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CHAPTER  7

LATERAL  CAPILLARY  FORCES  BETWEEN  PARTIALLY  IMMERSED  BODIES

This chapter describes results from theoretical and experimental studies on lateral capillary forces.

Such forces emerge when the contact of particles, or other bodies, with a fluid phase boundary causes

perturbations in the interfacial shape. The latter can appear around floating particles, semi-immersed

vertical cylinders, particles confined in a liquid film, inclusions in the membranes of lipid vesicles or

living cells, etc. Except the case of floating particles (see Chapter 8), whose weight produces the

meniscus deformations, in all other cases the deformations are due to the surface wetting properties of

partially immersed bodies or particles. The “immersion” capillary forces, resulting from the overlap of

such interfacial perturbations, can be large enough to cause the two-dimensional aggregation and

ordering of small colloidal particles observed in many experiments. The lateral capillary force between

similar bodies is attractive, whereas between dissimilar bodies it is repulsive.

Energy and force approaches, which are alternative but equivalent, can be used for the theoretical

description of the lateral capillary interactions. Both approaches require the Laplace equation of

capillarity to be solved and the meniscus profile around the particles to be determined. The energy

approach accounts for contributions due to the increase of the meniscus area, gravitational energy

and/or energy of wetting. The second approach is based on calculating the net force exerted on the

particle, which can originate from the hydrostatic pressure and interfacial tension. For small

perturbations, the superposition approximation can be used to derive an asymptotic formula for the

capillary forces, which has been found to agree well with the experiment. In all considered

configurations of particles and interfaces the lateral capillary interaction originates from the overlap of

interfacial deformations and is subject to a unified theoretical treatment, despite the fact that the

characteristic particle size can vary from 1 cm down to 1 nm. (Protein molecules of nanometer size can

be treated as “particles” insofar as they are considerably larger than the solvent (water) molecules.)
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7.1. PHYSICAL ORIGIN OF THE LATERAL CAPILLARY FORCES

7.1.1. TYPES OF CAPILLARY FORCES AND RELATED STUDIES

The experience from experiment and practice shows that particles floating on a fluid interface

attract each other and form clusters. Such effects are observed and utilized in some extraction

and separation flotation processes [1,2]. Nicolson [3] developed an approximate theory of these

lateral capillary forces taking into consideration the deformation of the interface due to the

particle weight and buoyancy force. The shape of the surface perturbations created by floating

particles has been studied by Hinsch [4] by means of a holographic method. Allain and Jouher

[5], and in other experiment Allain and Cloitre [6], have studied the aggregation of spherical

particles floating at the surface of water. Derjaguin and Starov [7] calculated theoretically the

capillary force between two parallel vertical plates, or between two inclined plates, which are

partially immersed in a liquid.

Additional interest in the capillary forces has been provoked by the fact that small colloidal

particles and protein macromolecules confined in liquid films also exhibit attraction and do

form clusters and larger ordered domains (2-dimensional arrays) [8-13]. The weight of such

tiny particles is too small to create any substantial surface deformation. In spite of that, they

also produce interfacial deformations because of the confinement in the liquid film combined

with the effect of wettability of the particle surfaces. The wettability is related to the

thermodynamic requirement that the interface must meet the particle surface at a given angle �

the contact angle. The overlap of such wetting-driven deformations also gives rise to a lateral

capillary force [14].

As already mentioned, the origin of the lateral capillary forces is the deformation of the liquid

surface, which is supposed to be flat in the absence of particles. The larger the interfacial

deformation created by the particles, the stronger the capillary interaction between them. Two

similar particles floating on a liquid interface attract each other [3,15-17] - see Fig. 7.1a. This

attraction appears because the liquid meniscus deforms in such a way that the gravitational

potential energy of the two particles decreases when they approach each other. One sees that

the origin of this force is the particle weight (including the Archimedes buoyancy force).
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Fig. 7.1. Capillary forces of flotation (a,c,e) and immersion (b,d,f) type: (a) attraction between two
similar floating particles; (b) attraction between two similar particles immersed in a liquid film
on a substrate; (c) repulsion between a light and a heavy floating particle; (d) repulsion
between a hydrophilic and a hydrophobic particle; (e) small floating particles do not deform the
interface and do not interact; (f) small particles confined within a liquid film experience
capillary interaction because they deform the film surfaces due to the effects of wetting [21].

Fig. 7.1b illustrates the other case in which force of capillary attraction appears: the particles

(instead of being freely floating) are partially immersed (confined) into a liquid layer [14,

18-21]. The deformation of the liquid surface in this case is related to the wetting properties of

the particle surface, i.e. to the position of the contact line and the magnitude of the contact

angle, rather than to gravity.

To distinguish between the lateral forces in the case of floating particles and in the case of

particles immersed in a liquid film, the former are called capillary flotation forces and the latter

� capillary immersion forces [20,21]. These two kinds of force exhibit similar dependence on
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the interparticle separation but very different dependencies on the particle radius and the

surface tension of the liquid. The flotation and immersion forces can be both attractive

(Fig. 7.1a and 7.1b) and repulsive (Fig. 7.1c and 7.1d). This is determined by the signs of the

meniscus slope angles �1 and �2 at the two contact lines: the capillary force is attractive when

sin�1sin�2 > 0 and repulsive when sin�1sin�2 < 0. In the case of flotation forces � > 0 for light

particles (including bubbles) and � < 0 for heavy particles. In the case of immersion forces

between particles protruding from an aqueous layer � > 0 for hydrophilic particles and � < 0

for hydrophobic particles. When � = 0 there is no meniscus deformation and, hence, there is no

capillary interaction between the particles. This can happen when the weight of the particles is

too small to create a significant surface deformation, Fig. 7.1e. The immersion force appears

not only between particles in wetting films (Fig. 7.1b,d), but also in symmetric fluid films

(Fig. 7.1f). Capillary immersion forces appear also between partially immersed bodies like

vertical plates, vertical cylinders (rods), etc.

Nicolson [3] derived an approximated analytical expression for the capillary force between two

floating bubbles. Calculations about the capillary force per unit length of two infinite parallel

horizontal floating cylinders were carried out by Gifford and Scriven [15] and by Fortes [16].

In this simplest configuration the meniscus has a translational symmetry and the Laplace

equation, describing the interfacial profile, acquires a relatively simple form in Cartesian

coordinates [7,15,16]. Chan et al. [17] derived analytical expressions for floating horizontal

cylinders and spheres using the Nicolson’s superposition approximation and confirmed the

validity of this approximation by a comparison with the exact numerical results for cylinders

obtained by Gifford and Scriven [15].

The aforementioned studies [3,15-17] deal with floating particles, i.e. with flotation forces

driven by the particle weight. For the first time the capillary forces between two vertical

cylinders and between two spheres partially immersed in a liquid layer have been theoretically

studied in Ref. [14]. A general expression for the interaction energy has been used [14], which

includes contributions from the energy of particle wetting, the gravitational energy and the

energy of increase of the meniscus area due to the deformation caused by the particles; this

expression is valid for both floating and confined particles. Expressions and numerical results
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for the energy and force of interaction have been obtained for the case of small slope of the

deformed meniscus; this case has a physical and practical importance because it corresponds to

the usual experimental situation with small particles. The theory has been extended also to

particles entrapped in thin films, for which the disjoining pressure effect, rather than gravity,

keeps the non-deformed surface planar [14].

A new moment in Ref. [14] is the analytical approach to solving the Laplace equation: instead

of using the approximation about a mere superposition of the known axisymmetric profiles

around two separate particles, the linearized Laplace equation has been solved directly in

bipolar coordinates. Thus one can impose the correct boundary conditions (constancy of the

contact angle in agreement with the Young equation) at the particle contact lines. Thus a more

rigorous theoretical description of the force at small interparticle separations is achieved, which

is not accessible to the superposition approximation.

Solutions for the meniscus profile in bipolar coordinates have been obtained in Ref. [18] for

other configurations: vertical cylinder - vertical wall, and particle - vertical wall. A different,

force approach to the calculation of the lateral capillary interactions has been applied to obtain

both analytical and numerical results. It has been established that the force exerted on the

particle and the wall have equal magnitudes and opposite signs, as required by the third

Newton’s law; this is a check of the validity of the derived analytical expressions, which are

subject to some approximations (small particle, small meniscus slope).

The theory developed in Refs. [14] and [18] was further extended in Ref. [19] in the following

two aspects. First, the energy approach and the force approach have been simultaneously

applied to the same object (vertical cylinders and particles in a liquid film). The two

approaches were found to give numerically coinciding results, although their equivalence had

not been proven analytically there. Second, an analytical solution of Laplace equation in bipolar

coordinates was obtained for the case of two dissimilar particles: vertical cylinders and/or

spheres confined in a film. Attractive and repulsive capillary forces were obtained depending

on the sings of the meniscus slopes at the contact lines of the two particles [19].

The theory of capillary forces between small floating particles of different size was extended in

Ref. [20] on the basis of the results for the meniscus profile from Ref. [19]. The energy
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approach was applied to calculate the capillary interaction. Appropriate analytical expressions

have been derived and numerical results for various configurations were obtained. The

superposition approximation of Nicolson [3] was derived as an asymptotic case of the general

expression for the interaction free energy, and thus the validity of this approximation was

analytically proven. It was noticed that in a wide range of distances the capillary forces obey a

power law, which resembles the Coulomb’s law of electricity. Following this analogy

“capillary charges” of the particles have been introduced.

The physical nature and the magnitude of the lateral capillary forces between  floating and

confined particles have been compared in Ref. [20] and the differences between them have

been explicitly analyzed. It has been established that the energy of capillary interaction between

floating particles becomes negligible (smaller than the thermal energy kT) for particles smaller

than 5�10 �m. On the other hand, when particles of the same size are partially immersed into a

liquid film (instead of being freely floating), the energy of capillary interaction is much larger,

and it can be much greater than kT even for particles of nanometer size. This analysis has been

extended in Ref. [21] where the capillary forces in other configurations have been described

theoretically; these are (i) two particles in a symmetric liquid film with account for the

disjoining pressure effect, and (ii) two particles of fixed contact lines (rather than fixed contact

angles). It has been established that the interaction at fixed contact angle is stronger than that at

fixed contact line. Using the apparatus of the variational calculus the equivalence of the energy

and force approaches to the capillary interactions has been analytically proven in Ref. [21] for

the case of two vertical semi-immersed cylinders.

As noticed Ref. [18], the meniscus between a vertical cylinder (or particle) and a wall has the

same shape as the meniscus between two identical particles, each of them being the image of

the other one with respect to the wall. For that reason the capillary interaction between the

particle and the wall is the same as between the particle and its mirror image. In this respect

there is analogy with the image forces in electrostatics. This idea has been applied and

developed in Refs. [22] and [23], in which the capillary image forces  between particles

floating over an inclined meniscus in a vicinity of a wall have been theoretically and

experimentally investigated.
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In Ref. [24] the theory of capillary forces has been extended to describe the interaction between

particles attached to a spherical interface, film or membrane. In contrast with the planar

interface (or film) the spherical interface has a restricted area and “infinite” interparticle

separations are not possible. These geometrical differences can affect the trend of the lateral

capillary force between identical particles: for spherical film it can be sometimes non-

monotonic: repulsive at long distances and attractive at short distances. On the other hand, in

the case of planar geometry the capillary force between identical particles is always monotonic

attraction. In Ref. [25] the theory of the lateral capillary forces was extended to describe the

interaction between inclusions in phospholipid membranes; for that purpose a special

mechanical model accounting for the elastic properties of the lipid bilayer was developed.

A general conclusion from all studies on capillary immersion forces is that they are strong

enough to produce aggregation and ordering of micrometer and sub-micrometer particles

[14,18-25]. This fact could explain numerous experimental evidences about the formation of

two-dimensional particle arrays in liquid films [26�45] and phospholipid membranes [46-48].

The problem about the capillary interaction between horizontal floating cylinders was

reexamined by Allain and Cloitre [49,50], who used the linear superposition approximation and

alternatively, a more rigorous expressions for the free energy of the cylinders; they calculated

the capillary force for both light and heavy cylinders (for both small and large Bond numbers).

It should be noted that the lateral capillary forces are distinct from the popular capillary bridge

forces, which form contacts between particles in the soil, pastes, and which are operative in

some experiments with the atomic force microscope (AFM) [51-56]. The capillary bridge

forces act normally to the plane of the contact line on the particle surface, while the lateral

capillary forces are directed (almost) tangentially to the plane of the contact line.

Theory about another kind of capillary force, which can be operative between particles of

irregular wetting perimeter has been proposed by Lucassen [57].  The irregular contact line

induces respective irregular deformations in the surrounding liquid surface, even if the weight

of the particle is negligible.  The overlap of the deformations around such two particles also

gives rise to a lateral capillary force. For the time being only a single theoretical study, Ref.

[57], of this kind of force is available.
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The present chapter is devoted to the capillary immersion forces. First we derive an asymptotic

expression for the immersion forces at not-too-small separations and consider the comparison

of this expression with the experiment. Next we present an appropriate solution of Laplace

equation in bipolar coordinates and obtain more general expressions for the capillary

immersion forces using the energy and force approaches. The following configurations are

described theoretically: two semi-immersed vertical cylinders, two spherical particles, vertical

cylinder and sphere, vertical cylinder (or sphere) and vertical wall. The boundary conditions for

fixed contact angle and fixed contact line are considered.

