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Drag of a Solid Particle Trapped in a Thin Film or at an Interface:
Influence of Surface Viscosity and Elasticity
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We propose a theoretical model for the motion of a spherical parti-
cle entrapped in a thin liquid film or in a monolayer of insoluble sur-
factant at the air/water interface. Both surface shear and dilational
viscosity, surface diffusion, and elasticity of the film are taken into
consideration. The drag force acting on the particle is analytically
calculated and asymptotic expressions of the problem are provided.
The relevance of the model is discussed by comparing the calculated
“viscoelastic” drag, γvel, to the one predicted by Saffman’s theory,
γS, for cylindrical inclusions in membranes. Numerical analyses are
performed to evaluate the contributions of the surface viscosity and
the diffusion coefficient of the layer on the hydrodynamical resis-
tance experienced by the particle. C© 2000 Academic Press

Key Words: particle motion; thin film; drag force; hydrodynami-
cal resistance; surface viscosity; Gibbs elasticity; surface diffusivity.
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1. INTRODUCTION

The problem of the motion of a solid particle in a visco
elastic layer pertains to a large variety of systems such as
logical membranes, foam and emulsion films, and monola
of surface-active components. For instance, a protein in a m
brane can be roughly modeled as a cylindrical inclusion i
continuous film. A theory for the motion of this body in a bi
logical membrane was proposed by Saffman and Delbr¨uck (1)
and by Saffman (2). The theory was later generalized by Hug
et al. (3), Evans and Sackmann (4), and recently by Stone
Ajdari (5). Basically, Saffman computed the drag on a cy
drical particle undergoing translational and rotational mot
in a model lipid bilayer. He showed that the viscosity,η, of the
medium surrounding the particle had to be taken into accoun
the particle drag coefficient to be finite in the low Reynolds nu
ber regime (the convective term in the Navier–Stokes equa
may be neglected). Applying a singular perturbation techniq
Saffman (2) found an asymptotic solution of the problem in
limit of large membrane viscosity leading to an inverse logar
mic dependence of the resistance coefficient on the radius o
1 To whom correspondence should be addressed. Current address:
Planck-Institute for Colloids and Interfaces, Am Muehlenberg 2, 14476 Go
Germany. Fax: 49-331-567-9612.
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cylinder:

ζS
∼= 4πηS

1

ln(lS/a)− C
. [1]

In Eq. [1],ηS is the membrane shear surface viscosity (note
surface viscosity has units of [bulk viscosity× length] or surface
poises, sP) andlS= ηS/η is a characteristic length which we wi
refer to as the “Saffman length”.C= 0.5772257 is the Euler–
Masceroni constant. Equation [1] is valid whena, the radius of
the disk (the cylindrical inclusion), is definitely smaller thanlS.
Subsequently, Hugheset al. (3) enlarged the region of validity
of the solution up to large particle sizes.

Interestingly, the theory was experimentally tested from
observation of the Brownian motion of proteins in model me
branes (6) and of circular solid lipid domains in a layer of flu
lipid (7, 8). Results were found to be in line with the theory
Hugheset al. (3).

In Saffmann’s and related theories, the membrane is s
posed to be an incompressible two-dimensional (2-d) flu
This assumption is acceptable for artificial lipid membran
and biological membranes. Conversely, thin liquid films a
in general, monolayers of surface-active compounds differ fr
membranes in that they may be highly compressible. Whe
particle moves along the film, this provokes a compression
an expansion of the film ahead of and behind the particle,
spectively. A surface tension gradient results, which creat
force acting against the particle motion. This force has its
gin in the layer elasticity and may be termed “Marangoni”. T
process is counteracted by the surface diffusion of surfac
molecules, which tends to make the surface concentration
form. Clearly, the elastic contribution to the particle friction w
be small whenever the layer compressibility is small or when
surfactant diffusion is fast.

To summarize, we expect the particle drag coefficient to
pend not only on the layer shear viscosity (ηS), but also on
the dilational viscosity (ηD), the Gibbs elasticity (E), and the
surfactant diffusion coefficient (Ds). Only ηS was taken into
consideration in Refs. (1–5).

The physical systems of interest in this paper are dil
monolayers of surfactant molecules, or films made of two s
0021-9797/00 $35.00
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reason, we will refer to the particle as a disk, whose radius will
36 DIMOVA

monolayers separated by a slot of bulk fluid. As for the dif
sion process, we will consider only surface diffusion, not
bulk diffusion (9). Strictly speaking, this restriction makes o
model applicable only to films of insoluble surfactants. Ho
ever, it may be extended to soluble surfactants, provided tha
concentration is below the critical micellar concentration (1
The model is not applicable to membranes made of a pure l
in this case it is impossible to define a Marangoni effect an
collective diffusive mode of the surface-active molecules.

