Qualitatively, the bridge stability decreased with the
amount of spread oil on the film surface.

The stability of oil bridges in foam films was theoretically
studied by Garrett.2,3 He analyzed whether a liquid bridge
obeying the Neumann’s triangle (three-phase contact
angles satisfying the vectorial balance of the interfacial
tensions at the contact line) could be in mechanical
equilibrium, viz. whether the capillary pressure jumps
across the interfaces can be balancedssee Figure 1. The
analysis showed that if the contact angle oil-water-air
RW > π/2 (or the angle θOW ≡ π - RW < π/2, in Garrett’s
notation), then the capillary pressure jump across the oil-
water interface ∆POW ≡ PO - PW, is always smaller than
the pressure jump across the oil-air interface ∆POA ≡ PO
- PA. In other words, it is impossible to satisfy simulta-
neously the Neumann triangle and the capillary pressure
balance, which are both necessary conditions for me-
chanical equilibrium of the system. One important feature
of Garrett’s model is that the surfaces of the foam film are
assumed to be perfectly planar. As a result of this
approximation, the capillary pressure jump across the
air-water interface ∆PAW ≡ PA - PW is by definition equal
to zero in this model. In conclusion, the bridges with RW
> π/2 are considered mechanically unstable in Garrett’s
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model, while at RW < π/2 (which is equivalent to θOW > π/2
in Garrett’s notation) one can construct a liquid bridge of
a certain size that satisfies simultaneously both conditions
for mechanical equilibrium, namely, the Neumann tri-
angle and the capillary pressure balance.

As shown by Garrett,3 the geometrical requirement θOW
< π/2 is equivalent to the following relationship between
the interfacial tensions

where the subscripts AW, OW, and OA denote the air-
water, oil-water, and oil-air interfaces, respectively. B
in eq 1 is the so-called “bridging coefficient”, which was
introduced by Garrett as a quantitative criterion for bridge
stability. Positive values of B correspond to θOW < π/2 (RW
> π/2) and unstable bridges, while negative values of B
correspond to θOW > π/2 (RW < π/2) and mechanically stable
bridges.

The actual mechanism by which the oil bridges rupture
the foam films was not specified in detail in the original
paper.2 Garrett suggested2 that the disbalance of pressures
at positive B “would presumably give rise to enhanced
drainage [of aqueous surfactant solution] away from the
droplet”. On the contrary, at negative B “the unbalanced
force acts in a direction opposing film drainage”. Probably
these comments have lead most of the researchers in this
area to consider the film destabilization by oil bridges in
terms of the bridging-dewetting mechanism (see Figure
1 in ref 1), similar to the process of dewetting of solid
particles in foam films as observed by Dippenaar4 and
theoretically modeled by Frye and Berg.5

In a later study Garrett3 pointed out another possible
mechanism of film rupture. As RW f π (which is equivalent
to RO f 0, with RO being the three-phase contact angle
water-oil-air),” the curvature of the oil-air interfaces

will of necessity become concave ... [and] the point of
rupture could be at the center of the expanding oil lens
as the two concave air-oil surfaces approach one
another”3ssee Figure 2. It is important to note that the
contact angle RO in our experimental system1 was indeed
very small. The idea of film rupture at the center of an
oil bridge can be traced back to an article by Ross,6 who
wrote: “The total effect [of bridging] is the replacement
in the film of a liquid capable of sustaining stable films
by a liquid which does not possess that property. The film
is thinnest precisely at the place where it is composed
entirely of the antifoaming agent and it is therefore at
this spot that rupture of the film can be expected to take
place.” However, Ross6 imposed a very strong condition
for realization of this mechanism, namely, that the
spreading coefficient S should be positive, while later
studies3,7 showed that this is not a necessary condition for
antifoaming action. In fact, this picture (biconcave oil
bridge which ruptures in the center) is what we observed
in our experiments and what we call the bridging-
stretching mechanism.1

The aim of the current study is to analyze theoretically
in more detail the stability of foam films in the presence
of oil bridges. First, we often observed a notable deforma-
tion of the two film surfaces upon the formation of the
bridge (in particular, when metastable bridges appeared).
As mentioned above, in Garrett’s model2 the film surfaces
were assumed to be perfectly flat and it was not clear in
advance whether the observed surface deformation could
change significantly the predictions of the theoretical
model. As we show below, the deformability of the film
surfaces turned out to be an important effect, and some
new features of the bridge stability have emerged from
the more detailed consideration. Second, the actual
mechanism of bridge stretching due to the disbalance of
capillary pressures had not been entirely clear, and we
have clarified further this point. Third, we have been able
to explain the observed effect of the prespread oil layer,
as well as the presence of metastable bridges and their
transition to an unstable configuration. In this way we
have achieved two goals: (i) the main experimental
observations have been explained, and (ii) the under-
standing of the film stability in the presence of oil bridges
is further enhanced.

Physical and Mathematical Background
In this section we outline the basic equations describing

the shape of fluid interfaces in mechanical equilibrium.
The particular model of oil bridges in foam films, which
is adopted in our consideration, is described afterward.

Laplace Equation of Capillarity. The shape of the
interfaces in mechanical equilibrium must obey the
Laplace equation of capillarity, which relates the capillary
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Figure 1. Schematic presentation of an oil bridge in a planar
foam film:2,3 (A) unstable bridge of positive bridging coefficient,
B > 0 (θOW < 90°; RW > 90°); (B) stable bridge of negative bridging
coefficient, B < 0 (θOW > 90°; RW < 90°).

B ≡ σAW
2 + σOW

2 - σOA
2 > 0 (1)

Figure 2. Schematic presentation of an oil bridge in a foam
film with deformable surfaces. The foam film surfaces far away
from the bridge are planar.
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pressure jump across the interface ∆P with the curvature
of the interface

Here σ is the interfacial tension, while R1 and R2 are the
two principle radii of curvature. Note that in general the
two radii of curvature could be negative or positive or
have different signs for a given interface. In our system
we can neglect the effect of gravity (an estimate of the
gravity term is presented below) and can consider the
bridge as being symmetrical with respect to (i) a plane
parallel to the nonperturbed foam film surfaces and (ii)
an axis perpendicular to the plane of the film and passing
through the center of the bridgessee Figure 2. In this
case the Laplace equation of capillarity can be expressed
as a system of two ordinary differential equations of first
order8,9

with two unknown functions, z(r) and æ(r), which describe
the coordinates of the points at the interface and the
running slope angle, respectively (see Figure 2). Here the
z axis is chosen to coincide with the axis of symmetry (-∞
< z < +∞) and r is a polar coordinate (0 e r < ∞). Since
the bridge is symmetrical with respect to the plane z )
0, one can consider only the upper half of the system (z
g 0).

Neumann Vectorial Triangle. The mechanical equi-
librium of a heterogeneous system requires also a balance
of the surface tensions acting on the three-phase contact
lines. For fluid phases this requirement is represented by
the so-called Neumann vectorial triangle

The vectors σAW, σOW, and σOA have magnitudes equal to
the respective scalar interfacial tensions. The vectors are
oriented in such a way that they are simultaneously
tangential to the respective interface and perpendicular
to the three-phase contact line (Figure 2). The vectorial
eq 5 can be presented as a set of two independent
trigonometric equations connecting the scalar interfacial
tensions with the slope angles, ψOA, ψAW, and ψOA at the
contact line

From a mathematical viewpoint, eqs 6 and 7 appear as
boundary conditions for solving the Laplace equation of
capillarity (eqs 3 and 4).

Particular Solutions of the Laplace Equation. The
particular function describing the profile of an interface
can be found as a solution of the Laplace equation of
capillarity, and it depends on both the boundary conditions
and the value of the capillary pressure ∆P. A detailed

analysis of the possible solutions can be found in ref 8-11.
In general, the interface could be planar (∆P ) 0; 1/R1 )
1/R2 ) 0), spherical (1/R1 ) 1/R2 * 0), or cylindrical (1/R1
) 0, 1/R2 * 0) or the surface generatrix could be part of
a catenoid (∆P ) 0, 1/R1 ) - 1/R2 * 0), a nodoid, or an
unduloid. Explicit expressions for these functions are
presented in the following section, where we discuss the
shapes of the different interfaces in our system.