The next Chapter 8 is devoted to the lateral capillary forces between two floating particles and

between a floating particle and a wall (capillary image forces); applications of the theory of

flotation forces to the measurement of the surface drag coefficient of small particles and the

surface shear viscosity of surfactant adsorption monolayers are described. Chapter 9 presents

the theory of the lateral capillary forces between particles bound to a spherical interface or thin

film. An extension of the theory of the lateral capillary forces to the interactions between

inclusions (membrane proteins) in lipid bilayers (biomembranes) is considered in Chapter 10.

7.1.2. LINEARIZED LAPLACE EQUATION FOR SLIGHTLY DEFORMED LIQUID INTERFACES AND FILMS

Let z = �(x,y) be the equation of the deformed fluid interface. The interfacial shape obeys the

Laplace equation of capillarity, see Eqs. (2.15)�(2.17):
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Here, as usual, �II is the two-dimensional gradient operator in the plane xy. Note that Eq. (7.1)

is expressed in a covariant form and can be specified for any type of curvilinear coordinates in

the plane xy (not only Cartesian ones). The pressures PI and PII on the two sides of the interface

can dependent on �  because of the effects of hydrostatic pressure and disjoining pressure, see

below.



Lateral Capillary Forces between Partially Immersed Bodies 295

Fig. 7.2. Colloidal sphere partially immersed in a liquid layer on a substrate; �(r) describes the shape of
the meniscus formed around the sphere; PI and PII are the pressures inside the liquid layer and
in the upper fluid phase; h0 is the thickness of the non-disturbed liquid layer; the latter is kept
plane-parallel by the gravity, when the layer is thick, and by a repulsive disjoining pressure
when the film is thin.

As an example, let us consider a spherical particle which is entrapped into a wetting liquid

film, Fig. 7.2. The upper surface of the liquid film is planar far from the particle; this plane is

chosen to be the level z = 0 of the coordinate system. The thickness of the plane-parallel liquid

film far from the particle is h0. The pressure inside and outside the film (in phases I and II) can

be expressed in the form [58,59,21]:

PI(�) = PI
(0)  � �1g� + �(h0+�),         PII(�) = PII

(0)  � �IIg�,, |�II�|2 << 1 (7.3)

Here, as before, g is the acceleration due to gravity, �I and �II are the mass densities in phases I

and II, PI
(0)  and PII

(0)  are the pressures in the respective phases at the level z = 0; � is the

disjoining pressure, which depends on the local thickness of the wetting film. The terms �1g�,

and �IIg�, express the hydrostatic pressure effect, which is predominant in thick films, i.e. for

h0 >> 100 nm, in which the disjoining pressure � (the interaction between the two adjacent

phases across the liquid film) becomes negligible. In fact, the gravity keeps the interface planar

(horizontal) far from the particle when the film is thick. On the contrary, when the film is thin,

the existence of a positive disjoining pressure (repulsion between the two film surfaces) keeps

the film plane-parallel far from the particle, supposedly the substrate is planar. The condition

for stable mechanical equilibrium of this film is
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see e.g. Ref. [60]. Expanding the disjoining pressure term in Eq. (7.3) in series one obtains

�(h0+�) = �(h0) + ���� � + ... (7.5)

Usually the slope of the meniscus around particles, like that depicted in Fig. 7.2, is small

enough and the approximation |�II�|2 << 1 can be applied. Then combining Eqs. (7.1)�(7.5)

one obtains a linearized form of Laplace equation [14]:
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II , (�� � �I � �II,  |�II�|2 << 1) (7.6)

Note that ���� < 0. The disjoining pressure effect is negligible when the film is thick enough to

have  � ���� (h0) << �� g. In the latter case the upper film surface behaves as a single interface (it

does not “feel” the lower film surface). The quantity q�� is a characteristic capillary length,

which determines the range of action of the lateral capillary forces. In thick films ����  is

negligible and q�� is of the order of millimeters, e.g. q�� = 2.7 mm for water-air interface.

However, in thin films ����  is predominant and q�� can be of the order of 10�100 nm, see Ref.

[21]. In other words, the asymptotic expressions for q2 are:

q2
� ��g /� in thick film� �

q2
� � ���� /� in thin films� �

(7.7)

7.1.3. IMMERSION FORCE: THEORETICAL EXPRESSION IN SUPERPOSITION APPROXIMATION

Following Ref. [64] let us consider a couple of vertical cylinders, each of them being immersed

partially in phase I, and partially in phase II. For each of these cylinders in isolation (Fig. 7.3)

the shape of the surrounding capillary meniscus can be obtained by solving Eq. (7.6). The latter

equation, written in cylindrical coordinates, reduces to the modified Bessel equation, whose

solution (for small meniscus slope) has the form

�k(r) = rk sin�k K0(qr) = Qk K0(qr), (k = 1,2) (7.8)
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Fig. 7.3. A vertical cylinder (rod) of radius r1 creates a convex meniscus on an otherwise horizontal
fluid interface of tension �; the boundaries of the cylinder with the phases I and II have solid-
fluid surface tensions �1,I and �1,II;�1 is the three-phase contact angle; �1 is the meniscus slope
at the particle contact line.

see Eq. (2.43), where rk is the contact line radius and �k is the meniscus slope angle at the

contact line, and is the so called “capillary charge” [20,21]; K0 is the Macdonald function of

Qk � rk sin�k (k = 1,2) (7.9)

zero order, see Refs. [61-63]. The contact angle �k at the three phase contact line of the k-th

cylinder (k = 1,2) obeys the Young equation:

�k,II � �k,I = � cos�k  = � sin�k = � Qk/rk (k = 1,2) (7.10)

cf. Fig. 7.3 and Eq. (2.2). Here �k,I and �k,II are the superficial tensions of fluids I and II,

respectively, with solid ‘k’, see Section 2.3.1. The two cylinders are assumed immobile in

vertical direction.

Let us assume that cylinder 1 is fixed at the z-axis (Fig. 7.3) and let us consider a process in

which the vertical cylinder 2 is moved in horizontal direction from infinity to some finite

distance L (L >> r1,r2). At a distance L the level of the liquid meniscus created by cylinder 1 is

�1(L), see Fig. 7.3, and consequently, the elevation of the liquid around cylinder 2 rises with

�1(L). Thus the surface area of cylinder 2 wet by phase I increases, whereas the area wet by

phase II decreases. As a result, the energy of wetting of cylinder 2 will change with [64]
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�Ww � � 2� r2�1(L) (�2,II � �2,I) = � 2��Q1Q2K0(qL) (7.11)

where at the last step Eqs. (7.8)�(7.10) have been used. Finally, identifying the capillary force

with the derivative of the wetting energy, F = � d�Ww/dL, we differentiate Eq. (7.11) using the

identity [61,62]

dK0(x)/dx � �K1(x) (7.12)

and thus we obtain an (approximate) expression for the capillary immersion force [21,64]:

� �qLqQQF 121 K2 ���� , rk << L (7.13)

Similar approximate expression for the flotation capillary force has been obtained long ago by

Nicolson [3]; see also Refs. [17] and [20]. A more rigorous expression for F is given by Eq.

(7.86) below. The above derivation of Eq. (7.13) makes use of the approximations ri << L,

|�II�|2 << 1. In particular, we have implicitly made use of the assumption, that for L >> ri the

elevation of the liquid at cylinder 2 is equal to the superposition of the elevation at the isolated

cylinder 2 plus the elevation �1(L) created by cylinder 1 at a distance L. The latter assumption

is known as the superposition approximation; it can be obtained as an asymptotic case of the

more rigorous solution, see Eq. (7.89) below. In the case of spherical particles the variation in

the position of the contact line on the particle surface is accompanied with a variation of the

contact line radii, r1 and r2, and of the slope angles �1 and �2 ; these effects are taken into

account in Refs. [14,18-20,24], see Section 7.3.2 for details.

In spite of being approximate, the derivation of Eq. (7.13), clearly demonstrates the physical

origin of the immersion force: the latter is (approximately) equal to the derivative of the

wetting energy Ww, see Eq. (7.11); similarly one can obtain (Section 8.1.1) that the flotation

force can be approximated with the derivative of the gravitational energy Wg of a floating

particle, which as a final result gives again Eq. (7.13). Using the identity K1(x) � 1/x for x << 1

[61,62,65], one derives the asymptotic form of Eq. (7.13) for qL << 1 (q�� = 2.7 mm for water),

L
QQF 212 ���� rk << L << q��, (7.14)

which looks like a two-dimensional analogue of Coulomb's law of electrostatics. The latter fact

explains the name "capillary charge" of Q1 or Q2 [20,21].
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Fig. 7.4. Sketch of the experimental set up used in Ref. [67] to measure the capillary immersion force
between two vertical cylinders, ‘1’ and ‘2’; ‘3’ is a glass needle, which transfers the horizontal
force exerted on cylinder ‘1’ to a piezo-resistive sensor ‘4’. Thus the force, converted into
electric signal, is measured as a function of the distance L.

7.1.4. MEASUREMENTS OF CAPILLARY IMMERSION FORCES

Measurement of lateral capillary force (of the immersion type) has been carried out by Camoin

et al. [66] with millimeter-sized polystyrene spheres attached to the tip of rod-like holders. By

means of a sensitive electro-mechanical balance it has been established that the force is

attractive and decays (approximately) exponentially, which corresponds to the long-distance

asymptotics of Eq. (7.13), see e.g. Refs. [61, 65]:
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A detailed comparison of the experimental results from Ref. [62] with the theory is not

possible, because data for the surface tension, contact angle and the contact line radius are not

given in that paper.

Capillary immersion forces between two vertical cylinders, and between a vertical cylinder and

a wall, were measured by means of a piezo-transduser balance [67], see Fig. 7.4. One of the

cylinders (‘1’ in Fig. 7.4) is connected by a thin glass needle to a piezoresistive sensor; thus
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Fig. 7.5. Force F of capillary attraction between two hydrophilic vertical cylinders measured in
Ref. [67] by means of the piezo-transducer balance sketched in Fig. 7.4; F is plotted vs. the
distance L between the axes of the cylinders; the parameters values are q�1 = 2.72 mm,
� = 72.4 mN/m, Q1 = 0.370 mm, Q2 = 0.315 mm. The solid line is calculated by means of
Eq. (7.13); no adjustable parameters.

the sensor can detect the pressure caused by the needle, which is in fact the horizontal

component of the force exerted on the vertical cylinder 1. The other cylinder 2 can be moved

during the experiment in order to change the distance L between the bodies. Figure 7.5 presents

the dimensionless attractive capillary force F/(q�Q1Q2) vs. the dimensionless distance qL

measured in Ref. [67]. The liquid is pure water, � = 72.4 mN/m, q�� = 2.72 mm; the two

cylinders are hydrophilic, so �1 = �2 = 90	; the radii of the cylinders are r1 = 370 �m and r2 =

315 �m.

The solid curve in Fig. 7.5 is drawn by means of Eq. (7.13) without using any adjustable

parameters. One sees that Eq. (7.13) agrees well with the experiment except in the region of

small distances, where the asymptotic formula (7.13), derived under the assumptions for small

meniscus slope and long distances, is no longer valid.

The experimental data in Fig. 7.5 correspond to attraction between two similar (hydrophilic)

rods.  On the other hand,  repulsive capillary force have been detected between two dissimilar
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Fig. 7.6. Force F of capillary repulsion between hydrophilic (�1 = 0�, r1 = 370 �m) and hydrophobic
(�2 = 99�, r2 = 315 �m) vertical cylinders measured in Ref. [67] by means of the balance
sketched in Fig. 7.4; F is plotted vs. the distance L between the axes of the cylinders; the
parameters values are q-1 = 2.72 mm, � = 72.4 mN/m. The circles and triangles are results from
two separate runs. The solid line is calculated by means of Eq. (7.13); no adjustable
parameters.

rods, a hydrophilic and a hydrophobic one, see Fig. 7.6. At long distances the experimental data

agree very well with Eq. (7.13): see the solid curve in Fig. 7.6, which is drawn without using

any adjustable parameter. For short distances the data do not comply with Eq. (7.13), which is a

manifestation of non-linear effects.

Systematic measurements of capillary immersion force between partially immersed bodies of

various shape (two vertical cylinders, cylinder and sphere, two spheres, sphere and vertical

wall) were carried out in Refs. [68-70] by means of a torsion micro-balance, see Fig. 7.7. The

latter in principle somewhat resembles the balance used by H. Cavendish to determine the

gravitational constant in 1798 [71], but is much smaller. The interaction force for two couples

of vertical cylinders and/or spheres (Fig. 7.7) was measured by counterbalancing the moment

created by the two couples of forces with the torsion moment of a fine platinum wire, whose

diameter was 10 �m and 25 �m in different experiments. The angle of torsion, �, was

measured by reflection of a laser beam from a mirror attached to the anchor of the balance, see

Fig. 7.7.  Figure 7.8 shows data from  Ref. [68]  for the capillary force between two identical
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Fig. 7.7. Sketch of a torsion balance, used in Refs. [68-70] to measure the capillary attraction between
two pairs of small, partially immersed, glass spheres (1-1’ and 2-2’) attached to holders. The
immersed part of the holders is shown dashed. One of the particles in each pair (these are
particles 1 and 2) is connected to the central anchor 3, which is suspended on a platinum wire
4; the angle of torsion is measured by reflection of a light beam from the mirror 5.