Danovet al. (11) addressed the problem of a sphere floa
on a surfactant monolayer at the air/water interface, and nu
ically computed the particle drag coefficient with bothηS and
ηD taken into account. The theory (which we will refer to
DADL) was designed to interpret data from experiments aim
at measuring film viscosities with spherical probes (12). DA
is relevant to systems with low surface viscosity. The surfac
diffusion has to be fast enough to suppress the effect of the
dient in the surface tension. Thus the main contribution to
friction is the surface viscosity.

A common and essential feature of Saffman’s theory an
DADL is the role played by the 3-d fluid surrounding the film: t
particle drag coefficient (either a cylinder or a sphere) explic
depends on the 3-d fluid viscosity. In this article, we consi
a film in contact with a medium of negligible viscosity, e.
a vacuum, and a particle trapped across this film. Our m
may be relevant, for instance, to explain the motion of sp
in vertical foam films (13). As we will see, the particle dr
coefficient (ζ ) does take on a finite value in the general c
when film elasticity, viscosity, and surface diffusion are tak
into account. In other words, taking into consideration the abo
mentioned Marangoni process leads to a finite drag force in
Stokes regime, though there is no dissipation in the surroun
bulk phases.

The paper is organized as follows. In Section 2, we se
the basic equations of our problem. The film/layer is mode
as a 2-d compressible fluid, whose density obeys a diffu
equation. We arrive at a set of equations for the vorticity
the divergence of the flow field, which are analytically solv
in Section 3. We then compute the force acting on the part
which is the sum of viscous and elastic parts. In Section 4
thoroughly discuss the influences of the different film parame
on the particle drag. Particularly, we examine the relevanc
our theory by comparingζ toζS, the drag coefficient in Saffman
theory for a cylinder of the same size. We find different regim
which we tentatively relate to different examples of real syste
Section 5 is a conclusion.

2. MATHEMATICAL FORMULATION

The problem of an infinitely long cylinder moving insid
an incompressible 3-d fluid leads to the well-known Osee
paradox. The paradox comes from neglecting the convec
term in the Navier–Stokes (NS) equation, an approxima

that one might expect to be valid in the low velocity limi
ET AL.
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One finds that a steady force applied to the cylinder gives
infinite velocity; no solution for the flow field is found tha
can satisfy the Stokes equation and the boundary conditi
simultaneously (no-slip condition at the cylinder surface a
zero flow velocity at infinity). To find a physically acceptabl
solution, it is necessary to solve the full NS equation, which
nonlinear. Lamb’s approximation (14) for the convective ter
makes the problem tractable, and yields the following result

FO
∼= 4πηV

1

ln(lO/a)+ 1
2 − C

. [2]

In the above equation,FO is the friction force per unit length of
the cylinder.V is the cylinder velocity inside the 3-d fluid, and
a is the cylinder radius.lO , the Oseen length, is defined aslO=
4η/ρV . Here,ρ is the fluid mass density andη is its viscosity.

Saffman’s and subsequent theories (1–5) address the prob
of a disk moving in a film made of an incompressible fluid, e.g
a membrane. If the film is in vacuum, the problem is exactly t
same as that of the cylinder in the (3-d) fluid. The analogy brea
down if the membrane is in contact with a viscous 3-d fluid.
this case, the motion of the disk can be described by the Sto
equation, taking into account the coupling to the surround
fluid. This approach, developed by Saffman (2), yields Eq.
for the disk drag coefficient,ζS. Note that Saffman’s equation
has the same structure as the above Oseen’s equation, but
a different characteristic length,lS.

Since both inertia and coupling to an external viscous ph
are present in real systems, it is important to guess which
influences most the particle drag. The question amounts to c
paringlO andlS. ThelS/ lO ratio is simply equal toV/V∗, with
V∗ = 4

√
eη/ρs, e= 2.718. Hereρs is the film surface mass den

sity. In the case of a lipid membrane in water,V∗ is on the order
of 105 cm/s, which is huge compared to practical particle v
locities. This means that inertia has a negligible influence
the disk friction, and then that Saffman’s result, Eq. [1], is th
relevant one.