Model of the Liquid Bridge
The central question in the present analysis is whether

a liquid bridge formed in a foam film can be mechanically
stable. Following the idea of Garrett,2,3 we try to construct
a bridge which satisfies simultaneously the Laplace
equation of capillarity and the Neumann triangle. If these
two conditions can be satisfied at given values of the
interfacial tensions, the film thickness, and the volume
of the bridge, then the bridge is considered as being in
mechanical equilibrium. In a second stage of the analysis,
which is presented in the next section, we investigate
whether the obtained configuration corresponds to a stable
or unstable equilibrium.

The main difference of the present theoretical model
from the previous model2 is that the foam film surfaces
are considered as deformable. This makes the model much
more complex because a variety of solutions of the Laplace
equation of capillarity are in principle possible. One should
carefully screen all of the possible solutions to check which
of them can be realized at given prescribed conditions
(bridge volume, foam film thickness, three-phase contact
angles, etc.). Below we first analyze which of the solutions
could be used for description of the different interfaces
(OA, AW, and OW); afterward the algorithm used to “build-
up” a bridge satisfying the Laplace equation of capillarity
at the respective conditions is explained.

Oil-Air Interface. When an interface meets the axis
of revolution, as it is the case with the oil-air interface
in our system, then it must be a part of a sphere (see
Figure 3)

The function sgn(x) is equal to +1 or -1 for positive or
negative values, respectively, of its argument. If the
capillary pressure jump ∆POA ≡ PO - PA is positive, then
the cap of the oil bridge is convex (see Figure 3A). On the
contrary, if ∆POA is negative, then the cap of the oil bridge
is concave (Figure 3B). The vertical displacement of the
spherical surface (viz. the coordinate of the geometrical
centerof thespherical surfacez0S)dependsontheboundary
conditions at the three-phase contact line: the slope angle
ψOA and the height of the contact line zC.

Air-Water Interface. The experiments1 in the Sche-
ludko cell showed that the oil bridge perturbs the film
surfaces by diminishing the local film thickness by between
100 and 500 nm. The radius of the perturbed spot was

(8) Princen, H. M. In Surface and Colloid Science; Matijevic, E., Ed.;
Wiley: New York, 1969; Vol. 2, Chapter 1.

(9) Kralchevsky, P. A.; Danov, K. D.; Denkov, N. D. In Handbook of
Surface and Colloid Chemistry; Birdi, K. S., Ed.; CRC Press: New York,
1997; Chapter 11.

(10) Abramowitz, M.; Stegun, I. A. Handbook of Mathematical
Functions; Dover: New York, 1965.

(11) Finn, R. Equilibrium Capillary Surfaces; Springer-Verlag: New
York, 1986.

∆P ) σ(1/R1 + 1/R2) (2)

d sin æ
dr

+ sin æ
r

) ∆P
σ

(3)

dz
dr

) tan æ (4)

σAW + σOW + σOA ) 0 (5)

σAW cos ψAW ) σOW cos ψOW + σOA cos ψOA (6)

σAW sin ψAW ) σOW sin ψOW + σOA sin ψOA (7)

zOA(r) ) z0S + sgn(∆POA)xROA
2 - r2 (0 e r e rC)

(8)

tan æOA ) -sgn(∆POA) r

xROA
2 - r2

(0 e r e rC)

(9)

ROA ) 2σOW/∆POA (10)
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typically 10-50 µm, while the rest of the foam film thinned
down without being notably affected by the presence of
the bridge (until eventually the bridge stretched and
ruptured the film). These observations suggest that it is
reasonable to model the air-water interface in the
perturbed zone as part of a surface obeying the Laplace
equation of capillarity and having a horizontal tangent,
dzAW/dr ) 0, at the periphery of the perturbed zone, rP >
0. From all possible solutions of the Laplace equation,
only a planar surface and a curved surface, generated by
revolving a nodoid around the axis of symmetry, satisfy
these requirementssthe cylinder, the unduloid, and the
catenoid have no horizontal tangent at any value of r,
while the sphere has a horizontal tangent only at r ) 0.
Therefore, the air-water interface can be represented only
as a plane (when ∆PAW ) 0) or as a curved interface
generated by a nodoid (∆PAW * 0). In the latter case two
possibilities have to be distinguished: if ∆PAW ≡ PA - PW
< 0, then the generatrix is convex (Figure 3C), while, in
the oposite case, ∆PAW > 0, the generatrix is concave
(Figure 3D). In both cases the shape of the AW interface
can be described by the following equations, which are
obtained after double integration of eq 3:9

where F(φ,q) and E(φ,q) are elliptic integrals of the first
and second kind,10 respectively; r0E and z0E are parameters
that should be determined by the boundary conditions at

the contact line and at the boundary of the perturbed
region (note that 0 < r0E < rC, while z0E could be of arbitrary
sign).

Oil-Water Interface. It turns out that the oil-water
interface may have any of the shapes discussed above
(except a planar shape). Depending on the capillary
pressure across the OW interface and on the slope angle
at the contact line ψOW, the surface can be spherical or
cylindrical or be described by a catenoid, a nodoid, or an
unduloid. As shown by Kralchevsky et al.,9 instead of
consideringall thesecasesseparately, it ismoreconvenient
to distinguish two geometrically different cases: bridge
with concave generatrix (Figure 3E) and bridge with
convex generatrix (Figure 3F).

The governing parameter which determines the par-
ticular shape of the bridge is the product k1Br0B, where r0B
is the equatorial radius of the OW interface at the plane
z ) 0 and k1B accounts for the pressure jump across the
OW interface

Note that k1B could have arbitrary sign (positive, negative,
or zero). As explained below, the value of r0B is determined
in our calculations from the volume of the liquid bridge
(which is assumed to be known) and from the thickness
of the foam film.

(a) OW Interface with a Neck (Concave OW Interface).
The OW interface is concave (Figure 3E) when k1Br0B ∈
(-∞, 1/2). In particular, the generatrix of the interface is
a nodoid for k1Br0B ∈ (-∞, 0), a catenoid for k1Br0B ) 0, and
an unduloid for k1Br0B ∈ (0, 1/2). The double integration of
eq 3 leads to the following expressions for the generatrix
of the interface (nodoid or unduloid)9

Equations 18 and 19 describe the OW interface in the
cases of nodoid and unduloid. If the capillary pressure
jump across the OW interface is zero (k1B ) 0), then the
integration of eqs 3 and 4 leads to another result
(catenoid)8,9

Figure 3. Different possible shapes of the oil-air (A and B),
air-water (C and D), and oil-water (E and F) interfaces. k1B ≡ ∆POW/(2σOW) (17)

zOW(r) ) r1B sgn(∆POW)[E(φ1B,q1B) -

1
rr1B

x(r2 - r0B
2)(r1B

2 - r2)] + r0BF(φ1B,q1B)

(k1B * 0; r0B < r < rC) (18)

tan æOW )
k1B(r2 - r0B

2) + r0B

|k1B|[(r2 - r0B
2)(r1B

2 - r2)]1/2

(k1B * 0; r0B < r < rC) (19)

r1B ≡ |1/k1B - r0B| (20)

q1B ≡ (1 - r0B
2/r1B

2)1/2 (21)

sin φ1B ≡ 1
q1B

(1 - r0B
2/r2)1/2 (r0B < r < rC) (22)

zOW(r) ) r0B ln[r/r0B + x(r/r0B)2 - 1]
(k1B ) 0; r0B < r < rC) (23)

tan æOW )
r0B

xr2 - r0B
2

(k1B ) 0; r0B < r < rC) (24)

zAW(r) )

r1E[E(φ1E,q1E) - 1
rr1E

x(r2 - r0E
2)(r1E

2 - r2)] -

r0E sgn(∆PAW) F(φ1E,q1E) + z0E

(rC < r < rP) (11)

tan æAW ) -sgn(∆PAW)
k1E(r2 - r0E

2) + r0E

|k1E|[(r2 - r0E
2)(r1E

2 - r2)]1/2

(rC < r < rP) (12)

k1E ≡ -sgn(∆PAW)∆PAW/(2σAW) (13)

r1E ≡ |1/k1E - r0E| (14)

q1E ≡ (1 - r0E
2/r1E

2)1/2 (15)

sin φ1E ≡ 1
q1E

(1 - r0E
2/r2)1/2 (rC < r < rP) (16)
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The boundary conditions at the equator of the bridge

have been used to obtain eqs 18, 19, 23, and 24.