Fig. 7.8. Plot of the force of capillary attraction F vs. the distance L between the axes of two identical
vertical cylinders of radius rc. The force is measured in Refs. [68] by means of the torsion
balance shown in Fig. 7.7; the three curves correspond to rc = 50, 165 and 365 �m. The solid
lines are drawn by means of Eq. (7.13); no adjustable parameters.
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vertical cylinders for r1 = r2 = 50, 165 and 365 �m; the solid lines in Fig. 7.8 are calculated by

means of Eq. (7.13) without using any adjustable parameter. It is seen that the theory and

experiment agree well in the range of validity of the theoretical expressions. At shorter

distances between the two interacting bodies, at which the linearized theory is not accurate,

deviations from Eq. (7.13) are experimentally detected [69], as it could be expected.

7.1.5. ENERGY AND FORCE APPROACHES TO THE LATERAL CAPILLARY INTERACTIONS

The energy approach to the lateral capillary interactions (both immersion and flotation) is

based on an expression for the grand thermodynamic potential of a system of N particles

attached to the interface between phases 1 and 2, which can be written in the form [14,20,21]:


(r1,...,rN) = Wg + Ww + Wm + const. (7.16)

Wg = mkgZk
(c )

k�1

N

� � PY
VY

�
Y�I, II
� dV (7.17)

Ww � �kY AkY
Y� I,II
�

k�1

N

� , Wm = � �A, (7.18)

where r1, r2,...,rN  are the position vectors of the particle mass centers and mk (k = 1,2,...,N) are

the masses of the particles, Zi
(c )  is the projection of rk along the vertical, PY and VY (Y = I,II) are

pressure and volume of the fluid phases I and II; �  is the surface tension of the interface (the

meniscus) between fluid phases I and II; �A is the difference between the area of this meniscus

and the area of its projection on the plane xy (�A is finite even if the meniscus has infinite area,

i.e. levels off to a plane at infinity);  AkY and �kY are area and the surface free energy density of

the boundary between particle ‘k’ and phase ‘Y’; the additive constant in Eq. (7.16) does not

depend on r1, r2,...,rN . Wg, Ww and Wm are respectively the gravitational, wetting and meniscus

contribution to the grand potential 
. Then the lateral capillary force between particles 1 and 2

is determined by differentiation:

12

)12(

r
F

�

��
�� , r12 = |r1 � r2| (7.19)
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Fig. 7.9. Illustration of the origin of capillary force between two spheres partially immersed in a liquid
film: The net horizontal force F(1) exerted on particle 1 is a sum of the surface tension vector �
integrated along the contact line L1 and of the pressure distribution integrated throughout the
particle surface S1 (the same for particle 2), see Eqs. (7.21)�(7.23).

When the distance between two particles varies, the shape of the meniscus between phases I

and II (and consequently Wm) alters; during the same variation the areas of the particle surfaces

wet by phases I and II also vary, which leads to a change in Ww; last but not least, the change in

the meniscus shape is accompanied by changes in the positions of the mass centers of particles

and fluid phases, which gives rise to a variation in their gravitational energy accounted for by

Wg. Equations (7.16)�(7.19) are applicable also to thin films; one should take into account the

fact that in such a case the meniscus surface tension depends on the local thickness of the film,

� = �(�), so that [21,72]

� � �����
� 2/12

II1 �
�

�

d
d (thin films) (7.20)

where, as usual, � is the disjoining pressure. In other words, the disjoining pressure effect is

“hidden” in the meniscus energy term, Wm, in Eq. (7.16).

The explicit form of Eqs. (7.14) and (7.15), and the relative importance of Wg, Ww and Wm,

depend on the specific configuration of the system. For example, in the case of flotation force


 is dominated by Wg, whereas in the case of immersion force 
 is dominated by Ww. This

leads to different expressions for 
 corresponding to different physical configurations.
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In the force approach, which is different but equivalent to the above energy approach, the

lateral capillary force exerted on each of the interacting particles is calculated by integrating the

meniscus interfacial tension � along the contact line and the hydrostatic pressure P throughout

the particle surface [18-21]:

F(k) = F (k� ) + F(kp) , k = 1,2,..., (7.21)

where the contribution of interfacial tension is

F (k� )
� UII � dl m�

Lk

� k = 1,2,..., (7.22)

and the contribution of the hydrostatic pressure is

F (kp)
� UII � ds(�n P)

Sk

� k = 1,2,.... (7.23)

Here UII is the unit operator (tensor) of the horizontal plane xy; in Eqs. (7.22) and (7.23) this

operator projects the respective vectorial integrals onto the xy-plane; Lk denotes the three phase

contact line on the particle surface (Fig. 7.9) and dl is a linear element; the vector of surface

tension � = m� exerted per unit length of the contact line on the particle surface, is

simultaneously normal to the contact line and tangential to the meniscus, and has magnitude

equal to the surface tension � ; m is a unit vector; Sk denotes the particle surface with outer unit

running normal n; ds is a scalar surface element; the vector ‘�n’ has the direction of the outer

pressure exerted on the surface of each particle. In Refs. [18,19,21] it has been proven, that the

integral expressions (7.21)�(7.23) are compatible with the Newton’s third law, i.e. F(1) = � F(2),

as it must be.

Note that the interfacial bending moment can also contribute to the lateral capillary force, see

Ref. [25] and Chapter 10 below, although this contribution is expected to be important only for

interfaces and membranes of low tension �.

As an example, let us consider two particles entrapped in a liquid film on a substrate, see Fig.

7.9. If the contact lines L1 and L2 were horizontal, the integrals in Eqs. (7.22) and (7.23) would

be equal to zero because of the symmetry of the force distributions. However, due to the

overlap of the interfacial perturbations created by each particle, the contact lines are slightly
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inclined, which is enough to break the symmetry of the force distribution and to give rise to a

non-zero net (integral) force exerted on each of the two particles, F(1) and F(2) in Fig. 7.9.

The existence of inclination of the contact line can be clearly seen in Fig. 7.10, which

represents three photographs of thin vertical hydrophobic glass rods partially immersed in

water; the photographs have been taken Velev et al. [67] with the experimental set up sketched

in Fig. 7.4. One sees that the contact line on an isolated rod is horizontal (Fig. 7.10a); when two

such rods approach each other inclination of the contact line appears (Fig. 7.10b) and grows

with the decrease of the distance between the rods (Fig. 7.10c).

Let us imagine now that the upper part of the rods shown in Fig. 7.10 is hydrophobic, whereas

the lower part is hydrophilic. In such a case the three-phase contact line can stick to the

horizontal boundary between the hydrophobic and hydrophilic regions and the contact line will

remain immobile and horizontal (no inclination!) when the two rods approach each other.

Nevertheless, in such a case a lateral force of capillary attraction will also appear [21] because

of the contact angle hysteresis: the meniscus slope varies along the circular contact line of each

rod. The meniscus slope is the smallest in the zone between the two vertical cylinders (rods);

then the integration in Eq. (7.22) yields again an attractive net force, see Ref. [21] and Section

7.3.4 for more details.

It is worth noting that for small particles, r1,r2 << q��, the contribution of the pressure to the

capillary force is negligible,

|F(kp)| << |F (k� ) |       for r1,r2 << q��, (7.24)

see Refs. [19,20] and Section 7.4 below. As established by Allain and Cloitre [49], the pressure

contribution can prevail for �(rk) >> q�� (k = 1,2), i.e. for large Bond numbers; however, this is

not the case with colloidal particles, for which Eq. (7.24) is satisfied.

It is not obvious that the energy and force approaches, based on Eqs. (7.16)�(7.19) and

(7.21)�(7.23), respectively, are equivalent. Numerical coincidence of the results provided by

these two approaches has been established in Refs. [19,20]. Analytical proof of the equivalence

of the two approaches has been given in Ref. [21] for the case of two vertical cylinders; Eqs.

(7.21)�(7.23) are derived by a differentiation of 
, see Eqs. (7.16) and (7.19).
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                         (a)

                         (b)

                         (c)

Fig. 7.10. Photographs, taken by Velev et al. [67], of two partially immersed vertical hydrophilic glass
rods of radii r1 = 315 �m and r2 = 370 �m. Note that the inclination of the three-phase
contact lines on the rods increases when the distance between them decreases.
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7.2. SHAPE OF THE CAPILLARY MENISCUS AROUND TWO AXISYMMETRIC BODIES

7.2.1. SOLUTION OF THE LINEARIZED LAPLACE EQUATION IN BIPOLAR COORDINATES

When the Young equation holds and the three-phase contact angle is constant, the appearance

of a small inclination of the contact line gives rise to the lateral capillary force, see Fig. 7.9.

The simple superposition approximation is too rough to provide a quantitative estimate of this

fine inclination. Indeed, the meniscus shape in superposition approximation does not satisfy the

boundary condition for the constancy of the contact angle at the particle surface. A quantitative

description can be obtained by solving the linearized Laplace equation, Eq. (7.6), in bipolar

(bicylindrical) coordinates (	,
) in the plane xy, see e.g. Ref. [63]

��

�

��

�

coscosh
sin,

coscosh
sinh

�

�

�

�

ayax (7.25)

�	1 � 	 � 	2 ,                          �� � 
 � �                                                             (7.26)

The elementary lengths along the 	- and �-lines of the respective orthogonal curvilinear

coordinate network are [63]

2

2

)cos(cosh
,,

��

��
����������

�

����

aggdgdldgdl (7.27)

where g�� and g�� are components of the metric tensor. In Fig. 7.11 the circumferences C1 and

C2, of radii r1 and r2, represent the projections of the contact lines L1 and L2 on two interacting

particles onto the plane xy (see e.g. Fig. 7.9). In the case of two vertical rods C1 and C2 will be

exactly circumferences; in the case of two spheres (Fig. 7.9) the contours C1 and C2 will

slightly deviate from the circular shape, but this deviation is small for small particles, that is for

(qrk)2 << 1, and can be neglected [14]. The x-axis in Fig. 7.11 is chosen to pass through the

centers of the two circumferences.  The coordinate origin is determined in such a way that the

tangents OA1 and OA2 to have equal lengths, a; in fact this is the geometrical meaning of

parameter a in Eq. (7.25). From the two rectangular triangles in Fig. 7.11, OO1A1 and OO2A2,

one obtains

sk
2 � a2 = rk

2,  (k = 1,2). (7.28)
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Fig. 7.11. Introduction of bipolar coordinates in the plane xy, see Eq. (7.25): the x-axis passes through
the centers O1 and O2 of the contact line projections C1 and C2; the coordinate origin O is
located in such a way that the two tangents, OA1 and OA2, have equal length a.

The two circumferences in Fig. 7.11 correspond to fixed values of the parameter 	, 	 = �	1  and

	 = 	2, where 	1 and 	2 are related to the geometrical parameters as follows:

cosh	k  =  sk/rk ,                           sinh	k  =  a/rk                            (k = 1,2).                 (7.29)

A substitution of Eqs. (7.29) into Eq. (7.28) yields the known identity  cosh2
	k �  sinh2

	k = 1.

The 	-lines are a family of circumferences in the plane xy determined by the equation [63]:

x2 + (y � a coth	)2 = a2/sinh2
	 (7.30)

Since sinh	k  �  a/rk one realizes that the two circumferences 	 = �	1 and 	 = 	2 have really radii

r1 and r2, see Fig. 7.11. The parameter a is related to the distance L = s1 + s2 by means of the

expression [19]:

a2 = [L2 � (r1 + r2)2] [L2 � (r1 � r2)2]/(2L)2 (7.31)

One sees that a � L for L�
, and a�0 at close contact, L�(r1 + r2). In bipolar coordinates Eq.

(7.6) takes the form [63,14,19]:

),()()cos(cosh 2
2

2

2

2
2 ������

�

�
��
	




��

��
�

��

��
�
� qa (7.32)
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For small particles and not too large interparticle separations one has (qa)2 << 1, and then

Eq. (7.32) contains a small parameter. In such a case, following the method of the matched

asymptotic expansions [73] one can consider an inner and an outer region:

inner region  (close to the particles):  (cosh	 � cos
)2 >> (qa)2 (7.33)

outer region  (far from the particles):  (cosh	 � cos
)2 << (qa)2 (7.34)

We seek the solution of Eq. (7.32) for two vertical cylinders, like those depicted in Fig. 7.12.