We now come to our problem. We consider a spherical pa
cle, of radiusa, which is trapped across a film (Fig. 1). By “film”,
we mean a slab of a viscoelastic fluid whose thickness is v
small compared toa. In practice, the film can be a foam film
(see Fig. 1a) or a surfactant monolayer at the water/air interf
(see Fig. 1b). (The numerical results in Section 4 demonstr
that for reasonable values of the bulk phase viscosity, the b
friction is negligible; thus the problem is pertinent as well fo
a particle moving along a water/air interface.) The portion
the particle in the plane of the film is a disk of radiusa∗. The
particle moves along the film in they-direction, with velocity
V . We suppose that the film is in a vacuum, which amounts
neglecting couplings of the flow field in the film with surround
ing 3-d fluids. In this context, the portions of the particle on bo
sides of the film play no role; only the disk is important. For th
t.be denoteda, without loss of generality.
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LATERAL MOTION OF A L

FIG. 1. Geometry of the system: (a) particle trapped in a viscous fi
(b) particle floating on a monolayer at the air/water interface.

Since the thickness of the film is negligible, we apply a 2
(membrane) approach. Our model is based on Scriven’s e
tions for interfacial hydrodynamics (15). The equations gov
the space–time evolution of surface–excess fields. For a sta
ary motion, the mass conservation equation and the interfa
NS equation read (16)

∇s · (ρsu) = 0 [3]

∇s · (ρsuu) = ∇sσ +∇s ·T. [4]

In Eqs. [3] and [4]∇s denotes the surface gradient,ρs is the total
surface–excess mass density,u is the average mass velocity
the surface,σ is the thermodynamic surface tension, andT is
the surface viscosity tensor. In Eq. [4] we omit a term which
related to the pressure jump occurring when crossing an inte
between two continuous phases. In Appendix A we justify t
approximation.

We suppose that the film fluid is Newtonian and that the s
face viscosity tensor is related to the flow by the Boussine
Scriven constitutive law (15):

T = (ηD − ηS)(∇s · u)I + ηS
⌊
(∇su) · I + I · (∇su)T

⌋
. [5]

Here,ηD andηS are the interfacial dilational and shear surfa
viscosities, respectively. They are supposed to be constanI is
the unit surface idemfactor and (∇su)T is the conjugate of the
∇su tensor.

We are interested in interfacial films, i.e., systems involv
a liquid whose interfacial tension is modified by the adsorpt
of surface-active molecules. This is the source of the Maran

effect. We simply suppose that the gradient inσ is proportional
to the gradient in0, the surface–excess mass density of t
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surfactant:

∇sσ = −
(

E

00

)
∇s0. [6]

E=−∂σ/∂ ln0 is the film Gibbs elasticity, which will be sup-
posed to be constant.00 is the unperturbed (equilibrium) surfac
concentration.

The above system of equations is closed by the mass bala
equation for the surface-active compound:

∇s · (0u− Ds∇s0) = 0. [7]

Ds, which we suppose to be constant, is the surfactant sur
diffusion coefficient. Note that Eq. [7] is valid only for sma
perturbations, i.e., when0 remains close to00. As we comment
in Appendix B, this condition is fulfilled only when the particl
velocity is small enough. Quantitatively, this implies that th
surface Peclet number,Pe=V a/Ds, is¿1.

We define polar coordinates, (r , φ), in the plane of the layer,
with the origin set at the center of the particle andφ= 0 taken
along thex axis. The polar components of the velocity vect
areur anduφ .

If we take into account the inertia term in Oseen’s manner,
substitution of the surface viscosity tensor,T, from Eq. [5] into
Eq. [4] yields the following system of second-order differenti
equations:

(ηD + ηS)
∂

∂r

[
1

r

∂

∂r
(rur )+ 1

r

∂uφ
∂φ

]
− ηS

r

∂

∂φ

[
1

r

∂

∂r
(ruφ)− 1

r

∂ur

∂φ

]
+ ∂σ
∂r

− ρsV

(
sinφ

∂ur

∂r
+ cosφ

r

∂ur

∂φ
− cosφ

r
uφ

)
= 0

(ηD + ηS)
1

r

∂

∂φ

[
1

r

∂

∂r
(rur )+ 1

r

∂uφ
∂φ

]
+ ηS

∂

∂r

[
1

r

∂

∂r
(ruφ)− 1

r

∂ur

∂φ

]
+ 1

r

∂σ

∂φ

− ρsV

(
sinφ

∂uφ
∂r
+ cosφ

r

∂uφ
∂φ
+ cosφ

r
ur

)
= 0.