(b) OW Interface with a Haunch (Convex OW Interface).
The OW interface is convex (Figure 3F) when k1Br0B ∈ (1/2,
+∞). In particular, the generatrix of the interface is an
unduloid for k1Br0B ∈ (1/2, 1), a circumference for k1Br0B )
1, and a nodoid for k1Br0B ∈ (1, +∞). The unduloid and the
nodoid can be described by the equations9

where r1B is given by eq 20 (note that r1B < r0B in this case)
and

If the generatrix of the bridge is a circumference of radius
RS ) 2σOW/∆POW, then it is described by the equation

The particular case of k1Br0B ) 1/2 corresponds to a
cylindrically shaped interface

Matching the Solutions of Laplace Equation for
the Different Interfaces. To describe the liquid bridge
and the meniscus surrounding it (the perturbed region of
the foam film), one should combine the solutions of the
Laplace equation of capillarity for the AW, OW, and OA
interfaces. This is a nontrivial task, because the particular
form of the function describing the OW interface zOW(r)
depends on the conditions (three-phase contact angles,
film thickness, volume of the bridge); therefore, this
function is not known in advance and should be determined
in the course of the calculations. Furthermore, a number
of parameters in the equations describing the interfaces
are also unknown in advance (e.g., the capillary pressures
∆POW, ∆PAW, and ∆POA, the radius of the contact line rC,
etc.).

In the following we will assume that the interfacial
tensions σAW, σOW, and σOA are prescribed. The three-phase

contact angles RW, RO, and RA can be calculated from the
relationships8

The foam film thickness and the volume of the oil bridge
are also assumed to be known.

The configuration of the bridge and the meniscus
surrounding it would be completely defined if the three
functions zOW(r), zAW(r), and zOA(r) are knownssee eqs 8,
11, and 18 (or eq 26 instead of eq 18 if the bridge has a
haunch). In these equations we have nine independent
parameters that should be defined or determined from
the boundary conditions. These are the three capillary
pressures (∆POW, ∆PAW, and ∆POA), the radius of the
contact line rC, the vertical displacements z0S and z0E, the
parameters of the elliptic functions r0E and r0B, and the
radius of the perturbed zone rP. The other quantities which
appear in eqs 8, 11, and 18 (ROA, r1E, k1E, q1E, φ1E,, r1B, k1B,
q1B, φ1B) can be calculated from eqs 10, 13-17, and 20-22.
A careful analysis of the system shows that we have eight
additional equations to determine eight of these nine
parameters. These are as follows:

(i) Two equations which match the shape of the
perturbed zone with the surrounding foam film, which is
considered to be planar and has a given thickness h. These
equations express the requirements that the function zAW-
(r) should be equal to half of the film thickness, while the
slope should be zero, at the periphery of the perturbed
zone

(ii) Two equations which express the requirement that
the OW, AW, and OA interfaces should meet each other
at the three-phase contact line

(iii) Two equations which stem from the Neumann
vectorial triangle at the three-phase contact line

(iv) One equation expressing the balance of the capillary
pressure jumps across the interfaces

zOW(r0B) ) 0; tan æOW(r0B) f ∞ (25)

zOW(r) ) -(r0B - 1/k1B)F(φ2B,q2B)r1B + r0BE(φ2B,q2B)
(k1Br0B * 1; rC < r < r0B) (26)

tan æOW ) -
k1B(r2 - r0B

2) + r0B

|k1B|[(r2 - r0B
2)(r1B

2 - r2)]1/2

(k1Br0B * 1; rC < r < r0B) (27)

q2B ≡ (1 - r1B
2/r0B

2)1/2 (28)

sin φ2B ≡ 1
q2B

(1 - r2/r0B
2)1/2 (rC < r < r0B) (29)

zOW(r) ) [(r0B - r)(2RS + r0B - r)]1/2

(k1Br0B ) 1; rC < r < r0B) (30)

r(zOW) ) rC ) const (k1Br0B ) 1/2) (31)

cos RW )
σOA

2 - σOW
2 - σAW

2

2σOWσAW
(32)

cos RO )
σAW

2 - σOW
2 - σOA

2

2σOWσOA
(33)

cos RA )
σOW

2 - σOA
2 - σAW

2

2σOAσAW
(34)

zAW(r ) rP) ) h/2 (35)

dzAW

dr
|r)rP

) 0 (36)

zOW(r ) rC) ) zAW(r ) rC) (37)

zOW(r ) rC) ) zOA(r ) rC) (38)

ψOA ) ψAW + RA - π (39)

ψOW ) ψOA + RO (40)

∆POW ) ∆PAW + ∆POA (41)
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(v) One equation which requires that the volume of the
bridge is equal to an initially preset value VB. The volume
of the bridge can be calculated from the equation

where VCAP is the volume of the spherical “cap” of the
bridge confined between the horizontal plane at the three-
phase contact line, z ) zC, and the OA interface

We used eqs 35-42 to determine the values of ∆POW, ∆PAW,
∆POA, rC, z0S, z0E, r0E, and r0B. The radius of the perturbed
zone rP was varied in the calculations as a free parameter.
Indeed, we see in the experiment that the radius of the
“fish-eye” (the interference pattern from the perturbed
zone) increases with time. In reality, the increase of rP
corresponds to the process of drainage of water away from
the bridge, caused by the pressure difference between the
liquid in the perturbed zone close to the bridge and that
in the flat portion of the film (far from the bridge)ssee the
next section for a more detailed explanation.

The complete algorithm used to “build-up” the bridge
on the basis of the above equations is shown in Figure 4.

Numerical ResultssShape and Stability of Oil
Bridges

The dependence of the bridge shape on the three-phase
contact angles and on the volume of the bridge is examined
in this section. The criteria for bridge stability and the
regions of stable and unstable bridges are discussed.

Effect of the Three-Phase Contact Angles on the
Bridge Shape. Let us consider first how the shape of an

equilibrium bridge depends on the three-phase contact
angles at a given volume of the bridge. As a reference we
will use the volume of an oil drop of diameter equal to the
film thickness

From the viewpoint of the mechanism of antifoam action,
liquid bridges of volume VB on the order of and larger
than V0 are of primary interest.

To give a clear idea about the magnitude of the
calculated quantities, we will present the results in
dimensional form at given specific values of the interfacial
tensions σOA, σOW, and σAW and the film thickness (h ) 2
µm) comparable to those in our experiments.1 However,
the results can be applied to other values of the interfacial
tensions and the film thickness if an appropriate scaling
is used. For example, at given values of the interfacial
tensions, all geometrical quantities, including the radii of
curvature, can be scaled by the film thickness h, while the
scaling factor for the capillary pressures is 1/h.