(In Section 7.3 it will be demonstrated that the results for vertical cylinders can be extended to

describe the case of spherical particles.)  The meniscus slope at the cylinders is determined by

the slope angles

�k = �/2 � �k, k = 1,2, (7.35)

where �1 and �2 are the contact angles. Consequently, the following boundary conditions must

be satisfied at the two contact lines [19]:

k
k g ���

��

��
��

sin)1( for   	 = (�1)k
	k (k = 1,2) (7.36)

Fig. 7.12. Schematic view of the capillary meniscus around two partially immersed vertical cylinders of
radii r1 and r2; �1 and �2 are contact angles, �1 and �2 are meniscus slope angles at the
respective contact lines L1 and L2, whose horizontal projections are denoted by C1 and C2.
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Other boundary condition is the meniscus to level off far from the cylinders:

22,0lim yxr
r

���

��

� (7.37)

In Refs. [14] and [19] the method of the matched asymptotic expansions [73] was applied and

the solution was found in the form of a compound expansion:

� = �in + �out � (�out)in (7.38)

where

�
out = (Q1 + Q2)K0(qr) (Qk � rk sin�k,  k = 1,2) (7.39)

(�out)in = �(Q1 + Q2) ln(�eqr/2) �e = 1.781072418... (7.40)

�
�

�
�

� �������	

������	

	

0for),(

0for),(

11

22

in (7.41)

Here �e is the Euler-Masceroni number, see e.g. Ref. [61] and the functions �1 and �2 are

defined as follows [19]:

�k (	,
)= C0 + Qk ln(2 cosh	 � 2 cos
) + Cn
(k )

n�1

�

� cosh n[	 � (�1)k
	k] cos n
 (7.42)

where the coefficients are given by the expressions

C0 = (Q1 � Q2)A � (Q1 + Q2) ln(�eqr),             
)(sinh
)(sinh1

21

21

1 ��

��

�

�

��
�

�
n
n

n
A

n
(7.43)

)(sinh
sinh

)(2

21

)(

��

�

�

��

n
n

QQ
n

C j
jk

k
n j,k = 1,2;    j � k,    n = 1,2,3,... (7.44)

Eqs. (7.39)�(7.44) describe the meniscus profile around two cylinders of different radii

supposedly the condition (qa)2 << 1 is satisfied. Such is the case of colloid-sized particles,

which represents a physical and practical interest.

For two identical cylinders

Q1 = Q2 = Q,            s1 = s2 = s,             r1 = r2 = rc,            	1 = 	2 = 	c, (7.45)
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and in such a case Eqs. (7.41)�(7.42) for �in considerably simplifies [14,19]:

�
in(	,
) = Q [ln(2 cosh	 � 2 cos
) � 2 ln(�eqr)] (7.46)

The above expressions serve as a basis for the quantitative description of the lateral capillary

forces between cylindrical and spherical particles (see below). First we will obtain some useful

auxiliary expressions for the mean elevation and the shape of the contact line.

7.2.2. MEAN CAPILLARY ELEVATION OF THE PARTICLE CONTACT LINE

As already mentioned, the two contact lines, 	 = �	1 and 	 = 	2, are not perfectly horizontal, that

is �in depends on 
 along the contact line. The deviation from horizontality is small for small

particles (thin cylinders) [14]. The mean elevation of the contact lines above the horizontal

interface far from the cylinders is [14,19]:

� ��

kC
k

kin

k
k dl

r
h ),)1((

2
1

���
�

k = 1,2. (7.47)

Using Eqs. (7.27) and (7.41)�(7.44) one can solve the integral in Eq. (7.47) to obtain [19]:

� �� �

�
�

�
�
�

�

�

�
����

�����	

�
�

�1 21
21

e21

)(sinh
sinh)exp(2)1()(

)ln()()2exp(1ln2

n
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n
AQQ

qaQQQh

��

��

���

  (j � k,   j,k = 1,2) (7.48)

In accordance with Eq. (7.29) 	k can be expressed in the form:

�
�

�

�

�
�

�

�
��� 1ln 2

2

kk
k r

a
r
a

� , k = 1,2; (7.49)

a and A are given by Eqs. (7.31) and (7.43), respectively. The value of hk can be both positive

and negative.

For two identical cylinders Eq. (7.45) holds and h1 = h2 = hc; in this special case Eq. (7.48)

considerably simplifies [14]:

�
�
�

�
�
�

�
�

	


�
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��

qa
Qh c

cc
e

)2exp(1ln2
�

�
� (identical cylinders) (7.50)
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Note that both Eqs. (7.48) and (7.50) are derived under the assumption, that (qa)2 << 1, which

means that both the cylinder radii, r1 and r2, and the distance between the cylinders, L, is small

compared to the capillary length, q��. The restriction qL << 1 can be overcome applying again

the method of the matched asymptotic expansions, as follows.

First of all, we note that in the limit of infinite separation between the two cylinders, L�
, the

limiting value hk� of hk can be calculated by using the Derjaguin formula [74] for an isolated

cylinder:

k
k

kk
kk qr

Q
qr

Qh
ee

2ln
)cos1(

4ln
���

�

�

�
�

, k = 1,2; (qrk)2 << 1. (7.51)

At the last step we have used the fact that in the considered case of small meniscus slope we

have sin2
�k << 1, which implies cos�k � 1. In the case of two identical cylinders using

Eqs. (7.29) and (7.45) one can represent Eq. (7.50) in the following form [22]:

)(
2ln2ln

ee

in

asq
Q

qr
Qh

c
c

�

��

��
, (qa)2 << 1, (7.52)

without using any approximations. The subscript “in” means that we consider Eq. (7.52) as a

limiting expression for hc in the “inner region” of relatively short interparticle distances, for

which (qa)2 << 1. In the complementary “outer region” one can use the superposition

approximation of Nicolson (3), see Section 7.1.3, to derive

hc
out = hc� + QK0(2qs), (qa)2 � 1. (7.53)

where hc� can be calculated from Eq. (7.51) with rk = rc. For small values of the argument the

K0 function can be expressed in the form [61,65]:

)ln(2ln)(K
e

0 xxO
x

x ��

�
 x << 1. (7.54)

Taking into account Eqs. (7.51)�(7.54) one can obtain the leading term in the compound

expansion for hc [22]:
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hc = hc� + QK0(q(s + a)), (qrc)2 << 1. (7.55)

One can check that for short distances, q(s + a) << 1, Eq. (7.55) reduces to the “inner

expansion”, Eq. (7.52), whereas for long distances one has a � s and Eq. (7.55) reduces to

Eq. (7.53).  It turns out that Eq. (7.55) predicts the capillary elevation hc with a good accuracy

for the whole range of distances between the two cylinders, from close contact up to infinite

separations.

In the case of two dissimilar cylinders, like those depicted in Fig. 7.12, one can obtain a

generalization of Eq. (7.55) by using Eq. (7.48) and asymptotic expansions proposed in

Ref. [19]:

hk = hk� + Qj K0(q(sk + a)), j � k,   j,k = 1,2; (qrk)2 << 1. (7.56)

Equation (7.56) is subject to the additional condition (rk/sk)4 << 1, which is violated for close

distances between the two cylinders. That is the reason why the usage of Eq. (7.48) is

recommended for close distances between the two cylinders and Eq. (7.56) can be applied for

all other distances. In Section 7.3 we make use of Eqs. (7.55) and (7.56) to quantify the

capillary interaction by means of the energy approach.

7.2.3. EXPRESSIONS FOR THE SHAPE OF THE CONTACT LINE

Let us begin with the case of two identical vertical cylinders. (As already mentioned, in Section

7.3 it will be demonstrated that the results for vertical cylinders can be extended to describe the

case of spherical particles.) In view of Eqs. (7.29) and (7.45) one can write

	c = ln(a/rc + 1/ 22
�cra ) = ln(s/rc + 1/ 22

�crs ) = ln[(a + s)/rc] (7.57)

By means of the last equation one can bring Eq. (7.46) for 	 = 	c into the form [22]:

� �
)cos/(2

2ln2ln 2
ee

inin

���
��

��

cc
c rsqa

Q
qr

Q
c �

���
�

(qa)2 << 1. (7.58)

�c
in(
) describes the shape of the three-phase contact line at the surface of each cylinder in the

“inner region” corresponding to relatively shorter distance between the cylinders, for which

(qa)2 << 1. In the complementary case of large separations, (qa)2 � 1, one can use the
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superposition approximation representing the meniscus shape around a couple of particles as a

sum of the deformations, created by two isolated particles. The meniscus around a single

axisymmetric particle is described by the Derjaguin equation, z(r) = QK0(qr), see Section 2.2.2.

Thus one obtains [22]:

�c
out(
) = QK0(qrr) + QK0(qrl), (qa)2 � 1 (7.59)

where the superscript “out” means that Eq. (7.59) is valid in the outer asymptotic region of not-

too-small interparticle separations, (qa)2 � 1, in which the superposition approximation can be

applied. The indices “l” and “r” denote the left- and right-hand side particles, in particular

rl
2 = (x + s)2 + y2, rr

2 = (x � s)2 + y2. (7.60)

In the outer region, for relatively long distances, (rc/s)2 << 1, one can write a � 22
crs �  � s

and to rewrite Eq. (7.60) in the form

rl
2 � (x + a)2 + y2, rr

2 � (x � a)2 + y2. (7.61)

Next, for the particle contact line, (x,y) � C, we substitute x and y from Eq. (7.25) into Eq.

(7.61) and rearrange the result using Eqs. (7.29) and (7.45); thus we obtain [22]:

�� cos
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�
� (7.62)

To find the inner asymptotics of the “outer expansion” in Eq. (7.59) we carry out a transition

a�0 (qrl, qrr � 0); then from Eqs. (7.54) and (7.59) we obtain [22]

� � ��
�

�
��
�

�
��

lr
c qrqr

Q
ee

inout 2ln2ln
��

� (7.63)

The substitution of Eq. (7.62) into Eq. (7.63) after some algebra gives exactly Eq. (7.58),

without any approximations, i.e. � � ininout
cc �� � . Finally, in keeping with Eq. (7.54) we return

back to K0 function in Eq. (7.58) to obtain a “compound” expression for �c(
), which for small

separations reduces to �c
in, Eq. (7.58), and for large separations yields �c

out, Eq. (7.59) [22]:
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�
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0
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cc rs
qaQKh , (qrc)2 << 1,       |�II�|2 << 1, (7.64)
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where hc� is the Derjaguin’s [74] expression for the elevation of the contact line for an isolated

axisymmetric particle:

c
c qr

Qh
e

2ln
�

�
�

(7.65)

cf. Eq. (7.51). Equation (7.64) can be applied for any interparticle distances, characterized by

the parameter a, see Eq. (7.31). For a�0 Eq. (7.64) predicts �c(
)�
 for 
 � 0, i.e. the liquid

climbs up in the narrow gap between the two infinitely long vertical cylinders; this limiting

result could be qualitatively correct for the considered idealized situation, but it could hardly be

quantitatively correct insofar as the presumption for small meniscus slope, |�II�|2 << 1, is

violated for such short distances.

Equation (7.64) can be generalized to describe the shape of the contact lines, �c,1(
) and

�c,2(
), on two cylinders of different radii, r1 and r2. Applying to Eq. (7.41)�(7.44) the

asymptotic procedure described in the Appendix of Ref. [19] one can derive

�
�
�

�
�
�
�

�

�
�	

�

�
��

cos
2)(

2

0,
kk

jkkc rs
qaKQh ,       (qrk)2 << 1,      |�II�|2 << 1,      (rk/sk)4 << 1     (7.66)

(j � k,   j,k = 1,2), where hk� is given by Eq. (7.51). The validity of Eq. (7.66) is limited by one

additional condition, (rk/sk)4 << 1, as compared with Eq. (7.64); if the latter condition is

violated at short interparticle distances, the usage of the more rigorous expressions, Eq.

(7.41)�(7.44), is recommended. In Section 7.4 below we make use of Eqs. (7.64) and (7.66) to

quantify the capillary interaction by means of the force approach.

7.3. ENERGY APPROACH TO THE LATERAL CAPILLARY INTERACTIONS

7.3.1. CAPILLARY IMMERSION FORCE BETWEEN TWO VERTICAL CYLINDERS

We begin with the case of two partially immersed vertical cylinders, Fig. 7.12. According to

Eq. (7.16) the free energy (the grand thermodynamic potential) of the system can be expressed

as a sum of three terms, Wg, Ww and Wm, which are the contributions of the gravitational

energy, the wetting of the cylinder surfaces and the meniscus surface energy, respectively.