[8]

We suppose that the fluid does not slip along the particle surf
and that the particle does not perturb the flow field at infini
Then, for a snapshot of the velocity profile:

ur = V sinφ, uφ = V cosφ at r = a [9]

ur −−−→
r→∞

0, uφ −−−→
r→∞

0. [10]
heBelow we apply methods developed for 2-d flow problems (17).
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We introduce the vorticity and stream functions, defined as

w = 1

r

∂(ruφ)

∂r
− 1

r

∂ur

∂φ
, α = 1

r

∂(rur )

∂r
+ 1

r

∂uφ
∂φ

. [11]

It is convenient to define dimensionless fields,

ur = Vũr , uφ = Vũφ,

w = V

a
w̃, α = V

a
α̃, σ = ηD + ηS

a
V σ̃ , [12]

and dimensionless parameters,

p≡ ηS

ηD + ηS
, m≡ ρsV a

ηD + ηS
, q≡ Ea2

Ds(ηD + ηS)
. [13]

p represents the importance of shear viscosity relative to the
viscosity.m is the surface Reynolds number.q may be viewed as
the ratio of elastic to viscous forces. Note that 1/

√
q = lvel/a,

where lvel is a new characteristic length, namely the “visc
elastic” length, defined by

l 2
vel =

Ds(ηD + ηS)

E
. [14]

Let us definez≡ r/a. Substitution of Eqs. [12] and [13] in
Eq. [8] brings forth

∂α̃

∂z
− p

z

∂w̃

∂φ
+ ∂σ̃
∂z

−m

(
sinφ

∂ũr

∂z
+ cosφ

z

∂ũr

∂φ
− cosφ

z
ũφ

)
= 0

1

z

∂α̃

∂φ
+ p

∂w̃

∂z
+ 1

z

∂σ̃

∂φ

−m

(
sinφ

∂ũφ
∂z
+ cosφ

z

∂ũφ
∂φ
+ cosφ

z
ũr

)
= 0.

[15]

Equation [15] is the scaled NS equation in Oseen’s approxi
tion. The scaled mass balance equation (Eq. [7] ) reads

α̃ − 1

q
1̃s0 = 0 [16]

In Eq. [16],1s is the Laplace surface operator.̃1s0 is defined
through1s0≡ [(ηD + ηS)/a3E]V001̃s0.

3. SOLUTION TO THE PROBLEM

In real systems,m is usually very small compared to unity
which incites us to neglect the inertial term in the NS equat
(Eq. [15]). In the case of an incompressible film (infiniteE),
this approximation results in Oseen’s paradox, as we alre

mentioned.p is <1. If we assume thatηD<ηS, as reported
ET AL.
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experimental values suggest,p cannot be less than 1/2. Conse-
quently the vorticity term in Eq. [15] is always important. A
we will see in the analysis of real systems,q can be either large
or small, and then different limits must be discussed.

3.1. Incompressible Films

Whenq is very large (qÀ 1), the divergenceα is zero: this is
the limit of an incompressible fluid. From the definition, Eq. [13
large values ofq are favored by large particle sizes, high fil
elasticities, small surface viscosities of the layer, and small
fusion coefficients.

Theq-infinite limit brings us back to the Oseen problem a
leads to Eq. [2] for the friction force. As we already commente
the Oseen result for the drag coefficient is not the physically
evant one in this case because the viscosity of the surroun
3-d phase cannot be ignored. In other words, the real drag c
ficient is that given by the Saffman–Hughes theory rather t
by the Oseen equation.

3.2. Analytical Solution for a Film/Monolayer

In this section, we will concentrate on the situation in whi
q is not very large. Smallq suggests low elasticity, high surfac
viscosity of the layer, fast diffusion, and/or small particle siz
With foam films stabilized by different surface-active molecu
(see Refs. 10 and 16 and references therein),E may vary from
0.005 to 0.02 N/m,Ds from 1× 10−10 to 7× 10−9 m2/s, and
the surface viscosity from about 10−8 to 10−3 N s/m (for films
stabilized by proteins, surface viscosity may be up to 2 N s/m, see
Refs. 18 and 19). Thus,lvel varies between about 10 and 50 mm
One can then realize experimental conditions correspondin
q∼= 1 with particle sizes in this range.