In Figure 5 we plot the reconstructed oil bridges, along
with part of the contiguous foam film at (A) RO ) θOW )
0 and RW ) 180°, (B) RO ) 20° and θOW ) 16.3° and RW )
163.7°, (C) RO ) 60° and θOW ) 49.9° and RW ) 130.1°, and
(D) RO ) 120° and θOW ) 107.4° and RW ) 72.6°. The
interfacial tensions σOA ) 20.6 mN/m and σOW ) 4.7 mN/m
were chosen to be the same as those in the experiments
described in ref 1. The surface tension of the film σAW was
varied between 25.3 and 18.7 mN/m (see eqs 32-34) in
order to scan the range of three-phase contact angles of
interest. The volume of the bridge was equal to V0, while
the radius of the perturbed zone in the film rp was chosen
to be equal to 100 µm. Note that the system shown in
Figure 5A, RO ) θOW ) 0, corresponds to an oil that is able
to spread completely over the film surface (spreading
coefficient S ) 0).

In all these cases we are able to construct bridges which
are in mechanical equilibrium with the contiguous me-
niscus; that is, the capillary pressure balance and the

Figure 4. Block scheme of the numerical algorithm used to
obtain the equilibrium shape of an oil bridge of a given volume,
VB, in a foam film of deformable surfaces. For simplicity, only
the cases when the oil-water interface is generated by a
revolution of nodoid or unduloid are presented.

VB ) 2π∫r0B

rCr2 tan æOW dr + sgn(∆POA)2VCAP (42)

VCAP ) π
6
|HS|(3rC

2 + HS
2); HS )

rC(1 - cos ψOA)
sin ψOA

(43)

Figure 5. Equilibrium shape of oil bridges at different contact
angles water-oil-air: (A) RO ) 0; (B) RO ) 20°; (C) RO ) 60°;
(D) RO ) 120°. The remaining parameters are σOA ) 20.6 mN/
m, σOW ) 4.7 mN/m, h ) 2 µm, rp ) 100 µm, and VB ) V0 ) πh3/6.

V0 ) 4π
3

(h/2)3 (44)
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three-phase contact angles are satisfied. Note that the
bridging coefficients B for the bridges shown in Figure
5A-C are positivesas shown by Garrett,2 no equilibrium
bridges could exist at positive B if the surfaces of the film
are assumed to be perfectly planar. This means that
equilibrium configurations can be realized only because
the surfaces of the foam film are deformable. However, as
explained below some of these bridges are in stable
equilibrium, while others are in mechanically unstable
equilibrium.

The capillary pressures ∆POW and ∆POA are typically
on the order of ∆POW ≈ ∆POA ∼ 102 to 103 Pa (see eq 41).
For comparison, the contribution in the Laplace equation
of capillarity due to gravity ∆PG can be estimated to be
on the order of ∆Fgh∼10-2 Pa (∆F is the difference between
the mass densities of the phases, and g is the acceleration
due to gravity). The latter estimate justifies our ap-
proximation to neglect the gravity terms in the overall
consideration.

Remarkably, the capillary pressure across the air-
water interface ∆PAW is relatively low (∆PAW ∼ 0.2-0.3
Pa) compared to the film-meniscus capillary pressure
(∼50 Pa), which is the driving force for thinning of the
foam film. Therefore, the flux of water away from the
bridge, which is created by the curvature of the film
surfaces in the perturbed region, should not be very
intensive at this value of rP.

The effect of the increased pressure of the aqueous phase
in the perturbed zone on the evolution of the foam film
can be understood better by considering how the increase
of rp affects the capillary pressures. In Figure 6 we show
the configuration of an oil bridge and indicate the
respective capillary pressures at two different radii of the
perturbed zone: rp ) 25 µm and rp ) 200 µm (cf. also with
Figure 5A). One sees that the magnitude of the capillary
pressure |∆PAW| ) (PW - PF), which indicates how much
the pressure in the perturbed film region PW exceeds the
pressure in the planar portion of the film PF, rapidly
decreases with the radius of the perturbed zone (note that
PF ) PA, because the nonperturbed portion of the film is
planar). This result can be interpreted in the following
way. Immediately after the formation of a bridge, the
radius of the perturbed zone is relatively small. The
corresponding excess pressure in the perturbed zone PW
- PF, is high, and this brings about a flux of water away
from the bridge. As a result, the radius of the perturbed
zone increases, while the excess of pressure in the
perturbed zone decreases with time. When the excess of
pressure in the perturbed zone becomes substantially
smaller in magnitude than the film-meniscus capillary

pressure (which is the driving force for thinning of the
whole foam film), then the contribution of the perturbed
zone to the overall film thinning becomes negligible. It is
important to note that the increase of rp does not lead to
immediate destabilization of the foam film. A perforation
of the oil bridge is needed for film rupture.

Effect of the Oil Volume on the Bridge Shape. The
shape of an oil bridge and its stability depend also on its
size (see the next subsection for details). For that reason
we demonstrate in Figures 7 and 8 how the shape of an
oil bridge changes with the increase of the bridge volume
with all other parameters fixed (three-phase contact
angles, film thickness, and radius of the perturbed zone).
The parameters for the bridge shown in Figure 7 are the
same as those in Figure 5B (θOW < 0, positive B), while
those for the bridge shown in Figure 8 correspond to those
in Figure 5D (θOW > 0, negative B). For brevity we will
adopt the notation from ref 9 and will call “bridges with
necks” those of positive B, while those of negative B will
be denoted as “bridges with haunch”.

The calculations demonstrate that, in general, the
capillary pressures across the oil-water and oil-air
interfaces change their sign with the increase of the bridge
volume for bridges with necks: ∆POW ≈ ∆POA change from
negative to positive (see Figure 7). Accordingly, the shape
of the bridge also changes: the spherical caps in Figure
7A (negative ∆POA) are concave, because the pressure in
the gas phase is higher than the pressure in the oil, while
the caps in Figure 7B (positive ∆POA) are convex. The
oil-water interface in Figure 7A (negative ∆POW) is
generated by revolution of a nodoid, while in Figure 7B
(positive ∆POW) it is generated by revolution of an unduloid.
At sufficiently large volume of the bridge, inflection points
are observed on the curve describing the oil-water
interface, zOW(r)sin these points the second derivative of
zOW(r) is equal to zero (Figure 7B). As discussed below,
the appearance of such inflection points might be an
indication for unstable bridges. The capillary pressure

Figure 6. Equilibrium shape of an oil bridge in a foam film
at different radii of the perturbed zone: (A) rp ) 25 µm; (B) rp
) 200 µm. The remaining parameters are σOA ) 20.6 mN/m,
σOW ) 4.7 mN/m, σAW ) 25.3 mN/m, RO ) 0, h ) 2 µm, VB )
V0 ) πh3/6. The aspect ratio along r and z coordinates is made
different from unity to illustrate the shape of the perturbed
zone.

Figure 7. Shape of oil bridges “with neck” of different volume:
(A) VB/V0 ) 0.3; (B) VB/V0 ) 5. The remaining parameters are
σOA ) 20.6 mN/m, σOW ) 4.7 mN/m, σAW ) 25.07 mN/m, RO )
20°, h ) 2 µm, and rp ) 100 µm.

Figure 8. Shape of oil bridges “with haunch” of different
volume: (A) VB/V0 ) 0.5; (B) VB/V0 ) 15. The remaining
parameters are σOA ) 20.6 mN/m, σOW ) 4.7 mN/m, σAW ) 18.7
mN/m, RO ) 120°, h ) 2 µm, and rp ) 100 µm.
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across the air-water interface ∆PAW is always negative
and tends to zero with the increase of the bridge volume.
However, as pointed out by Garrett,2,3 perfectly flat film
surfaces (∆PAW ) 0) cannot be achieved for such bridges,
because the conditions for mechanical equilibrium cannot
be satisfied.