Below we will separately consider these three contributions.
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The meniscus surface energy can be expressed as Wm = � 
�A, see Eq. (7.18). Its

contribution to the capillary interaction energy between two cylinders can be written in the

form

�Wm = � (�A � �A�) (7.67a)

where �A� is the value of �A at infinite distance between the two cylinders. The difference �A

between the area of the meniscus and the area of its projection on the plane xy can be expressed

in the form [14]

� � dsA
S
� ��

�
��

� ��	


m

1+1
2/12

II� (7.67b)

where �II is the gradient operator in the plane xy defined by Eq. (7.2), ds = dxdy is the surface

element and the integration is carried out over the projection, Sm, of the meniscus on the plane

xy. If the meniscus slope is small, the square root in Eq. (7.67b) can be expanded in series

dsA
S
� �����

m

)()( IIII2
1 �� (|�II�|2 << 1) (7.68)

With the help of the linearized Laplace equation, �II
2
� � q2

� , one derives [14]:

22
IIII

2
IIIIIIIIII )()()()( ��������� q�������������� (7.69)

Further, we substitute Eq. (7.69) into Eq. (7.68), and in view of Eq. (7.67a) and the definition

q2 = �� g/�  we obtain [14]

�Wm = � (Ic � Ic�) � �� g(Iv � Iv�) (7.70)

where we have introduced the notation

)( IIII2
1

m

������ �
S

c dsI (7.71)

�� �� ���

mmm

2

0
2
1

v
SSV

dsdzzdsdVzI �

�

(7.72)

Vm is the volume comprised between the meniscus surface z = �(x,y) and its projection Sm on

the plane xy; Ic� and Iv� are the limiting values of Ic and Iv for infinite distance (L�
) between
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the axes of the two vertical cylinders. Equation (7.71) can be rearranged using the Green

theorem [14,75]:

� �
�

���

2,1
II2

1 )(~
k C

c
k

dlI ��n (7.73)

Here, as usual, the contours Ck (k = 1,2) are the projections of the contact lines Lk on the plane

xy; the contour Ck is oriented clock-wise and ñ is its running unit normal directed inward; to

obtain Eq. (7.73) it has been also used that the integrand ��II� vanishes at infinity. For two

identical cylinders one can write �1 = �2 = �c, and then from the boundary condition for

constant contact angle, Eq. (7.36), it follows

c
k

g
�

��

��
�

��

sin1)1(~
II �����n  = const. for 	 = (�1)k

	c (7.74)

In such a case Eq. (7.73) reduces to

�� ����

11
2

1;2sin2sin
Cc

cccc
C

ccc dl
r

hQhhrdlI �
�

����� (7.75)

cf. Eqs. (7.9), (7.45) and (7.47). In this way the mean elevation of the contact line hc enters the

expression for the energy of capillary interaction. Using Eq. (7.75) one can represent the

meniscus surface energy, Eq. (7.70), in the form

�Wm = 2�� Q(hc � hc�) � �� g(Iv � Iv�) (7.76)

The gravitational potential energy, Wg, given by Eq. (7.17) varies only because the

shape of the interface between phases I and II changes when the distance between the two

cylinders is altered; the mass centers of the cylinders are not supposed to change their

positions, Zk
(c). Since the interface is flat far from the cylinders, the hydrostatic pressures in the

two neighboring phases can be expressed in the form PY = P0 � �Ygz, where P0 is the pressure

at the level z = 0, see Fig. 7.12. Then Eq. (7.17) reduces to

Wg = const. v
III, m

const.const. gIdVzgdVP
VY V

Y
Y

�� ������� �� �
�

 ; (7.77)
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here, as usual, �� � �I � �II; we have used Eq. (7.72) and the fact that the total volume of the

system, VI + VII, is constant. Then the contribution of the gravitational potential energy to the

capillary interaction energy becomes [14]

�Wg = �� g(Iv � Iv�) (7.78)

Summing up Eqs. (7.76) and (7.78) one obtains

�Wm + �Wg = 2�� Q(hc � hc�) (7.79)

Since Q and (hc � hc�) have the same sign, then the combined contribution of the meniscus

surface energy and the gravitational potential energy, �Ww + �Wg, is always positive, i.e. it

corresponds to repulsion. This is related to the fact that the capillary rise hc increases when the

cylinders come closer; simultaneously the deviation of the meniscus from planarity increases,

which is energetically unfavorable.

The energy of wetting, given by Eq. (7.18), can be expressed as follows

� �
� �

�

N

k Y
kYkY AW

1 III,
w �  = 2(�I � �II) �

1C

dl�  + const. = 4�rc(�I � �II)hc + const. (7.80)

cf. Eq. (7.75); here we have used the fact that for identical cylinders �kY = �Y  (k = 1,2; Y = I,II).

The contribution of the energy of wetting to the capillary interaction energy is

�Ww � Ww � Ww� = 4�rc(�I � �II)(hc � hc�) (7.81)

�Ww is defined in such a way that �Ww �0 for large distances, L�
. We assume that the

Young equation (see Section 2.3.1) holds,

�II � �I = � cos� = � sin�c , (7.82)

and then Eq. (7.81) becomes

�Ww = �4�� rc (hc � hc�) sin�c = �4�� Q (hc � hc�) (7.83)

As mentioned above, Q, and (hc � hc�) have the same sign, then the contribution of the wetting

energy, �Ww, is always negative, i.e. it corresponds to attraction. The comparison between

Eqs. (7.79) and (7.83) shows that �Ww is two times larger by magnitude than �Wm + �Wg;
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consequently, the work of wetting �Ww determines the sign and the trend of the total capillary

interaction energy [14]:

�
 = �Ww + �Wm + �Wg = �2�� Q (hc � hc�) (7.84)

Thus the intuitive assumption that the interaction energy can be identified with a half of the

work of wetting (wetting of one of the two cylinders), which was used in Section 7.1.3 to

obtain Eq. (7.11), turns out to be correct. The substitution of Eq. (7.55) into Eq. (7.84) gives

the dependence of the interaction energy �
 on the distance L between the axes of the two

identical vertical cylinders:

�
 = �2�� Q2K0(q(s + a)) (qrc)2 << 1. (7.85)

Note that a = 22
crs �  and s = L/2 � rc. Differentiating Eq. (7.85) one obtains the capillary

immersion force:

))((K
2

2 1
2 asqq

a
saQ

dL
dF �

�
��

��
�� �� (qrc)2 << 1. (7.86)

For (rc/s)2 << 1 one has s � a � L/2 and then Eqs. (7.85) and (7.86) reduce to their long-distance

asymptotic forms, which can be obtained by means of the superposition approximation, see

Section 7.1.3 above:

�
 = �2�� Q2K0(qL),        F = �2�� Q2qK1(qL)     [(qrc)2 << 1, (rc/s)2 << 1]. (7.87)

If the two cylinders have different radii, r1 and r2, see Fig. 7.12, Eq. (7.84) can be generalized

following the same scheme of derivation [19]:

�
 = � �� Qk
k �1,2
� (hk � hk�), (Qk = rk sin�k) (7.88)

The dependence of �
 vs. distance L can be obtained substituting the respective expression for

hk, Eq. (7.48) or Eq. (7.56), into Eq. (7.88). For example, the combination of Eqs. (7.56) and

(7.88) yields

�
 = � �� Q1Q2 �
� 2,1

0K
k

(q(sk + a)), [(qrk)2 << 1, (rk/s)4 << 1], (7.89)
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Fig. 7.13. Calculated energy of capillary attraction �� vs. the distance b between the surfaces of two
vertical cylinders. The meniscus slope angles are �1 = �2 = 5�; the radius of the first cylinder
is r1 = 0.8 �m; the curves correspond to three values of the radius r2 of the second cylinder,
which are given in the figure [19].

which reduces to Eq. (7.11) in the limiting case of long distances (sk � a � L/2). Note that the

dependence of a on L is given by Eq. (7.31) and that sk = 22 ark � .

As an illustration Fig. 7.13 represents the dependence of �
 on the surface-to-surface

separation b � L � r1 � r2 between two vertical cylinders of different radii, r1 and r2, but of

equal contact angles. �
 is calculated from Eqs. (7.48) and (7.88) [19]. As could be expected

�
 is negative (corresponds to attraction) and |�
| decreases with the increase of the

separation b. As seen in Fig. 7.13, |�
| is much larger than the thermal energy kT � 4 
�

 10��� J.

The same is true for spherical particles (instead of cylinders) � see below.

7.3.2. CAPILLARY IMMERSION FORCE BETWEEN TWO SPHERICAL PARTICLES

Now our system is a flat horizontal solid surface covered with a liquid layer of thickness l0.

Following Ref. [19] we consider two spheres of radii R1 and R2 which protrude from the liquid

layer (Fig. 7.14), i.e.
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Fig. 7.14. Sketch of the capillary meniscus around two spherical particles of radii R1 and R2, which are
immersed partially in a wetting liquid film, whose thickness far from the particles is uniform
and equal to l0; h1 and h2 denote the capillary elevation of the meniscus at the respective
particle contact line; �k and �k is contact angle and meniscus slope angle, respectively
(k = 1,2).

l0 < min(2R1,2R2); (7.90)

Our considerations are restricted to small particles and small meniscus slopes at the contact

lines:

(qRk) << 1, sin2
�k << 1, k = 1,2. (7.91)

In this case the projections of the contact lines in the plane xy can be treated approximately as

circumferences of radii r1 and r2, see Ref. [14] for details. Instead of Eq. (7.35) now we have

�k = arcsin(rk/Rk) � �k, k = 1,2; (7.92)

see Fig. 7.14. Let us mention in advance that when the two particles are small, i.e. (qRk) << 1,

they create small meniscus slope, that is the second condition in Eq. (7.91), sin2
�k << 1, is

automatically satisfied, irrespective of the values of the contact angles �1 and �2.

In the cases of two spheres (Fig. 7.14), unlike the case of two vertical cylinders, the radius of

the contact line rk and the slope angle �k (k = 1,2) vary with the interparticle distance, L =

s1 + s2. This is due to the fact that the increase of the wet area of each particle in Fig. 7.14 is

accompanied with a shrinkage of the contact line. The latter fact has to be accounted for in the



Lateral Capillary Forces between Partially Immersed Bodies 323

expression for the meniscus surface energy, Eq. (7.76), which can be generalized to the case of

two different particles as follows [19]:

�Wm = �� Qkhk � Qk�hk� � rk
2
� rk�

2� �
k �1,2
�  � ��g(Iv � Iv�) (7.93)

As before, the subscript “
“ denotes the value of the respective quantity at infinite interparticle

separation, L�
. The term rk
2
� rk�

2  accounts for the fact that the meniscus area alters when the

radius of the contact line varies; the integral Iv is given again by Eq. (7.72).

Since the two particles (Fig. 7.14) move only in horizontal direction, their gravitational

potential energy does not change with L. However, the gravitational energy of the two fluid

phases varies because of the dependence of the meniscus shape on L. The generalization of Eq.

(7.78) to the case of two different spherical particles reads [19]:

�Wg = ��g(Iv � Iv� � �Ip) (7.94)

where �Ip is a small correction accounting for the gravitational potential energy of the liquid

displaced by a portion of the particle volume, denoted by Vp1 and Vp2 in Fig. 7.14:

� ��
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dVzdVzI = �I1 + �I2 (7.95)

Using geometrical considerations one can derive an explicit expression for  �Ik [19]:
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����������� kkkkkkkkkkkkk hrhrhhlRhhlRlhhI �       (7.95a)

It turns out that the contribution of �Ip is always negligible for small particles, that is for

(qrk)2 << 1. Again by using geometrical considerations one can derive that the areas of particle

‘k’ wet by phases I and II are respectively

AkI = 2�Rk(hk + l0)    and     AkII = 2�Rk[2Rk � (hk + l0)] (k = 1,2) (7.96)

Then in view of Eq. (7.18) and the Young equation, �k,II � �k,I = � cos�k, one obtains a

counterpart of Eq. (7.83) for spherical particles:

�Ww = �2�� 
�
� 2,1k

kR (hk � hk�)cos�k (7.97)
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A summation of Eqs. (7.93), (7.94) and (7.97) finally yields an expression for the energy of

capillary interaction between the two partially immersed spheres [14,19]:

�
 = � � p
k

kkkkkkkkkk IgrrhQhQhhR ��������� �
�

����
����

2

1

22cos)(2 (7.98)

Further, the capillary immersion force between the two particles can be calculated by

differentiation of Eq. (7.98): F = �d�
/dL. The numerical calculations show that the wetting

term, Rk(hk � hk�)cos�k, in Eq. (7.98) is predominant and determines the sign and the

magnitude of the attractive capillary immersion force. Since cos�k is the largest for contact

angle �k = 0	, completely “hydrophilic” particles experience a relatively strong capillary

immersion force when captured in a liquid film. This is understandable, because hydrophilic

particles also deform the film surface(s) when the film thickness l0 is smaller than the particle

diameter 2Rk, as it is in Fig. 7.14. Note however, that hydrophilic particles (of density higher

than that of water) cannot experience capillary flotation force, see Fig. 7.1a, because they

cannot float on the aqueous surface, but instead they sink into the water phase.

To compute the dependence of �
 vs. L one has to first calculate the values of some geometric

parameters. The following procedure of calculations has been proposed in Refs. [14,19]:

The input geometrical parameters are the distance between the centers of the two spheres, L,

the thickness of the layer far from the particles, l0, the particle radii Rk and contact angles �k,

(k = 1,2).

From the equation of the particle spherical surface one calculates the contact radius rk� of an

isolated particle for a given value of the mean elevation hk� :

rk�(hk�) = [(l0 + hk�)(2Rk � l0 � hk�)]1/2 (7.99)

Next from Eq. (7.92) one determines �k�(hk�) = arcsin(rk�(hk�)/Rk) � �k. The calculated values

of rk� and �k� are finally substituted into the Derjaguin equation (7.51)

hk� = �rk�(hk�) sin�k�(hk�) ln[�eqrk�(hk�)/2], (7.100)

which is solved numerically to determine hk� (as well as rk�, �k� and Qk� = rk�sin�k�).
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Further, hk, rk and �k are determined in the following way. From Eq. (7.99) (with rk, hk instead

of rk�, hk�) one calculates rk(hk) for each given hk. Then in view of Eq. (7.92) one calculates

�k(hk) = arcsin(rk(hk)/Rk) � �k. The obtained values of rk and �k are finally substituted into Eq.