As we recalled in the Introduction, in the case of an inclus
inside an incompressible film or membrane in a vacuum,
convective term in the NS equation cannot be neglected. W
the film is compressible, as we will now see, the problem
an analytical solution even form= 0, i.e., when the convective
acceleration term in the NS equation vanishes. The system
differential equations to be solved is

∂α̃

∂z
− p

z

∂w̃

∂φ
+ ∂σ̃
∂z
= 0

[17]
1

z

∂α̃

∂φ
+ p

∂w̃

∂z
+ 1

z

∂σ̃

∂φ
= 0.

Eliminating the divergence provides an equation for the vortic

1

z

∂

∂z

(
z
∂w̃

∂z

)
+ 1

z2

∂2w̃

∂φ2
= 0, [18]

whose solution is

A′

w̃ =

z
cosφ, [19]
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A′ being an arbitrary constant. Correspondingly, the equa
for the divergence is obtained from Eqs. [6], [16], and [17]:

z2∂
2α̃

∂z2
+ z

∂α̃

∂z
− (qz2+ 1)α̃ = 0. [20]

The solution of Eq. [20] can be put as

α̃ = BK1(
√

qz) sinφ, [21]

whereK1 is the modified Bessel function of first order.B is a con-
stant to be determined from the boundary conditions (Eq. [9

The geometry of the problem (see Eq. [8] and the lineariz
boundary conditions [9] and [10]) allows us to decouple thz
andφ components in the velocity field according to

ũr = sinφ R(z), ũφ = cosφ 8(z). [22]

From Eqs. [11], [19], [21], and [22] we obtain

BK1(
√

qz) = 1

z

∂

∂z
(zR)− 8

z
[23]

A′ = ∂

∂z
(z8)− R.

In terms of the functionsR and8, the boundary conditions
become

R(1)= 1, 8(1)= 1 at z= 1 [24]

R(z)−−−→
z→∞

0, 8(z)−−−→
z→∞

0. [25]

The constantA′ is determined from the condition for zero ve
locity at infinity: A′ = 0. This result, combined with Eq. [19]
shows that the vorticity is zero (w= 0), which implies that we
have a nonrotational (potential) motion.

Elimination of R in Eq. [23] yields an equation for8:

z
∂28

∂z2
+ 3

∂8

∂z
= BK1(

√
qz). [26]

The solution for8 is a superposition of the solution to the hom
geneous equation,A/z2, whereA is an arbitrary constant, an
any partial solution to Eq. [26], e.g. (B/qz)K1(

√
qz). Thus, the

resulting expressions forR(z) and8(z) are

R(z) = − A

z2
+ B

q

d

dz
[K1(
√

qz)] [27]

8(z) = A

z2
+ B

qz
K1(
√

qz). [28]
From the boundary conditions [24] and [25], the constantsA
5]
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A = 1+ 2K1(
√

q)√
qK0(
√

q)
, B = − 2

√
q

K0(
√

q)
. [29]

Here,K0 is the modified Bessel function of zeroth order. Finall
the explicit expressions forR(z) and8(z) are

R(z) = − 1

z2
+ 2√

qK0(
√

q)

×
[√

qK0(
√

qz)+ K1(
√

qz)

z
− K1(

√
q)

z2

]
[30]

8(z) = 1

z2
+ 2√

qK0(
√

q)

[
K1(
√

q)

z2
− K1(

√
qz)

z

]
. [31]

This result, combined with Eq. [22], gives the flow field every
where in the film.

The general form of the drag force exerted on the movi
particle by the surrounding layer is a superposition of two term
a viscous one and an elastic one:F = Fvisc+ Fel. The viscous
contribution may be obtained by integration of the tangent
part of the surface viscosity tensor,T (see Eq. [5]), along the
friction contour. We find

Fvisc = 2πV(ηD + ηS)
√

qK1(
√

q)

K0(
√

q)
. [32]

The elastic or “Marangoni” part of the drag force is given by

Fel = −
2π∫

0

(σ − σ0) sinφ adφ

∣∣∣∣
z=1

. [33]

In Eq. [33],σ0 is the film surface tension at equilibrium (V = 0).
σ − σ0 as a function ofφ and z can be readily found from
Eqs. [17], [21], and [29] (details are given in Appendix B). W
find

Fel = 2π
Ea2V

Ds
. [34]

Thus, the final expression for the drag force for a particle floati
across a viscous layer is

F = 2πV(ηD + ηS)

[√
qK1(
√

q)

K0(
√

q)
+ q

]
. [35]

Basically, this result holds for a particle across an interfac
viscoelastic layer characterized by, e.g.,ηD + ηS andq. In the
case of a particle across a soap film, with two such layers,
expect the friction force to be just twice that given by Eq. [3

(see Appendix A for arguments).
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FIG. 2. Log–log plot of the reduced viscoelastic coefficient, ¯γvel, as a func-
tion ofa/ lvel. The solid line shows the exact solution, Eq. [35]. The dashed l
represent the asymptotic expressions for small (Eq. [36]) and large (Eq.
values ofa/ lvel.