Bridges with haunch (negative B) behave in a somewhat
different mannerssee Figure 8. The capillary pressures
∆POW and ∆POA are positive in the whole range of bridge
volumes. Correspondingly, the spherical caps of the bridge
are convex and no inflection points appear in the function
zOW(r), except for very small bridges VB/V0 < 0.2 at θOW
close to 90°. As discussed below, all these features indicate
that the bridges with haunch are stable. It is worth noting
that the capillary pressure across the air-water interface
∆PAW changes its sign with the increase of the bridge
volume. At sufficiently large bridge volume, ∆PAW becomes
positive, which means that the pressure in the perturbed
zone is lower than the pressure in the contiguous non-
perturbed planar portion of the film (PW < PF). As a result,
such large bridges with haunch will not destabilize the
film in any way, because the bridges themselves are stable
and, in addition, they do not facilitate the drainage of
water from the film.

Stability of Bridges. All of the equilibrium configura-
tions discussed above satisfy the necessary conditions for
mechanical equilibrium of the bridge with the contiguous
phases. However, not all of these configurations are
stablessome of them correspond to local minima in the
energy of the system, while others do not.12,13 The stable
bridges will tend to restore their shape if subjected to
small mechanical perturbations (e.g., vibrations, local
change of the foam film thickness, etc.), because their
equilibrium shape corresponds to a local minimum of the
energy. On the contrary, the unstable configurations are
in mechanical equilibrium, which is vulnerable to any
small perturbation of the system, just as in the classical
example of a ball placed on the top of a smooth hill. Any
small perturbation would displace the unstable bridge
from the position of mechanical equilibrium, and will
eventually destroy the film. Therefore, our analysis would
be incomplete if we do not specify the regions of stable
and unstable equilibrium bridges.

Theoretical Approaches to Analyze the Stability
of Capillary Systems. The classical approach11-14 to
analyze the stability of capillary systems, such as liquid
bridges or pendant drops, consists of formulating an energy
functional and subsequent variation of this functional at
given, prescribed conditions (e.g., fixed volume of the drop
or fixed capillary pressure). The condition for existence of
an extremum of this functional (its first variation must
be equal to zero) results in formulation of the Laplace
equation of capillarity and the Neumann triangle as
necessary conditions for mechanical equilibrium. The sign
of the second variation of the energy functional indicates
whether the respective solution of the Laplace equation
corresponds to stable or unstable equilibrium. Although
rather rigorous, this approach is very difficult from a
mathematical viewpoint and can be applied only to
relatively simple capillary systems. Our system (liquid
bridge trapped in a fluid film of deformable surfaces) is
too complex for such a type of analysis, and other, simpler
approaches are preferable.

Substantial progress in the formulation of new criteria

for stability has been achieved during the past decade,
mainly by scientists working in the fields of applied
mathematics and low-gravity physics.15,16 The conclusions
from these studies can be summarized in the following
way. The changes in stability of a given capillary system
are associated with some particular points in the diagram
VB versus PC, where VB is the volume of the liquid bridge
and PC is the capillary pressure jump across the side wall
of the bridge (PC ≡ ∆POW in our system). Two types of such
particular points have been distinguished in the literature
(Figure 9):

(a) Turning points (termed also fold or limit points),
which represent maxima or minima in the curves VB(PC),
when the perturbation of the equilibrium state is made
at fixed volume of the bridge. Alternatively, when the
perturbation is made at constant capillary pressure, the
turning points represent extrema in the curves PC(VB). As
pointed out by Lowry and Steen,16 in reality “the nature
of real disturbances lies somewhere between constant
pressure and constant volume, and depends on details of
the particular apparatus used for observation”. Since the
support of the bridge in our system is the foam film, which
has deformable surfaces, perturbations at variable posi-
tions of the three-phase contact lines are possible (zC and
rC can be varied). Therefore, we may expect that any mode
of instability (either at constant pressure or constant
volume) will be able to destroy the bridge and the foam
film. Note that the sign of the derivative dVB/dPC changes
at the turning points, which can be used as a convenient
way to define them.

(b) Branch points (termed also cusps), where at least
three branches of solutions of the Laplace equation of
capillarity meet with each other. Vogel17 has shown that,
for a symmetric liquid bridge hanging between two flat

(12) Myshkis, A. D.; Babskii, V. G.; Kopachevskii, N. D.; Slobozhanin,
L. A.; Tyuptsov, A. D. Low Gravity Fluid Mechanics; Springer-Verlag:
New York, 1987.

(13) Eriksson, J. C.; Ljunggren, S. Langmuir 1995, 11, 2325.
(14) Kralchevsky, P. A. Langmuir 1996, 12, 5951.

(15) Michael, D. H. Annu. Rev. Fluid Mech. 1981, 13, 189.
(16) Lowry, B. J.; Steen, P. H. Proc. R. Soc. London A 1995, 449, 411.
(17) Vogel, T. I. SIAM J. Appl. Math. 1989, 49, 1009.

Figure 9. Different types of transition in stability as indicated
in the VB-PC diagram: (A) limit points which indicate transi-
tions in stability at constant volume of the bridge; (B) limit
points indicating transitions in stability at constant capillary
pressure; (C) branch points indicating transitions in stability
which are associated with changes in the symmetry.
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parallel plates at a given contact angle and negligible
contribution of gravity, the branch point is indicated by
the appearance of inflection points in the curve, describing
the bridge profile (this is the function zOW(r) in our
notation). However, the appearance of inflection points
does not always correspond to branch points in the general
case.17

The above two types of transition points are manifesta-
tions of a general principle, formulated first in the theory
of bifurcation.15 According to this principle, a change in
the stability of a given system occurs when two (or more)
alternative profiles can be realized by a small perturbation,
which satisfies the boundary conditions without change
of the control parameter (e.g., the prescribed drop volume
or capillary pressure).

This short (and somewhat oversimplified) overview of
the theoretical approaches in the theory of stability of
capillary systems covers only those points which are
important for our particular problem. Readers interested
in more details are referred to the original articles.11-17

Application of the General Approach to the
System under Consideration. The application of the
approach15-17 based on identification of turning and branch
points is much easier for stability analysis of capillary
systems, because one does not need to calculate the second
derivative of the energy functional. Instead, one should
find the dependence VB(PC), starting from small bridges
(which are stable in our case) at given three-phase contact
angles and film thickness. Any change of the sign of dVB/
dPC with the increase of the bridge volume would indicate
a loss of stability of the bridge at the respective turning
point. In parallel, one should examine the minimal bridge
volume at which inflection points appear in the curve zOW-
(r), because these inflection points might also indicate a
loss of bridge stability. From all possible curves describing
the neck of the bridge, only the unduloid has inflection
points,8,9 which appear at r ) (r0Br1B)1/2. Therefore, the
conditions for appearance of inflection points in our system
are

Equation 45 is equivalent to the requirement that the
neck of the bridge is represented by an unduloid whose
inflection points coincide with the three-phase contact line.
The bridge loses its stability above a critical volume VB*
which meets either of the above two criteriaschange of
the sign of dVB/dPC or appearance of inflection points.

Numerical Results. The above procedure was applied
to map the regions of stable and unstable bridges in the
plane VB versus θOW (by definition RW ) π - θOW)ssee
Figure 10. The numerical calculations revealed that there
are three distinct regions corresponding to three different
shapes of the curves VB - PC (Figure 10A). In region 1
(θOW < 40°) the curves VB versus PC exhibit two particular
points: one point which indicates a change in the sign of
the derivative dVB/dPC (this point is denoted by M in the
graphs) and another point (denoted by I) which indicates
the appearance of inflection points on the generatrics of
the bridge. Following the general approach described
above, one can conclude that the small bridges (those
situated on the left from point I) are certainly stable, the
larger bridges (those situated above point M) are certainly
unstable, and the points between points I and M might
be stable or unstable. Additional, much more complex
analysis is needed to clarify whether the portion of the
VB-PC curve confined between points I and M corresponds
to stable or unstable bridgesssuch an analysis requires
time and effort (it might require also a further development

of the general theory of bridge stability), and we intend
to make it in a separate study. It is important to note that
the inflection and turning points appear in region 1 at
almost the same bridge volume (the relative difference in
the bridge volumes corresponding to points I and M is
between 10 and 20%), so that the uncertainty for the
stability of bridges confined between points I and M has
no practical importance from the viewpoint of antifoams.