(7.48) or Eq. (7.56), which along with Eqs.(7.9), (7.31) and (7.49) determines hk as a function

of L, rk, and �k :

hk = �k(L; r1(h1), r2(h2), �1(h1), �2(h2)), k = 1,2. (7.101)

Equation (7.101) for k = 1,2 represents a set of two equations for determining h1 and h2 for

each given interparticle distance L. In Ref. [19] h1 and h2 have been determined by numerical

minimization of the function

G(h1, h2) � 
k �1,2
� [hk � �k(L; r1(h1), r2(h2), �1(h1), �2(h2))]2 (7.102)

In view of Eq. (7.101) the minimum value of G(h1, h2) is zero. The couple (h1*, h2*) satisfying

the equation G(h1, h2) = 0 is the sought for solution for h1(L) and h2(L), which is to be further

substituted in Eq. (7.98) to calculate the interaction energy �
(L). To find (h1*, h2*) in Ref.

[19] h1 and h2 have been varied within the limits �l0 < hk < 2Rk � l0,   k = 1,2, using the method

of Hooke and Jeeves [76].

In the case of two identical spherical particles the calculation procedure is similar but simpler:

having in mind that a = (s2 � rc
2)1/2 and s = L/2, Eq. (7.55) [or Eq. (7.50) along with Eq. (7.57)]

provide an equation for determining hc:

hc = �(L; rc(hc), �c(hc)), (7.103)

where the functions rc(hc) and �c(hc) are determined in the same way as for the case of two

different particles, viz. from Eq. (7.99) with rc, hc, and R instead of rk�, hk� and Rk, and from

the relationship �c(hc) = arcsin(rc(hc)/R) � �. Further, �
 can be calculated either from Eq.

(7.84), or from Eq. (7.85) with Q = rc sin�c is to be computed with the values of rc and �c

obtained for each L by solving Eq. (7.103).

As an illustration in Fig. 7.15 we present the calculated capillary interaction energy �
 as a

function of the distance L between the centers of two identical hydrophilic spherical particles of

radius R = 0.8 �m and contact angle � = 0, which are confined in a wetting film (see Fig. 7.1b).
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Fig. 7.15. Theoretical dependence of the capillary interaction energy �� vs. L/2R, calculated in
Ref. [14] for two identical spheres of radius R = 0.8 �m separated at a center-to-center
distance L. The spheres are hydrophilic (� = 0�) and are partially immersed in a liquid
layer, whose thickness far from the particles is uniform and equal to l0; the two curves
correspond to l0 = 0.4 and 1.2 �m; the capillary length is q�� = 0.2 cm.

The thickness of the liquid layer far from the particles is taken to be l0 = 1.2 and 0.4 �m; the

capillary length is q�� = 0.2 cm. For l0 = 1.2 �m the particles create a relatively small

deformation of the upper surface of the wetting film, whereas for l0 = 0.4 �m the deformation is

greater. Correspondingly, the magnitude of �
 is greater for l0 = 0.4 �m, see Fig. 7.15.

Fig. 7.16. Sketch of a vertical cylinder of radius r1 and sphere of radius R2, which are partially
immersed in a liquid layer, whose thickness far from the particles is uniform and equal to l0;
r2 and h2 are the radius of the particle contact line and its capillary elevation; �k and �k are
contact angle and meniscus slope angle, respectively (k = 1,2).
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For both values of l0 in Fig. 7.15 the interaction energy �
 is much greater than the thermal

energy kT � 4 � 10��� J. As expected, �
 is negative and corresponds to attraction, which turns

out to be rather long-ranged: even at distance L/2R = 1000, �
 is considerably larger than kT

[14]. Such a long-range attraction would lead to two-dimensional disorder-order phase

transition and formation of ordered clusters or larger domains of particles depending on the

experimental conditions; in fact, this has been observed experimentally [11,12,27-29]; see

Chapter 13.

7.3.3. CAPILLARY IMMERSION FORCE BETWEEN SPHERICAL PARTICLE AND VERTICAL CYLINDER

The method described above can be directly applied to calculate the capillary interaction

between a vertical cylinder and a partially immersed sphere [19]. The system is depicted in Fig.

7.16. The geometrical parameters belonging to the cylinder and the sphere are denoted by

indices 1 and 2, respectively. In particular, r1 and R2 denote the radii of the cylinder and the

sphere; �k and �k (k = 1,2) are the respective contact and meniscus slope angles, see Fig. 7.16;

r2 and L have the same meaning as in the previous section; a can be calculated from Eq. (7.31).

Again we will make use of the assumptions for small particles, (qrk)2 << 1, and small meniscus

slope, sin2
�k << 1. Then following the procedures of derivation of the interaction energy for

two cylinders, Eq. (7.88), and for two spheres, Eq. (7.98), one can obtain the following

expression for the energy of capillary interaction between a vertical cylinder and a sphere [19]:

�
 = ��� [(h1�h1�)r1sin�1 � Q2h2 + Q2�h2� + 2R2(h2�h2�)cos�2 + r2
2

 � 
2

2�r ] � ��g�I2    (7.104)

where  �I2  is defined by Eq. (7.95a) for k = 2.  The parameters  r2�,  �2�  and  h2� can be

determined from Eqs. (7.99) and (7.100) for k = 2. h1� can be calculated directly from Eq.

(7.51). h1 and h2 can be calculated using Eqs. (7.101) and (7.102); simultaneously r2 and �2 are

determined; the numerical procedure is simpler than that for two spheres because of the

constancy of some parameters: for the cylinder r1 = const and �1 = �/2 � �1 = const.

As an illustration Fig. 7.17 presents the calculated dependence of the capillary interaction

energy �
 on the distance L between a vertical cylinder of radius r1 = 0.5 �m and a sphere of

contact angle �2 = 10	; the values of the other parameters are denoted in the figure. The three
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Fig. 7.17. Theoretical dependence of the capillary interaction energy �� vs. the distance L = s1 + s2,
calculated in Ref. [19] for the configuration of cylinder and sphere depicted in Fig. 7.16.
The three curves correspond to various values of the particle radius R2 denoted in the figure;
the values of the other parameters are r1 = 0.5 �m, �1 = 5�, �2 = 10�, l0 = 0.5 �m, and � = 40
mN/m.

curves correspond to three values of the particle radius R2. One sees that �
 is negative

(corresponds to attraction) and |�
| increases with the increase of particle radius R2 at fixed

thickness l0 of the wetting film. Again |�
| is much larger than the thermal energy kT; that is

the capillary force prevails over the Brownian force exerted on the particle.

7.3.4. CAPILLARY INTERACTIONS AT FIXED ELEVATION OF THE CONTACT LINE

All cases considered in the previous sections of this chapter correspond to the boundary

condition of fixed contact angle at the particle surface.  In particular, the obtained solution of

the Laplace equation, Eqs. (7.38)�(7.44), satisfies the boundary condition for constant contact

angle: Eq. (7.36) along with Eq. (7.35) for cylinders, or with Eq. (7.92) for spheres.

In the present section, following Ref. [21], we consider another physical situation: fixed

meniscus position (instead of fixed meniscus slope) at the contact line. As shown schematically

in Fig. 7.18a,b this can happen when the contact line is located at some edge at the particle

surface. Other possibility is the contact line to be attached to the boundary between hydrophilic

and hydrophobic domains of the surface, as sketched in Fig. 7.18c; similar is the configuration
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of two membrane proteins incorporated in a lipid bilayer, which is considered in details in

Chapter 10 below. Note that in the case of fixed position of the contact line, the variation in the

meniscus shape due to a change in the distance L is accompanied by a hysteresis of the contact

angle (see Section 2.3.4), i.e. by a variation of the meniscus slope angle (rather than meniscus

elevation) at the contact line.

Fig. 7.18. Examples for capillary interaction at fixed elevation hc� of the contact line: (a) two cylinders
or disks immersed in a liquid layer; (b) two vertical cylinders whose lower bases are attached
to a liquid surface; (c) two particles in an emulsion film � the contact lines are attached to
the boundaries between the hydrophilic and hydrophobic domains on the particle surface
(shown with different shadowing). Since the contact lines are immobilized, the energy of
wetting does not contribute to the capillary interaction unlike the case of mobile contact lines
shown in Figs. 7.12, 7.14 and 7.16.
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Let us consider the meniscus around two identical axisymmetric bodies like these depicted in

Fig. 7.18. Note that the exact geometry of the bodies (spheres, cylinders, etc.) is not important

insofar as the contact line is circular and fixed at the surface of the respective axisymmetric

bodies. The derivation of the expression for the capillary interaction energy �
 follows exactly

Eqs. (7.67)�(7.79) with the only difference that  Eq. (7.74) does not hold and Eq. (7.75) takes

the alternative form

�� ���������
��

11

)~(
2

1sin;sin2)~( IIII
Cc

cccc
C

cc dl
r

hrdlhI �
�

�� nn (7.105)

(� � hc� at the contact line). For that reason, instead of Eq. (7.79) one obtains [21]

�
 = �Wm + �Wg = 2��rchc�[sin�c(L) � sin�c�] (fixed elevation) (7.106)

We have taken into account the fact that there is no change in the energy of wetting, �Ww � 0,

when the contact line is fixed, cf. Eq. (7.16). [In the case of symmetric film, Fig. 7.18c, there

are two deformed interfaces and consequently the interaction energy is twice �
 as given by

Eq. (7.106).]  In spite of the fact that Eq. (7.106) does not include a direct contribution from the

work of wetting, �Ww, the interaction energy �
 is again connected to the special wetting

properties of the particle surface due to the fixed position of the contact line, which bring about

meniscus deformations and give rise to a non-zero contribution from the meniscus surface

energy and the gravitational energy, �Wm + �Wg.

To find the profile of the capillary meniscus we will use again bipolar coordinates (	,
) in the

plane xy, see Eq. (7.25). The projections of the two contact lines on the plane xy are two

circumferences 	 = �	c of radius rc, see Eq. (7.57) where a = (s2 � rc
2)1/2 and s = L/2. The

mathematical description of the capillary interaction at fixed position (elevation) of the contact

line demands to find a solution of Laplace equation, which satisfies the following (inner)

boundary condition

�(	=�	c, 
) = hc� = const (fixed elevation of the contact line) (7.107)

The other (the outer) boundary condition is the meniscus to level off at infinity, that is Eq.

(7.37) to be satisfied. We seek a solution of Eq. (7.32) satisfying the aforementioned two
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boundary conditions. In Ref. [21] inner and outer asymptotic regions are considered, cf. Eqs.

(7.33)�(7.34), and a compound solution, � = �in + �out � (�out)in, is obtained, in which

�
in = hc� + Acln(2cosh	 � 2cos
) � 	c + Ac ��

�

� nn
nn
n

c
n c

cos)exp(
cosh
cosh2

1

��
�

�

(7.108)

�
out = 2AcK0(qr), r = (x2 + y2)1/2 (7.109)

(�out)in = �2Acln(�eqr/2) (7.110)

Here, as usual, �e = 1.781072418... (ln�e = 0.577...) is the constant of Euler-Masceroni [61] and

the parameter Ac is defined by the following expression [21]:

Ac = hc�
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1
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)ln(2

�
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�� (7.111)

Note that the last two terms in the brackets in Eq. (7.111) are logarithmically divergent for

a�0, that is for small distances between the two bodies; however, these two divergent terms

cancel each other. To prove that we first notice that for a�0 we have 	c�a/rc << 1 and in such

a case the sum in Eq. (7.111) can be exchanged with an integral as follows [21]:
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At the last step integration by part has been used along with the identity [77]
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Then the terms containing lna in Eqs. (7.111) and (7.112) cancel each other for a�0 and,

consequently, Ac remains finite in the same limit.

Next, introducing bipolar coordinates in Eq. (7.105) and substituting there Eq. (7.108) one can

derive

sin�c(L) = 
c

c

c r
A

d
r

c

��
�
�

�
�
�
�

�

��

�
��

�

�

��

��
�

�

in

2
1 (qa)2 << 1. (7.114)



Chapter 7332

In the other limit, (qa)2 � 1, one can find an expression for �c(L) using the superposition

approximation. In the framework of this approximation the elevation hc of the contact line on

each of two vertical cylinders can be presented in the form

hc = hc� + �hc + 
crc

ch
��
�

�
��
�

�

��

�

sin
(sin�c � sin�c�) (7.115)

Here hc� is the elevation for L�
 and

�hc = rc sin�c� K0(qL) (7.116)

is the elevation created by a single cylinder at a distance L from its axis (the distance at which

the second cylinder is situated); the last term in Eq. (7.115) accounts for the change in hc due to

the change in �c. Differentiating the Derjaguin’s formula, Eq. (7.65), with Q = rc sin�c, one

obtains

c
c
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(7.117)

Now we impose the boundary condition Eq. (7.107), which requires hc = hc�, and then the

combination of Eqs. (7.115)�(7.117) yields [21]

sin�c(L) = sin�c�
�
�

�

�

�
�

�

�

��
�
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e
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Equation (7.118) holds when the distance L between the two bodies is large enough and the

second term in the brackets is small, i.e.