The friction coefficients in Oseen’s and Saffman’s formu
are given as functions of the reduced lengthsa/lO anda/lS, re-
spectively. Similarly, our result, Eq. [35], can be expressed
a function of

√
q=a/lvel, wherelvel is the length defined by

Eq. [14]. As examples of how either small or large values oq
can be found with real systems, corresponding to eithera ¿ lvel

or aÀ lvel, it is useful to derive asymptotic forms of Eq. [35
Using known asymptotic expansions of theK0 andK1 functions
(20), we find

F = 2πV(ηD + ηS)

(
q +√q − 1

8

)
[36]

for “large” particles (qÀ 1), and

F = 2πV(ηD + ηS)

(
q

2
+ C(q/2)− 1

ln(
√

q/2)+ C

)
[37]

for “small” particles (q¿ 1).
Let us define the particle drag coefficient,γvel, by F = γvelV

and the dimensionless coefficient ¯γvel= γvel/2π (ηD+ ηS).
Figure 2 shows ¯γvel versus

√
q=a/ lvel in log–log representa

tion. The solid line corresponds to Eq. [35], while the right a
left dotted lines correspond to Eqs. [36] and [37], respectiv
For a/ lvel≥ 2.9, Eq. [36] is valid to within 5%. This is so with
Eq. [37] whenevera/ lvel≤ 0.4.

4. NUMERICAL ANALYSIS AND DISCUSSION

We start the discussion with a criticism about the releva
of our model. We supposed that our film was in a “vacuum
while real systems are obviously in contact with 3-d fluids. I
essential to determine whether neglecting the coupling to the

fluids is legitimate or not. This question can be answered in
most general way only from the general theory, where both fi
ET AL.

es
36])

as

as

f

].

nd
ly.

ce
”,
is
3-d
the

elasticity and coupling to outer fluids are taken into account.
this theory is not available, all what we can do is to compare
friction force given by Eq. [35] to that of Saffman, Eq. [1]. If w
find that the former is much larger than the latter, that means
the membrane elasticity is more important than the viscosit
the bulk fluids in determining the particle friction. If this is s
our model is relevant.
γ has a Saffman limit,γS (given by Eq. [1]), and a viscoelasti

limit, γvel (given by Eq. [35]). We slightly simplify the discus
sion by supposingηD= ηS; then the reduced coefficient read
γ̄ = γ /(4πηS) . The reduced Saffman coefficient, ¯γS, is a func-
tion of a/ lS. Similarly, γ̄vel is a function ofa/ lvel, wherelvel,
the viscoelastic length, is given by Eq. [14]. Both functions
shown in Fig. 3, in log–log representation. The graph in Fig. 3
based on the theory of Hugheset al.(3), in order to include both
the a< lS regime (Eq. [1]) and the large size regime (aÀ lS).
Comparing ¯γS and γ̄vel is just a matter of superposing the tw
graphs. In the superposition, the graph of Fig. 3a has to be m
to the left if lvel> lS, and to the right in the opposite case. Wi
this procedure, we immediately see thatγvel>γS whenlvel< lS,
whatever the particle size. In this situation, the particle fr
tion is primarily influenced by the membrane viscoelastic
Conversely, whenlvel> lS, we find two regimes, separated b

FIG. 3. (a) Log–log plot of the reduced Saffman coefficient, ¯γS, as a function
lm
of a/ lS; calculations are based on the theory of Hugheset al. (3). (b) Log–log
plot of the reduced viscoelastic coefficient, ¯γvel, as a function ofa/ lvel.
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data
reported in (25). Elasticity is estimated according to the Langmuir isotherm.
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a crossover particle size,aco
∼= l 2

vel/ lS. If the particle is “small”,
a<aco, the friction is of the Saffman type, i.e., mostly due to t
coupling to the 3-d fluids. Ifa>aco, the viscoelasticity mech
anism dominates (provided that the surface Peclet numbe
mains small, as we explained).