The shape of the VB-PC curves in region 3, which
corresponds to θOW > 90° and bridging coefficient B < 0,
is very simple. The curves VB versus PC do not exhibit any
point where the derivative dVB/dPC changes its sign (VB
is a monotonically decreasing function of PC). Therefore,
one can conclude that the bridges in region 3 are, in
general, stable ones. Only for angles θOW close to 90° and
very small bridges (VB/V0 < 0.2) does one observe the
appearance of inflection points on the generatrics of the
oil-water interface (i.e., these very small bridges might
be unstable).

The shape of the curve VB versus PC in region 2 (40° <
θOW < 90°) is more complex. One can distinguish three
points (M, M1, and M2) where the derivative dVB/dPC
changes its sign and one point (I) which indicates the
appearance of inflection points. Following the general
approach (cf. Figure 9), one can deduce that the bridges
confined between points M1 and I are stable, while the
bridges situated on the left from point M1 and on the right
from point I (or from point M2, which is situated nearby)
are unstable. Therefore, the large bridges (those of volume
above M1) in region 2 are definitely unstable, while the
smaller bridges might be stable or unstable depending on
the bridge volume and capillary pressure.

These results are summarized in Figure 10B, where
the three regions are separated by vertical dashed lines.
The solid curve marked by M indicates the critical volume
VB* which separates the stable bridges (those below the
curve) from the unstable ones (above the curve) in region
1. The most important result of the performed analysis

rC
2 ) r0Br1B; k1Br0B ∈ (0, 1/2) (45)

Figure 10. (A) Schematic presentation of the shape of the
VB-PC curves, which indicate the regions of stable and unstable
bridges; points M indicate changes in the sign of the derivative
dVB/dPC, while points I indicate the appearance of inflection
points in the bridge generatrix. (B) Regions of stable and
unstable bridges, plotted as functions of the dimensionless
bridge volume VB/V0 and the angle θOW ) (π - RW). The
remaining parameters are σOA ) 20.6 mN/m, σOW ) 4.7 mN/m,
h ) 2 µm, and rp ) 100 µm.
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is the discovery of the zone of stable equilibrium bridges
in region 1, where the bridging coefficient B is strongly
positive. Furthermore, a substantial increase of the critical
volume VB* is observed at low values of θOW corresponding
to small contact angles RO, which are usually encountered
with silicone antifoams.

We have performed similar calculations at different
values of the radius of the perturbed zone, 25 µm e rP e
200 µm, which are close to those observed experimentally.1
The numerical results are very similar, and only slight
shifts of the curve shown in Figure 10B (within ca. 20%)
are observedsupward for smaller values of rP and
downward for larger values of rP. From the results of
Garrett2 one may deduce that the region of stability should
disappear at rP f ∞. However, in real foams the radius
of the perturbed zone cannot be larger than the radius of
the foam film, which is typically between 100 µm and
several millimeters.

It is important to note that the plot in Figure 10B
suggests the possibility for a transition of a given bridge
from the region of stable bridges into the region of unstable
ones. Indeed, the reference volume V0 will decrease with
the film thinning (see eq 44), which will lead to an increase
of the ratio VB/V0 at fixed actual volume of the bridge.
Thus, an initially stable bridge could finally cross the
boundarybetweenstableandunstablebridgesandrupture
the film. To emphasize the role of the variable film
thickness, we term the bridges of size below the stability
curve in Figure 10 metastable bridges. Another reason to
prefer the term “metastable bridge” (instead of “stable
bridge”) is the existing, though small in magnitude,
difference between the pressures in the perturbed zone
PW and those in the flat portion of the film PF ) PA. In fact,
our model implies that the bridge is in mechanical
equilibrium with the meniscus surrounding it, but the
perturbed zone is not in true mechanical equilibrium with
the contiguous planar film due to the difference (PW - PF).
The bridges whose initial relative size (with respect to the
film thickness) places them in the region of unstable
bridges are termed inherently unstable bridges.

At the end, let us compare briefly the results from the
present calculations with the predictions of the simpler
model of Garrett.2,3 According to Garrett’s model all bridges
with θOW < 90° (B > 0) could not exist in mechanical
equilibrium. The present calculations show that small
bridges could be in stable equilibrium at positive values
of B (especially at small angles, θOW < 40°). The large
bridges could be in mechanical equilibrium, but this
equilibrium is unstable. With respect to the antifoam
action, the unstable bridges would destroy the foam films,
just as predicted by Garrett’s model (although the
explanation for the bridge instability is somewhat dif-
ferent). Both models predict stable bridges at θOW > 90°
(B < 0).

Effect of the Prespread Oil Layer on the Bridge
Stability

If a thin layer of oil is spread on the surfaces of the foam
film, the tension σAW will be different from that of the film
surface in the absence of oil. As a result, the three-phase
contact angles and the bridging coefficient will be modified
in accordance with eqs 1 and 32-34. Therefore, one can
define initial and final bridging coefficients for a given
system, just as in the case of the initial and final spreading
coefficients.3

One intriguing experimental fact, discussed in the
Introduction, is the reduced stability of foam films in the
presence of a spread oil layer. This observation can hardly

be explained by differences in the initial and final bridging
coefficients, because both of them are strongly positive in
the particular experimental system.1 A much more
convincing (and nontrivial) explanation can be deduced
from the results shown in Figure 10. Let us assume that
an oil bridge is formed from an oil drop (or lens) of volume
below the critical one. If the oil is able to spread over the
foam film surface, then an exchange of oil between the
bridge and the spread layer is possible (see Figure 11). In
principle, two opposite directions of oil transfer are
possible: (1) spreading of oil from the bridge over the film
surfaces or (2) accumulation of oil from the spread layer
into the bridge. Which of these two possibilities will be
realized in a particular experiment depends on the
chemical potentials of the oil in the bridge µB and the
spread layer µS. If the oil phase does not contain solutes,
µB depends only on temperature and pressure:18

where µ0(T) is the chemical potential of a pure bulk oil
phase which is under ambient pressure PA while v is the
molar volume of the oil. Similarly, the chemical potential
of the oil in the spread layer µS is a function of the layer
thickness:19

Here ΠO(h) is the so-called “disjoining pressure” in the
spread oil layer. ΠO(h) accounts for the intermolecular
interactions in the layer and depends in a complex way
on the film thickness (for details see refs 9 and 19-23).
At large thicknesses ΠO(hf∞) f 0.

If the spread layer is in equilibrium with macroscopic
lenses of oil floating on the film surface, then the spread
layer will be fully saturated with oil, ΠO(hEQ) ≈ 0 and
µS(T, h) ) µ0(T). In this case, the transfer of oil from and
toward the bridge will depend primarily on the capillary
pressure ∆POA. Negative ∆POA means reduced pressure
and chemical potential of the oil in the bridge, which would
lead to an influx of oil from the spread layer toward the
bridge and vice versa. This influx of oil would increase the
actual size of the bridge, and at given parameters, the
bridge could cross the boundary separating stable from
unstable bridges (see Figure 10B). This is another
mechanism (along with the foam film thinning) which
could explain the transition from metastable to unstable
bridges, which was often observed in the experiments.

It is worthy to note that if the spread layer is not
saturated with oil (very thin), then the disjoining pressure
ΠO will be positive, and the chemical potential in the layer
will be reduced. As a result, the oil from the bridges will
spread over the film surfaces. Different possible scenarios

(18) Prigogine, I.; Defay, R. Chemical Thermodynamics; Longmans-
Green: London, 1954.

(19) Scheludko, A. Adv. Colloid Interface Sci. 1967, 1, 391.

Figure 11. Schematic presentation of the surface transfer of
oil from an oil lens, floating on the film surface, toward an oil
bridge. The oil transfer is caused by the reduced pressure PO
and hence the reduced chemical potential µB of the oil in the
bridge. Even if there are no lenses on the film surface, a transfer
of oil from a spread oil layer toward the bridge is possible if the
chemical potential µB is lower than the chemical potential of
the oil in the spread layer µS.