�(L) � )(K2ln 0

1

e

qL
qrc

�

��
�

�
��
�

�

�
 << 1. (7.119)

Equation (7.118) implies that �c(L) < �c� and consequently, the interaction energy �
, given

by Eq. (7.106), is negative and corresponds to attraction. The two asymptotics, Eq. (7.114) for

short distances and Eq. (7.118) for long distances can be matched applying the standard

procedure [see Eq. (7.38)] to the function 1/sin�c(L); the resulting compound expression reads

[21]:
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To achieve better accuracy in computations, it is recommended to use Eq. (7.118) when �(L)

<< 1, and to use Eq. (7.120) in all other cases.

The energies of capillary interaction corresponding to the two different boundary conditions,

fixed slope and fixed elevation, are compared in Fig. 7.19. In the case of fixed slope the energy

is calculated from Eq. (7.85), whereas in the case of fixed elevation � from Eqs. (7.106) and

(7.120). To have a basis for comparison the parameters values denoted in Fig. 7.19 are taken to

be the same for the two cases. As seen in the figure, in both cases �
 is negative and can have

a magnitude of the order of 10��� J. In other words, in both cases the interaction energy is much

greater than the thermal energy kT and corresponds to attraction. The new moment is that the

interaction at constant slope is stronger than the interaction at constant elevation [21].

Fig. 7.19. Calculated energy of capillary attraction �� vs. L/2rc, where L is the distance between the
axes of symmetry of the particles (see Fig. 7.18) and rc is the radius of the contact line. ��1

and ��2 correspond to the cases of constant slope, Eq. (7.88), and constant elevation,
Eq. (7.106). The values of the parameters �c�, rc, q��, � and hc� are the same for the two
curves [21].
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7.4. FORCE APPROACH TO THE LATERAL CAPILLARY INTERACTIONS

7.4.1. CAPILLARY IMMERSION FORCE BETWEEN TWO CYLINDERS OR TWO SPHERES

As already noted in Section 7.1.5, the lateral capillary force exerted on each of two interacting

particles is a sum of the net forces due to the interfacial tension and hydrostatic pressure: F(k) =

F (k� ) + F(kp) (k = 1,2), see Eqs. (7.21)�(7.23). F (k� )  is calculated by integration of the meniscus

interfacial tension � along the contact line, while F(kp) is determined by the integral of the

hydrostatic pressure P throughout the particle surface. Our purpose below is following

Ref. [19] to obtain explicit analytical expressions for F (k� )  and F(kp), and to compare the

numerical results obtained by means of the alternative force and energy approaches.

First, let us calculate the capillary force F(k) for each of the two partially immersed vertical

cylinders depicted in Fig. 7.12. It is convenient to make a special choice of the coordinate

system, see Fig. 7.20. The z-axis coincides with the axis of the considered cylinder. The plane

xy, as usual, coincides with the horizontal fluid interface far from the cylinders. The x-axis is

directed from the cylinder of consideration toward the other cylinder. The symmetry of the

system implies that the y- components of F (k� )  and F(kp) are equal to zero. For that reason our

task is reduced to the calculation of

Fx
(k� )  = ex�F (k� )       and        Fx

(kp)  = ex� F(kp) (7.121)

where ex is the unit vector of the x-axis. Note that due to the specific choice of the coordinate

system, the positive (negative) value of the projection Fx
(k )  corresponds to attraction (repulsion)

between the two cylinders.

Force Fx
(k� )  due to the interfacial tension.  Let z = �(�) be the equation of the contact

line with � being the azimuthal angle in the plane xy, see Fig. 7.20. The position vector of a

point belonging to the contact line is

R(�) = ex rk cos� + ey rk sin� + ez �(�) (7.122)

where, as usual, rk is the radius of the contact line. The linear element along the contact line is

dl = � d� ,                      � � |dR/d�|  = [rk
2 + (d�/d�)2]1/2 , (7.123)
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Fig. 7.20. Sketch of the capillary meniscus around one of the two cylinders depicted in Fig. 7.12; rk is
the radius of the cylinder, �k is contact angle; z = �(�) is the equation of the three-phase
contact line with running unit tangent t; n is a running unit normal to the cylinder surface;
b = t � n is a unit binormal; � is the vector of surface tension, which is perpendicular to t,
but tangential to the meniscus surface. The slope of the contact line is exaggerated.

The vector of the running unit tangent to the contact line is

��
�

�
��
�

�
�
�

	�	�

�

�
��



d
drr

d
d

zkykx eeeRt cossin11 (7.124)

The vector of the outer running unit normal to the cylindrical surface is (Fig. 7.20)

n = ex cos� + ey sin�  (7.125)

At each point of the contact line (see the point M in Fig. 7.20) one can define the vector of the

unit binormal as follows:

b = t � n (7.126)

The vector of the interfacial tension �, exerted at the contact line, is simultaneously tangential

to the meniscus surface and normal to the contact line; hence � belongs to the plane formed by

the vectors n and b:

� = � (b sin�k + n cos�k), (7.127)
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see Fig. 7.20. Next, we substitute Eqs. (7.124)�(7.126) into Eq. (7.127) to derive

�x � ex�� = � ��
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�
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�
� kk d

d
��

�

�

�
�� sinsin1coscos (7.128)

Combining eqs. (7.22). (7.121), (7.123) and (7.128) one obtains [19]
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(k� )  = �

kL
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2

0

sin k
xFd

d
d

����
�

�
�
�

(7.129)

where we have introduced the notation

�Fx
(k )  = � cos�k ��
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At the last step we have used the condition for small meniscus slope, |�II�|2 << 1, and have

expanded in series the square root in Eq. (7.123). Further, it is convenient to introduce

parametrization of the contact line in terms of the angle � of the bipolar coordinate system

(�,�), see Eq. (7.25). By means of some geometrical considerations one can find the connection

between � and � [19]:

0,0,
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k

k (7.131)

where �k is the value of the bipolar coordinate � at the contact line, see Eq. (7.49). With the

help of Eq. (7.131) one can bring Eqs. (7.129) and (7.130) into the form [19]:

Fx
(k� )  = 2�� sin�k sinh�k 
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In fact Eqs. (7.132)�(7.133) are the final equations for calculating Fx
(k� ) : one has to substitute

�(�) = �c,k(�) from Eq. (7.66) and then to carry out numerically the integration in

Eqs. (7.132)�(7.133). For not too large distances between the cylinders, for which (qa)2 << 1, it
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is better to substitute �(�) = �k(�k, �) from Eq. (7.42); then the integration in Eq. (7.132) can be

carried out analytically [19]:

Fx
(k� )  = 2�� sin�k )(
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with E(n) � exp[�2n(�1 + �2)]. However, the integral in Eq. (7.133) cannot be solved analytically

and has to be calculated numerically. The calculations show that for small particles, (qrk)2 << 1,

the quadratic term �Fx
(k )  is only a small correction in comparison with Fx

(k� )  and it is not a

great loss of accuracy if the term �Fx
(k )  in Eqs. (7.132) and (7.134) is neglected.

For large interparticle separations from Eq. (7.134) one can obtain a simple asymptotic

formula, see Ref. [19] for details:

Fx
(k� )  � 2�� sin�1 sin�2 L

rr 21  , (rk/L)2 << 1,  (qa)2 << 1. (7.135)

Force Fx
(kp)  due to the hydrostatic pressure.  To calculate Fx

(kp)  one can identify the

integration surface Sk in Eq. (7.23) with the part of the cylindrical surface comprised between

the horizontal planes z = za and z = zb, see Fig. (7.20). The hydrostatic pressure can be

expressed in the form
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(7.136)

where PY = P0 � 	Ygz, Y = I, II is the hydrostatic pressure in the respective phase and P0 is the

pressure at level z = 0; as before, �(�) is the equation of the contact line. Combining

Eqs. (7.23), (7.121), (7.125) and (7.136) one derives [19]

�� �
��

��

����	
�����
0

2)( cos)(cos dgrPdzrdF k
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(7.137)

where �	 = 	I � 	II. Using Eqs. (7.29) and (7.131) one can express Eq. (7.137) into the

equivalent form
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To calculate )(kp
xF  from Eq. (7.138) one is to substitute � = �c,k(�) from Eq. (7.66)

[or alternatively � = �k(�k, �) from Eq. (7.42)] and then to carry out numerically the integration.

The series expansion for long distances leads to the following asymptotic expression for )(kp
xF

[19]:

Fx
(kp)  � 2�� (qrk)2 hk rj sin�j L

1  , (rk/L)2 << 1,  (qa)2 << 1. (7.139)

j,k = 1,2; j � k. The comparison of Eqs. (7.135) and (7.139) shows that the ratio

Fx
(kp) /

kk

k
k

k
x r

h
qrF

�
�

�

sin
)( 2)( (7.140)

is a small quantity for the case of small particles, that is for (qrk)2 << 1; indeed, the Derjaguin

formula, Eq. (7.51), shows that hk/(rk sin�k) � ln(2/�eqrk) and the latter logarithm is a quantity

of the order of 1 up to 10. Thus one may conclude that for small particles, (qrk)2 << 1, Fx
(kp)  is

much smaller than Fx
(k� ) , and therefore in a first approximation Fx

(kp)  can be neglected.

Fig. 7.21. Cross section of a spherical particle: the pressure P is directed normally to the spherical
element dss, whose projection on the vertical cylindrical surface is denoted by dsc.
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Application to Spherical Particle.  In Section 7.3.2 we demonstrated that the expression

for the meniscus profile around two vertical cylinders, �(�, �), can be applied to approximately

calculate the capillary interaction between two spheres confined in a liquid film. Similarly,

when the deviation of the contact line from the horizontal position is not too large, one can

combine one of Eqs. (7.42), (7.46), (7.64) or (7.66) with Eqs. (7.132) and (7.138) to calculate

Fx
(k� )  and Fx

(kp) . It should be taken into account that for spherical particles rk and �k depend on

the distance L; the later dependence can be obtained by applying the numerical procedure based

on Eqs. (7.101)�(7.102).

The applicability of Eq. (7.138) to spherical particles needs additional discussion. Let us

consider an element dss from the surface of a sphere, whose projection on the cylindrical

surface (see Fig. 7.21) is dsc = (dss)cos
. Then the horizontal projection of the force exerted on

the spherical element dss is Pcos
 dss = Pdsc. Note also that za and zb in Fig. 7.21 are the same

as in Fig. 7.20. Hence the integration over the spherical belt can be replaced by an integration

over the portion of the cylindrical surface comprised between the planes z = za and z = zb. In

other words, Eq. (7.137), and its corollary (7.138), can be used also in the case of spherical

particle.

Fig. 7.22. Calculated in Ref. [19] plots of capillary force vs. distance L between two semi-immersed
vertical cylinders of equal radii, r1 = r2 = 1 �m at various contact angles: (a) contribution of
the hydrostatic pressure, Fx

( kp) , calculated from Eq. (7.138); (b) contribution of surface
tension, Fx

( k� ) , calculated from Eq. (7.134).



Chapter 7340

Numerical results and discussion. Figure 7.22 shows plots of the calculated Fx
(k� )  and

Fx
(kp)  vs. the distance L between the axes of two vertical cylinders of radii r1 = r2 = 1 �m.

Fx
(k� )  is calculated from Eq. (7.134) while Fx

(kp)  is calculated by means of Eqs. (7.138) and

(7.46). The other parameters values are � = 40 mN/m and |�1| = |�2| = 5	. Figure 7.22

illustrates the fact that the lateral capillary forces can be either attractive or repulsive depending

on the sign of the angles �1 and �2, cf. Fig. 7.1. The numerical results for Fx
(kp)  and Fx

(k� ) ,

shown in Fig. 7.22a and 7.22b confirm the conclusion drawn from Eq. (7.140) that for small

particles, (qrk)2 << 1, the force Fx
(kp)  due to the hydrostatic pressure is much smaller than the

force Fx
(k� )  due to the interfacial tension. For the numerical example shown in Fig. 7.22 Fx

(kp)  is

with 5 orders of magnitude smaller than Fx
(k� ) .

Table 7.1 contains numerical data calculated for two vertical cylinders of different radii (r1 =

10 �m and r2 = 30 �m) and different contact angles (�1 = 10	 and �2 = 1	). The capillary

immersion force Fx
(k ) = Fx

(k� ) + Fx
(kp)  is calculated by means of Eqs. (7.133), (7.134) and (7.138).

If the approximations used to derive the latter equations are correct one should obtain

Fx
(1)  = Fx

(2)  (the third Newton’s law), irrespective of the fact that the two cylinders have

different radii and contact angles. The data in Table 7.1 for Fx
(1)  and Fx

(2)  really confirm the

validity of the employed approximations.

Moreover, the force and energy approaches must be equivalent, that is

Fx
(1)  = Fx

(2) = 
dL

d )(�� (7.141)

In other words the differentiation of Eq. (7.88) [or Eq. (7.89)], expressing �
, should give the

same values of the force as the integral expressions, Eqs. (7.133), (7.134) and (7.138), obtained

by means of the force approach. The numerical data in Table 7.1 confirm that Eq. (7.141) is

satisfied with a very good accuracy, irrespective of the differences in the procedures and the

approximations used to calculate  Fx
(1)  and Fx

(2)  in the force approach and d(�
)/dL in the

energy approach. Note, for example, that in the energy approach we have worked in terms of

the average elevation of the contact line, hk, just as if the contact lines were horizontal, see
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Eq. (7.88), whereas in the force approach the inclination of the contact line, d�/d�, plays a

central role; indeed Eqs. (7.129), (7.130) and (7.137) give zero force if d�/d�  is set zero.