Let us now illustrate these considerations on example
real systems. Literature data on foam films (or monolay
(18, 19, 21) give 10−8<ηS< 10−3 N s/m, 5× 10−3< E< 2×
10−2 N/m, 1× 10−10< Ds< 7× 10−9m2/s. These films usually
are in air, the viscosity of which is about 2× 10−5 N s/m−2. We
thus find 10−8< lvel< 10−4 m and 10−3< lS< 102 m, roughly.
It is then clear thatlvel< lS, which means that our descriptio
based on viscoelasticity, is relevant for foam films.

Henceforth, we investigated the influence of the different f
tors governing the hydrodynamical resistance experience
the particle. The range of values for the parameters in the m
is wide depending on the type of the surfactant stabilizing
film, its chemical structure, and its concentration (18, 19, 21,
(see also (16)). The shear and the dilational viscosities ente
expression for the drag force as a sum. Thus, the effects of
of them cannot be discussed separately. For many system
data reported in the literature demonstrate that the two pa
eters are of the same order of magnitude. Only for biolog
membranes may they exhibit a difference of several order
magnitude (usually the shear viscosity is the larger one).
effect of the layer viscosity onγ is presented in Fig. 4, whereγ
is displayed as a function of the particle radius,a, for different
surface viscosities. As one can expect, the larger the visco
the higher the drag coefficient.

The effect of the surface diffusion coefficient is illustrated
Fig. 5. Indirect experimental approaches provide estimates
Ds on the order of 10−9 m2/s and even 10−8 m2/s for films sta-
bilized by fatty acids (10). Low values forDs are found with
films stabilized by mixtures of surfactant and proteins as

FIG. 4. Effect of surface viscosity on hydrodynamical resistance. Calc
tions are done forDs= 10−9 m2/s andE= 0.02 N/m. The dashed line repre
sents the drag coefficient,γ , for ηD= ηS= 2× 10−3 N s/m; the dotted line is
for 2× 10−4 N s/m. The lowest curve (solid line) corresponds to the results

the elastic or “Marangoni” part of the drag coefficient,γel (Fel= γelV).
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FIG. 5. Effect of surface diffusion on hydrodynamical resistance. Calcu
tions are performed forE= 0.02 N/m,ηD= ηS= 2× 10−4 N s/m. The solid line
corresponds to the calculated value ofγ for Ds= 5× 10−10 m2/s; the dashed
line is for Ds= 1× 10−9 m2/s; the dotted line is forDs= 5× 10−9 m2/s.

ported in (18). For layers of phospholipids,Ds can be on the
order of 10−12 m2/s as indicated in (22–24). In Fig. 5,Ds is var-
ied between 5× 10−10 and 5× 10−9 m2/s. Obviously, for low
values ofDs, the motion of the particle will be hindered by th
low mobility of the molecules composing the layer, as Fig
demonstrates.

Figures 4 and 5 showed the influences of the viscosity and
face diffusivity, considered as independent parameters. In
systems,ηD, ηS, Ds andE do not vary independently. The usu
experimental variable is the surface area per surfactant mole
A= 1/0. We do not know of experimental data simultaneou
giving the values ofηD, ηS, Ds, and E as a function ofA.

FIG. 6. Dependence of the resistance coefficient on the scaled surface
per molecule,A/Am, for different particle sizes,a. The solid line corresponds to
a= 0.3µm, the dashed line toa= 0.5µm, and the dotted line toa= 1µm. The
surface viscosity dependence on adsorption is taken from experimental
Calculations are done forDs= 1× 10−9 m2/s.
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Nevertheless, we tentatively estimated the variation ofγ versus
A in the case of arachidic acid films, for which an (ηD+ ηS, A)
graph is available (25). We supposed thatE followed the
Langmuir equation,E= kBT0/(1− 0/0∞), wherekBT is the
thermal energy and0∞ is the surface concentration correspon
ing to full packing (Am= 1/0∞= 20 Å2/molecule).Ds does
not vary very much withA. We tookDs to be constant, with no
better reason than simplicity. Doing so, we arrived at the cur
displayed in Fig. 6 for three different particle sizes. As one mi
expect,γ monotonically decreases whenA increases. Neverthe
less, the curves slightly bend up around an intermediate v
of A. This feature is caused by an anomaly in the total visco
(ηtot), which, according to Ref. (25), reaches a maximum no
full packing but atAm∼= 25Å2/molecule. Note that the anoma
is more visible with small particles than with large ones.

5. CONCLUSIONS

We compute the drag force felt by a particle moving alo
a surfactant film. We considered compressible films, in wh
the surfactant surface concentration is locally modified by
particle motion. In our model, the film properties were defin
by a compression modulus,E, surface viscositiesηD andηS, and
a surfactant difusion coefficient,Ds. We calculated the particle
drag coefficient,γ , in the limit when coupling to the bulk fluids
on both sides on the film is negligible. We found thatγ would
take on finite values, provided thatE is finite.