µB(T,P) ) µ0(T) + ν(PO - PA) ) µ0(T) + ν∆POA (46)

µS(T,h) ) µ0(T) - νΠO(h) (47)
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could be envisaged in such a case. Our own experiments1

with one particular system (silicone-silica antifoam in
solutions of AOT), however, demonstrated that (1) it was
difficult to obtain a bridge in a film without spread oil,
because the entry of the antifoam droplets was suppressed,
and (2) after the bridge appearance, we observed spreading
of oil from the bridge until a final stable configuration
was achieved. Most probably, the final stable bridge in
these cases was composed of a solid silica framework
impregnated with some residual oil. The chemical po-
tential of this residual oil had to be equal to the potential
of the spread oil in the nonsaturated layer.

Penetration Depth of Oil Lenses

As shown experimentally in ref 1, oil bridges are often
formed from lenses floating on one of the film surfaces.
Obviously, a material contact between the bottom of the
lens and the opposing film surface is a necessary condition
for formation of the bridge in this case24,25 (Figure 12A).
This contact will occur when the film thickness h becomes
equal to the so-called “penetration depth” of the lens dP,
which in turn depends on both the three-phase contact
angles (RO, RW, and RA) and the volume of oil accumulated
in the lens. As far as we know, no quantitative estimate
of this effect has been presented till now. For that reason,
in the present section we calculate the critical volume of
a lens VL*, at which the penetration depth becomes equal
to the thickness of a foam film and formation of a bridge
could be expected. The oil lens is assumed to be deprived
of solid silica particles in the following calculations. The
effect of silica on the bridge stability and on the penetration
depth is discussed later.

It is convenient to present the numerical results in
dimensionless form, VL*/V0 as a function of θOW, because
this plot allows one to compare directly the values of VL*
and VB*ssee Figure 12B. The calculations are performed
at σAO ) 20.6 mN/m and σOW ) 4.7 mN/m; σAW was varied
in the range 25.3-18.7 mN/m, which corresponds to a
variation of θOW between 0 and 120°. The values of θOW
and θOA are calculated from the following equations:8,24

The volume of the critical lens VL* is deduced from
simple geometrical consideration:

As seen from Figure 12B, VL* is a monotonically
decreasing function of θOW. At small angles an excessively
large volume of the critical lens is obtained; in fact, VL*
f ∞ as θOW f 0 (which is equivalent to RO f 0). This result
indicates that the formation of oil bridges would be very
difficult at small contact angles of the oil RO in the absence
of silica, because the penetration depth of these lenses is
relatively small. This conclusion can be illustrated also
with the value of the critical contact radius of the lens rL*,
at which the penetration depth of the lens becomes equal
to the film thickness

The radius of the critical lens tends to infinity (rL*/h f
2/θOW f ∞), as θOW f 0. Note that the contact angle of
silicone oil RO is usually rather low in solutions of typical
surfactants having hydrocarbon tails.

Comparison of the Theoretical Results with
Experimental Observations

The aim of this section is to draw the link between the
theoretical results and the main experimental observa-
tions, which were briefly discussed in the Introduction.
The effects of the solid silica particles on the bridge
formation and stability are discussed at the end.

First, let us explain how the theoretical model describes
the evolution of a metastable bridge, which is formed in
a foam film from an oil lens or an emulsified oil drop of
diameter close to the film thickness (VB ≈V0). Immediately
after bridge formation, the radius of the perturbed zone
is relatively small and the magnitude of the capillary
pressure across the air-water interface ∆PAW is relatively
large (see Figure 6). This means that the pressure in the
perturbed zone is larger than the pressure in the flat
portion of the film surrounding the perturbed zone. A
radial outflux of water from the perturbed zone should
appear as a result of the pressure imbalance. This stage
resembles the first stage of the bridging-dewetting
mechanism of foam film destruction by hydrophobic solid
particles.3-5 In the bridging-dewetting mechanism, the

(20) Derjaguin, B. V. Theory of Stability of Colloids and Thin Films;
Plenum Press: New York, 1987; Chapter 1.

(21) Kralchevsky, P. A.; Danov, K. D.; Ivanov, I. B. In Foams: Theory,
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Marcel Dekker: New York, 1996.
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Morrow, N. R., Ed.; Marcel Dekker: New York, 1990; Chapter 2.

(23) Brochard-Wyart, F.; Di Meglio, J. M.; Quere, D., De Gennes, P.
G. Langmuir 1991, 7, 335.

(24) Aveyard, R.; Clint, J. H. J. Chem. Soc., Faraday Trans. 1997,
93, 1397.
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Figure 12. (A) Schematic presentation of an oil lens, whose
penetration depth dp is equal to the foam film thickness h. VL*
and rL* are the volume and radius of the three-phase contact
line, respectively, of such a lens. (B) Plot of VL*/V0 as a function
of θOW ) (π - RW); the interfacial tensions in these calculations
are σOA ) 20.6 mN/m and σOW ) 4.7 mN/m.
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outflux of water from the perturbed zone continues until
the three-phase contact lines meet each other on the
surface of the antifoam particle (complete dewetting of
the particle). On the contrary, the deformability of the oil
bridge prevents its complete dewetting in the bridging-
stretchingmechanism.Theoil bridgedeforms andacquires
a shape which is close to the equilibrium configuration at
a given radius of the perturbed zonesthis configuration
of the bridge and the contiguous perturbed zone appears
as “the fish eye” when the foam film is observed in reflected
light.1 The theoretical analysis of the equilibrium shapes
of bridges shows that no direct contact of the three-phase
contact lines on the surface of the bridge is possible if the
bridge is deformable.

The theoretical model predicts that the increase of the
radius of the perturbed zone is accompanied by a rapid
decrease of the pressure difference between the perturbed
zone and the flat portion of the film. Hence, the expansion
of the perturbed zone should progressively slow downs
this stage corresponds to the metastable bridges observed
in ref 1. Since the pressure in the bridge is relatively low
(PO < PA ∼ PW), an accumulation of oil into the bridge
from the spread layer should take place until the chemical
potential of the oil in the bridge becomes equal to the
chemical potential of the spread oil (i.e., ∆POW ≈ 0). The
model predicts that, due to the processes of (1) accumula-
tion of oil in the bridge, (2) thinning of the overall foam
film, and (3) increase of the radius of the perturbed zone,
the relative size of the bridge VB/V0 increases with time
and approaches the critical boundary, which separates
the stable bridges from unstable ones.

Once this critical boundary is reached, any mechanical
disturbance (vibrations, hydrodynamic fluxes in the
thinning foam film, etc.) would inevitably displace the
bridge from its configuration of unstable equilibrium. Any
axial contraction of the bridge along the axis of symmetry
(due to a local temporal decrease of the foam film thickness
in the region of the bridge) would lead to an increase of
the equatorial radius of the bridge. As a result, the
capillary pressure balance across the oil-water and oil-
air interfaces is violated, and a process of spontaneous
increase of the equatorial radius of the bridge is induced.
This stage in the theoretical model corresponds to the
transition from metastable to unstable configuration, as
observed in the experiment (ref 1). The bridge expansion
would continue until a thin oil layer is formed in the center
of the bridge, which eventually ruptures.1 Alternatively,
an axial stretching of the bridge along the axis of symmetry
could, in principle, lead to its subdivision into two separate
oil lenses attached to the opposing film surfaces without
film rupture.

If the bridge is formed from a large drop or lens (as was
the case in the experiments with compound A described
in ref 1), then its initial size is above the critical volume,
VB > VB*. Therefore, such a bridge cannot be in stable
mechanical equilibrium and it should expand and rupture
very faststhis case corresponds to the so-called “inherently
unstable” bridges, which were observed to expand and
rupture within several milliseconds.1 The driving force
for the process is the lack of balance of the capillary
pressures across the oil-water and oil-air interfaces.