Table 7.1. Comparison of the calculated values of Fx
(1) , Fx

(2)  and d(��)/dL for r1 = 10 �m, r2 = 30 �m,
�1 = 10� and �2 = 1� for various values of the distance L between the axes of two vertical cylinders,
partially immersed in a liquid of surface tension � = 40 mN/m.

s = L/2 [�m] Fx
(1)  [N] Fx

(2)  [N] d(��)/dL [N]

  50 1.482 � 10�� 1.485 � 10�� 1.483 � 10��

100 3.054 � 10�� 3.061 � 10�� 3.054 � 10��

150 1.737 � 10�� 1.742 � 10�� 1.737 � 10��

200 1.231 � 10�� 1.234 � 10�� 1.231 � 10��

250 9.590 � 10��� 9.612 � 10��� 9.588 � 10���

300 7.876 � 10��� 7.893 � 10��� 7.875 � 10���

350 6.692 � 10��� 6.706 � 10��� 6.691 � 10���

400 5.822 � 10��� 5.834 � 10��� 5.821 � 10���

450 5.155 � 10��� 5.165 � 10��� 5.154 � 10���

500 4.626 � 10��� 4.635 � 10��� 4.625 � 10���

The data in Table 7.1 confirm numerically the equivalence of the force and energy approaches

to the calculation of the lateral capillary forces. One can find an analytical proof of this

equivalence in Ref. [21] for the case of two vertical cylinders.

7.4.2. ASYMPTOTIC EXPRESSION FOR THE CAPILLARY FORCE BETWEEN TWO PARTICLES

In Section 7.1.3 we derived the asymptotic formula F � �2�� Q1Q2qK1(qL) for the capillary

force by using the energy approach, see Eq. (7.13). Our purpose here is to demonstrate that the

force approach yields the same asymptotic formula.

Our starting point is Eq. (7.66), which describes the shape of the contact line on a vertical

cylinder (and in first approximation � on a spherical particle as well). We expand Eq. (7.66) in

series for rk/sk << 1, which means that we seek the shape of the contact line at relatively long

distances between the two particles (then s1 � s2 � a � L/2):
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�k(�) = hk� + Qj[K0(qL) � 2rk qK1(qL) cos� + ...] (j,k = 1,2; j � k) (7.142)

Differentiating Eq. (7.142) one obtains
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d
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jk
k (j,k = 1,2; j � k) (7.143)

Since for small particles, that is for (qrk)2 << 1, the terms �Fx
(k) and Fx

(kp)  represent only small

corrections in the expression for the capillary force, then the force is given with a good

accuracy by the integral term in Eq. (7.132):
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k

k d
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(7.144)

Next, we substitute Eq. (7.143) into Eq. (7.144) to obtain the sought for asymptotic formula

[64]:
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(7.145)

(the choice of the coordinate system in Fig. 7.20 implies that Fx > 0 corresponds to attraction).

At the last step we have used the fact that Qk � rk sin�k , the identity [19]
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2
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�

��

�
�
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d (7.146)

and the approximation

2sinh�2 exp(��2) � 1        for         �2 � 2        (r2/s2 << 1) (7.147)

see also Eq. (7.29).

As could be expected, the derived asymptotic expression for the lateral capillary force,

Eq. (7.145), is identical to Eq. (7.13), both of them corresponding to the boundary condition of

fixed contact angle. Note that during the derivation of Eq. (7.145) it was not necessary to

specify whether the capillary force is of flotation or immersion type, or whether we deal with a

single interface or with a thin liquid film. We have used only the integral expression for the

capillary force, Eq. (7.144), which is valid in all aforementioned cases, as well as Eq. (7.66) for

the shape of the contact line.  The  latter  equation  accounts  for  the  overlap  of  the interfacial
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Fig. 7.23. Sketch of the capillary meniscus around a spherical particle, which is situated at a distance s
from a vertical wall. The particle is confined in a liquid film whose thickness is uniform and
equal to l0 far from the particle and the wall; R2 and r2 are the radii of the particle and its
contact line; �1 and �2 are three-phase contact angles; �1 and �2 are meniscus slope angles;
h2 is the capillary elevation of the contact line at the particle surface.

deformations created by the two particles (cylinders) irrespective of the origin of the

deformation: weight of the particle or capillary rise (wetting). Consequently, the above

derivation of the expression for the capillary interaction by means of the force approach once

again confirms the general conclusion that all kind of lateral capillary forces are due to the

overlap of perturbations in the interfacial shape created by attached bodies.

Note that Eq. (7.145) is an approximate asymptotic formula, which is valid for comparatively

long distances between the particles (L >> r1,r2). For not-too-long distances the more accurate

analytical expressions for the capillary force from Sections 7.3 and 7.4.1 have to be used.

7.4.3. CAPILLARY IMMERSION FORCE BETWEEN SPHERICAL PARTICLE AND WALL

In this section following Ref. [18] we consider another configuration: a planar vertical wall and

a planar horizontal substrate covered with a liquid layer, which has thickness equal to l0 far

from the wall. Our aim is to determine the lateral capillary force between the wall and a sphere,

which is partially immersed in the liquid film, see Fig. 7.23. As usual, the coordinate plane xy

is chosen to coincide with the horizontal upper surface of the liquid layer far from the sphere

and the wall. In addition, the x-axis is oriented perpendicular to the vertical wall. The geometric

parameters related to the wall are denoted by subscript 1, whereas those related to the particle �

by subscript 2, see Fig. 7.23 for the notation.
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Following an approach analogous to that from Section 7.2.1 one can find a compound

asymptotic solution for the shape of the meniscus in Fig. 7.23 assuming that the meniscus slope

is small, i.e. |�II�|2 << 1. The compound solution, obtained in terms of the bipolar coordinates,

Eq. (7.25), reads [18]:

�(�, �) = q��cot�1 e�qx + Q2 {2K0(qr) + ln[(cosh� � cos�)r2/(2a2)] }, x � 0; (7.148)

here, as usual, Q2 = r2 sin�2 and r = (x2 + y2)1/2. In particular, Eq. (7.148) allows one to

determine the shape of the contact line on the wall [18],

�1(y) � q��cot�1 + Q2 [2K0(|qy|) + ln(1 � a2/y2)], (7.149)

as well as the increase of the wet area on the wall due to the presence of the spherical particle:

�A � dyy )]()([ 11 ���
��

��

��  = 2�q��Q2 (1 � qa) (7.150)

The form of Eq. (7.148) shows that if the contact angle at the wall is �1 = 0, then the shape of

the meniscus is the same as that of the meniscus around two identical particles separated at a

distance s, each of them being the mirror image of the other one with respect to the wall. For

that reason in such a case the capillary interaction between particle and wall is equivalent to the

interaction of the particle with its mirror image. In this aspect there is an analogy with the

image forces in electrostatics; the same analogy is present also in the case of floating particle,

see Chapter 8 below.

In the considered case of small meniscus slope the projection of the particle contact line on the

plane xy can be approximately considered as a circumference  of radius r2. When the distance s

between the particle and the wall varies, then both r2 and �2 alter. The values of r2, �2 and of

the meniscus elevation at the particle contact line, h2, can be determined for each given s by

solving numerically the equation [18]

h2 = q��cot�1 exp(�qs) � r2 sin�2 ln[(�eq)2 (s + a)r2 /4], (7.151)

 in which r2 and �2 are expressed as functions of h2 as follows:

r2(h2) = [(l0 + h2)(2R2 � l0 � h2)]1/2, �2(h2) = arcsin(r2(h2)/R2) � �2 , 
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Fig. 7.24. Calculated in Ref. [18] capillary force, Fx
( k) = Fx

( k� ) + Fx
( kp) , exerted on a particle of radius R2 =

1 �m which is situated at a distance s from a vertical wall, see Fig. 7.23. The two curves
correspond to particle contact angles �2 = 1� and 25�; the other parameter values are: l0 =
0.5 �m, � = 40 mN/m and �1 = 0.01�.

cf. Eqs. (7.92) and (7.99). The values of the geometrical parameters thus determined can be

further used to calculate the force of particle-wall interaction. The contributions of the

meniscus surface tension and the hydrostatic pressure, Fx
(k� )  and Fx

(kp) , can be calculated

substituting Eq. (7.148) for � = �2 = ln[(s + a)/r2] into Eqs. (7.132)�(7.133) and (7.138) and

carrying out numerically the integration with respect to �.

As an illustration Fig. 7.24 presents the calculated force Fx
(k )  = Fx

(k� )  + Fx
(kp)  plotted against the

particle-to-wall distance s; the two curves correspond to two values of the particle contact

angle: �2 = 1	 and 25	. The other parameter values are R2 = 1 �m, �1 = 0.01	 and l0 = 0.5 �m.

The calculated capillary force (Fig. 7.24) corresponds to attraction between the spherical

particle and the wall.

7.5. SUMMARY

Lateral capillary forces appear when the contact of particles (or other bodies) with a fluid phase

boundary brings about perturbations in the interfacial shape. The capillary interaction is due to

the overlap of such perturbations. The latter can appear around floating particles (Fig. 7.1a,c),

particles confined in a liquid film (Figs. 7.1b,d,f), particles attached to holders (Fig. 7.7),
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vertical cylinders (Fig. 7.10), inclusions in lipid membranes (Fig. 7.18c), etc., and can be both

attractive (between similar particles) and repulsive (between dissimilar particles). The

asymptotic law of the capillary interaction, Eq. (7.13) or Eq. (7.145), in its approximate form

given by Eq. (7.14), resembles the Coulomb’s law in electrostatics. Following the latter

analogy one can introduce “capillary charges” of the attached particles (see Eq. 7.9), which can

be both positive and negative. Except the case of floating particles (see Chapter 8), whose

weight causes the meniscus deformations, in all other cases the deformations are governed by

the surface wetting properties of partially immersed bodies or particles. The resulting

“immersion” capillary forces can be large enough (Fig. 7.15) to cause two-dimensional

aggregation and ordering of small colloidal particles, which has been observed in many

experiments.

There are two equivalent theoretical approaches to the lateral capillary interactions: energy and

force approaches. Both of them require the Laplace equation of capillarity to be solved and the

meniscus profile around the particles to be determined, see Section 7.2.1. The energy approach

accounts for contributions due to the alteration of the meniscus area, gravitational energy

and/or energy of wetting, see Eq. (7.16). The second approach is based on calculating the net

force exerted on the particle which can originate from the hydrostatic pressure and interfacial

tension, see Eqs. (7.21)�(7.23) and (7.132)�(7.138). In the case of small overlap of the

interfacial perturbations created by two interacting bodies, the superposition approximation can

be combined with the energy or force approach to derive an asymptotic formula for the lateral

capillary force, see Sections 7.1.3 and 7.4.2. This formula has been found to agree well with the

experiment (Figs. 7.5 and 7.8).

Using the method of the matched asymptotic expansions one can derive analytical expressions

for the capillary elevation of the contact line, hk, and the shape of the contact line, �c,k(�), see

Sections 7.2.2 and 7.2.3. The energy of capillary immersion interaction between two vertical

cylinders turns out to be equal to a half of the energy of wetting and can be expressed in terms

of hk, cf. Eqs. (7.83) and (7.84). The expression for the energy of interaction between two

spherical particles, Eq. (7.98), is similar, but it should be taken into account that the radius of

the contact lines on the particles alters when the interparticle distance is varied, see
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Eqs. (7.99)�(7.102). In a similar way one can calculate the energy of capillary interaction

between cylinder and sphere, see Eq. (7.104) and Fig. 7.17.

The energy approach has been also applied to the case, when the position of the contact line

(rather than the magnitude of the contact angle) is fixed at the particle surface (Section 7.3.4).

This can happen when the contact line is attached to some edge, or to the boundary between

hydrophilic and hydrophobic zones on the particle surface, see Fig. 7.18. The derived analytical

expressions, Eqs. (7.106) and (7.120), predict that the capillary interaction at fixed meniscus

elevation is weaker than that at fixed meniscus slope; however in both cases it corresponds to

attraction between similar bodies and its energy can be much larger than the thermal energy kT,

see Fig. 7.19.

For small particles, that is for (qrk)2 << 1, the contribution of the hydrostatic pressure to the

capillary force is found to be negligible (Eq. (7.140) and Fig. 7.21) and one can calculate the

capillary force from Eq. (7.132), which represents a contribution from the interfacial tension.

The latter expression, can be employed also to calculate the capillary immersion force between

particle and wall, see Section 7.4.3. A test of the theoretical expressions for the capillary force,

stemming from the alternative energy and force approaches, show that they are in a very good

numerical agreement (Table 7.1).

In conclusion, the capillary immersion forces can appear in a variety of systems with

characteristic particle size from 1 cm down to 2 nm (see Fig. 8.3 below); in all cases the lateral

capillary interaction has a similar origin (overlap of interfacial deformations created by the

particles) and is subject to a unified theoretical treatment.
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