This result is in contrast with that given by Saffman’s theo
(1–3) for incompressible films, in which coupling to the bu
fluids is essential.

We discussed the relevance of our model in the general
ation, in which both surface elasticity and coupling to the ou
fluids are present. We found that elasticity was essential wh
ever the viscoelastic length, defined by Eq. [14], was sma
than Saffman’s viscous length. In practice, this kind of situat
might exist, for instance, with foam films in air. Thus, the theo
is open to experimental check with real systems.

APPENDIX A: DISCUSSION ON THE MODEL EQUATIONS

At any interface between two contiguous bulk phases, one
ways has a “jump” in the generic tensor fields. The pressure ju
which is to appear when crossing, for example, an air/wate
terface would bring in the equation for the momentum transp
(Eq. [4]) an additional term, i.e.,〈P〉 ·n, whereP is the pressure
tensor andn is the unit normal to the surface (on each surfa
of the film, Fig. 1a, or at the monolayer surface, Fig. 1b,n is
pointing out to the air phase). The general approach to estim
this term for a thin liquid film is to employ the lubrication ap
proximation, provided that the film thickness is much sma
than the particle size and that the motion is characterized

a low Reynolds number. This implies that the normal press
ET AL.
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derivative is zero, and one may write

−∇‖P + ηd2v‖
dζ 2
= 0, [A1]

where∇‖P is the lateral local pressure gradient,η is the bulk
viscosity of the fluid,v‖ is the lateral component of the fluid
velocity, andζ is the normal coordinate. Solving Eq. [A1] pro
vides

v‖ = 1

2η
∇‖P

[
ζ 2−

(
h

2

)2
]
+ u, [A2]

whereh is the film thickness andu is the surface velocity as
defined in Eq. [4]. Correspondingly, for the pressure jump te
one finds

〈P〉 ·n = h

2
∇‖P. [A3]

On the other hand, for a flat surface we have a constant pres
P= const.Therefore, we find〈P〉 ·n= 0, and using Eq. [4] is ap-
propriate. At the same time, for smallPenumbers, the surfactan
concentration profile in the bulk phase may be regarded as i
pendent ofζ , the coordinate normal to the interface (see, e
Ref. 10). The latter assumption implies that the contribution
the diffusion flux of surfactant from the bulk phase may a
be neglected. The only difference to be accounted for, whe
particle trapped in a film is discussed, compared to the sys
of a particle floating on a monolayer at the air/water interfa
is that the value obtained for the drag force and, correspo
ingly, the friction coefficient is to be doubled, thus introducin
the contributions from the two surfaces of the film.

APPENDIX B: INFLUENCE OF THE GIBBS ELASTICITY
ON THE DRAG FORCE

The elastic component of the drag force can be expressed

Fel = −
2π∫

0

(σ − σ0)sinφ adφ

∣∣∣∣
z=1

. [B1]

Here,σ0 is the surface tension of the unperturbed surface
satisfies the expansion

σ = σ0+
(
∂σ

∂0

)
(0 − 00). [B2]

Therefore, to obtain an explicit expression forFel, one needs to
solve the equation for the surface mass density [7]. For simp

′

uredensity (0′ ≡00−0) caused by the particle motion. Introducing
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it into Eq. [7] and substituting the expression found for ˜α from
Eqs. [21] and [29] yields

1

z

∂

∂z

(
z
∂0′

∂z

)
+ 1

z2

∂20′

∂φ2
+ 200Va

Ds

√
qK1(
√

qz)

K0(
√

q)
sinφ = 0.

[B3]

The solution for Eq. [B3] is a superposition of the general
lution of the homogeneous equation and the partial solutio
the inhomogeneous equation:

0′ = M
sinφ

z
− 200Va

Ds

K1(
√

qz)√
qK0(
√

q)
sinφ, [B4]

M being an arbitrary constant. It can be determined by impos
a boundary condition requiring the mass transfer at the par
surface to be zero:

∂0

∂z

∣∣∣∣
z=1

= 0. [B5]

ThusM is found to be

M = 200Va

Ds

(
1+ K1(

√
q)√

qK0(
√

q)

)
. [B6]

Finally, for the elastic component of the force, Eqs. [B1], [B
[B4], and [B6] provide

Fel = 2π
Ea2V

Ds
. [B7]
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