We have to emphasize that the experiments in ref 1
were performed with a given system (AOT and silicone-
based antifoams) and the above discussion is restricted
to that particular system. In other experimental systems
the evolution of the oil bridges could be different. For
example, if the oil does not spread over the foam film
surfaces, an exchange of oil between the bridge and a
spread layer cannot occur. As a result, the actual increase

of the bridge size due to accumulation of oil from the spread
layer is impossible. Then a thinning of the foam film as
a whole (which will take more time) will be necessary for
overcoming the boundary of the critical bridge volumes
VB*. One can conclude that the bridges in such systems
will take longer to deteriorate and it might take a much
longer time for destruction of the foam as a whole.

The consideration so far has been concentrated on the
properties of the oil, while the effect of the silica particles
has almost been ignored. A rigorous theoretical quanti-
fication of the effect of silica on the stability of an oil bridge
is practically impossible, because the solid particles break
the axial symmetry of the bridge. Indeed, when the
thickness of the oil bridge becomes smaller than the
dimensions of the solid particles, the latter are expelled
toward the periphery of the bridge (where the bridge is
thicker), and the axial symmetry is lost. Nevertheless, on
the basis of the experimental observations1 and the
theoretical results, we can try to formulate several
qualitative hypotheses about the expected impact of solid
particles on the bridge formation and stability.

The firsthypothesis is thatsilicasubstantially facilitates
the formation of oil bridges by at least two effects: (1)
reduction of the barrier against entry of the oil and (2)
increase of the penetration depth of the oil lenses. The
first effect was studied in the literature,3,26 and we will
not discuss it in detail here. Our own experiments with
a variety of antifoam systems (unpublished results) have
demonstrated that oil droplets deprived of solid particles
leave the foam films without entering and forming bridges.
The foam destruction in these systems occurs through
destruction of the Gibbs-Plateau channels, at a much
later stage of the foam evolution. The second effect
(increase of the penetration depth) is particularly impor-
tant for small contact angles, RO<10°, which is the case
with silicone oil and with many other antifoams based on
hydrocarbons. For instance, it is very difficult to explain
how an oil bridge can be formed from a droplet comparable
in diameter with the film thickness, without supposing
the presence of a solid silica framework inside the drop.
Indeed, the entry of the drop on one of the film surfaces
would lead to fast formation of a very flat lens, and the
contact with the opposing film surface would require a
very long time until a further thinning of the foam film
reduces its thickness to become comparable with the
penetration depth of the lens. On the contrary, the
presence of a solid silica framework would preserve the
dimensions of the drop even after the first contact with
one of the film surfaces, and a second entry (and bridge
formation) becomes possible soon after the first one.
Therefore, one can conclude that the rupture of the foam
films observed in our experiments is closely related to the
presence of silica in the used antifoam formulations.

On the other hand, one may expect that the presence
of silica in the oil bridges will stabilize them. The main
reason for this stabilizing effect is the fact that part of the
oil fills up the space in the solid silica framework. The
silica framework plays the role of a nondeformable
reservoir of oil, which does not participate in the stretching
of the bridge. Thus, an excess of oil (over the volume
calculated in the section Numerical Results) is needed for
formation of unstable bridges. A rough estimate of the
nonactive oil, which is “arrested” by the silica framework,
can be deduced from the composition of the silica-oil
aggregates observed in exhausted antifoams. As shown
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by Pouchelon and Araud,27 the exhausted, inactive ag-
gregates contained about 17 wt % silica and 83 wt %
siliconeoil.Therefore,about fourpartsof siliconeare firmly
associated with each part of silica and do not participate
in the foam destruction process.

Conclusions
The present study has been inspired by the experimental

results described in ref 1. A further development of the
model by Garrett2,3 about the stability of oil bridges in
liquid films has been necessary to explain the main
experimental observations. The main new features of the
theoretical model described in the present paper are the
following:

The deformability of the foam film surfaces, which was
observed in the experiment, has been explicitly taken into
account. This modification makes the model much more
complex, and a variety of possible configurations of the
bridge and the meniscus surrounding it has to be
considered (Figures 5-8).

The theoretical results show that oil bridges might be
in equilibrium with the meniscus surrounding them even
if the bridging coefficient B is positive. This equilibrium
is achieved at the expense of some difference between the
pressure in the perturbed zone of the foam film (close to
the bridge) and the pressure in the planar portion of the
film, far away from the bridgessee Figure 6. In principle,
this pressure difference brings about an outflux of water
from the perturbed region (similarly to the process of
dewetting of solid particles in the well-known bridging-
dewetting mechanism), but its magnitude sharply de-
creases with the radius of the perturbed zone. As a result,
after some expansion of the perturbed region, the outflux
of water becomes so slow that it can be neglected in the
time scale of the film-thinning process. The expansion of
the perturbed zone does not lead to a complete dewetting
of the bridge (as is the case with nondeformable hydro-
phobic particles).

The equilibrium configuration of the bridge and the
contiguous meniscus could be either stable or unstable,
depending on the relative size of the bridge as compared
to the film thickness. At positive B the small bridges might
be in stable or unstable equilibrium, while the large
bridges are always in an unstable equilibrium (see Figure
10). The critical volume separating stable from unstable
bridges depends on the three-phase contact angles (i.e. on
the value of B). Once shifted from their equilibrium state,

the unstable bridges spontaneously expand (due to lack
of balance of the capillary pressure jumps at oil-air and
oil-water interfaces) and eventually rupture the foam
film. At negative values of B, the bridges are in stable
equilibrium with the contiguous meniscus, just as pre-
dicted by Garrett.2,3

The observed strong impact of the spread oil layer on
the bridge stability1 is explained by an actual increase of
the bridge volume with time. In this way an initially small,
stable bridge could cross the boundary between stable
and unstable bridges. The process is governed by the
difference in the chemical potentials of the oil in the bridge
and in the spread layer (Figure 11).

The penetration depth of oil lenses (deprived of silica
particles) is calculated and compared with the thickness
of the foam film (Figure 12). It is shown that for small
contact angles RO which are often encountered in practice,
the penetration depth is so small that the formation of
bridges in the absence of silica would be very difficult.
Therefore, one of the roles of silica in mixed solid-liquid
antifoams is to increase the penetration depth of the lenses.
On the other hand, the silica can stabilize to some extent
the oil bridges, and an excess of oil is necessary for
formation of unstable bridges in the presence of silica.

The obtained theoretical results are not restricted to
the experimental system studied in ref 1. All of the above
conclusions can be transferred with minor modifications
to any antifoam-surfactant couple, when oil-based an-
tifoams are considered. However, one has to bear in mind
that the real systems are so rich in phenomena28 that
other effects (e.g., the kinetics of adsorption of surfactant
on the interfaces) could also be important in other
particular systems and have to be taken into account.
The consistent comparison of our experimental results1

with the theoretical predictions gives us the confidence
that we cover the most important phenomena and
processes in our experimental system. New experimental
studies with different systems are currently under way,
which will hopefully clarify the generality of the ideas
presented in this article.

Acknowledgment. The author is indebted to Dr. P.
Cooper (Rhodia Silicones), Professor P. Kralchevsky
(University of Sofia), and Dr. K. Danov (University of Sofia)
for useful discussions. The help of Mr. N. Marekov, who
performed some of the numerical calculations, and Mrs.
Paraskova (University of Sofia), who prepared some of
the figures, is gratefully acknowledged.

LA990214Y

(27) Pouchelon, A.; Araud, A. J. Dispersion Sci. Technol. 1993, 14,
447.

(28) Defoaming: Theory and Industrial Applications; Garrett, P. R.,
Ed.; Marcel Dekker: New York, 1993; Chapters 2-8.

8542 Langmuir, Vol. 15, No. 24, 1999 Denkov


