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5.1 INTRODUCTION 

 A colloidal system represents a multiphase (heterogeneous) system, in which at least 

one of the phases exists in the form of very small particles: typically smaller than 1 µm but 

still much larger than the molecules. Such particles are related to phenomena like Brownian 

motion, diffusion and osmosis. The terms "microheterogeneous system" and "disperse 

system" (dispersion) are more general because they include also bicontinuous systems (in 

which none of the phases is split into separate particles) and systems containing larger, non-

Brownian, particles. The term dispersion is often used as a synonym of colloidal system. 

 A classification of the colloids with respect to the state of aggregation of the disperse 

and the continuous phases is shown in Table 1. Some examples are following. 

1. Examples for gas-in-liquid dispersions are the foams or the boiling liquids. Gas-in-solid 

dispersions are the various porous media like filtration membranes, sorbents, catalysts, 

isolation materials, etc. 

2. Examples for liquid-in-gas dispersions are the mist, the clouds and other aerosols. 

Liquid-in-liquid dispersions are the emulsions. At room temperature there are only four 

types of mutually immiscible liquids: water, hydrocarbon oils, fluorocarbon oils and 

liquid metals (Hg and Ga). Many raw materials and products in food and petroleum 

industries exist in the form of oil-in-water or water-in-oil emulsions. The soil and some 

biological tissues can be considered as liquid-in-solid dispersions. 

3. Smoke, dust and some other aerosols are examples for solid-in-gas dispersions. The 

solid-in-liquid dispersions are termed suspensions or sols. The pastes and some glues 

are highly concentrated suspensions. The gels represent bicontinuous structures of solid 

and liquid. The pastes and some glues are highly concentrated suspensions. Solid-in-

solid dispersions are some metal alloys, many kinds of rocks, some colored glasses, etc. 
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 Table 1: Types of Disperse Systems 
 

continuous phase 
disperse phase 

GAS LIQUID SOLID 

GAS  - G in L G in S 
LIQUID L in G L1 in L2 L in S 
SOLID S in G S in L S1 in S2 
 
 
 Below we will consider mostly liquid dispersions, i.e., dispersions with liquid 

continuous phase, like foams, emulsions and suspensions. Sometimes these are called 

"complex fluids". 

 In general, the area of the interface between the disperse and continuous phases is 

rather large. For instance, 1 cm3 of dispersion with particles of radius 100 nm and volume 

fraction 30% contains interface of area about 10 m2. This is the reason why the interfacial 

properties are of crucial importance for the properties and stability of colloids.  

 The stabilizing factors for dispersions are the repulsive surface forces, the particle 

thermal motion, the hydrodynamic resistance of the medium, the high surface elasticity of 

fluid particles and films. 

 On the opposite, the factors destabilizing dispersions are the attractive surface forces, 

the factors suppressing the repulsive surface forces, the low surface elasticity, gravity and 

other external forces tending to separate the phases. 

 Below, in Sections 5.2 and 5.3 we consider effects related to the surface tension of 

surfactant solution and capillarity. In Section 5.4 we present a review on the surface forces 

due to the intermolecular interactions. In Section 5.5 we describe the hydrodynamic 

interparticle forces originating from the effects of bulk and surface viscosity and related to 

surfactant diffusion. Section 5.6 is devoted to the kinetics of coagulation in dispersions. 

Section 5.7 regards foams containing oil drops and solid particulates in relation to the 

antifoaming mechanisms and the exhaustion of antifoams. Finally, Sections 5.8 and 5.9 

address the electrokinetic and optical properties of dispersions. 
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5.2   SURFACE TENSION OF SURFACTANT SOLUTIONS 

5.2.1  STATIC SURFACE TENSION 

As a rule the fluid dispersions (emulsions, foams) are stabilized by adsorption layers of 

amphiphile molecules. These can be ionic1,2 and nonionic3 surfactants, lipids, proteins, etc., 

see Chapter 4 of this Handbook. All of them have the property to lower the value of the 

surface (or interfacial) tension, σ, in accordance with the Gibbs adsorption equation,4-6 

i
i

i dd µσ ∑Γ−=          (1) 

where Γi is the surface concentration (adsorption) of the i-th component and µi is its chemical 

potential. The summation in Equation 1 is carried out over all components. Usually an 

equimolecular dividing surface with respect to the solvent is introduced for which the 

adsorption of the solvent is set zero by definition.4,5 Then the summation is carried out over 

all other components. Note that Γi is an excess surface concentration with respect to the bulk; 

Γi is positive for surfactants, which decrease σ in accordance with Equation 1. On the 

contrary, Γi is negative for aqueous solutions of electrolytes, whose ions are repelled from the 

surface by the electrostatic image forces;5 consequently, the addition of electrolytes increases 

the surface tension of water.6 For surfactant concentrations above the CMC (critical 

micellization concentration) µi =const. and, consequently, σ = const., see Equation 1 and 

Chapter 8 of this Handbook.  

 

5.2.1.1     Nonionic Surfactants 

5.2.1.1.1  Types of adsorption isotherms 

Consider the boundary between an aqueous solution of a nonionic surfactant and a 

hydrophobic phase, air or oil. The dividing surface is usually chosen to be the equimolecular 

surface with respect to water, that is Γw = 0. Then Equation 1 reduces to 11 µσ dd Γ−= , where 

the subscript “1” denotes the surfactant. Since the bulk surfactant concentration is usually not 

too high, one can use the expression for the chemical potential of a solute in an ideal solution: 

1
)0(

11 ln ckT+= µµ , where k is the Boltzmann constant, T is the absolute temperature, c1 is 
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the concentration of nonionic surfactant, and )0(
1µ  is its standard chemical potential, which is 

independent of c1. Thus the Gibbs adsorption equation acquires the form 

11 ln cdkTd Γ−=σ          (2) 

The surfactant adsorption isotherms, expressing the connection between Γ1 and c1, are usually 

obtained by means of some molecular model of adsorption. Table 2 contains the 6 most 

popular surfactant adsorption isotherms, those of Henry, Freundlich,7 Langmuir,8 Volmer,9 

Frumkin10 and van der Waals.11  For c1→0 all isotherms (except that of Freundlich) reduce to 

the Henry isotherm: Γ1/Γ∞ = Kc1. The physical difference between the Langmuir and Volmer 

isotherms is that the former corresponds to a physical model of localized adsorption, whereas 

the latter − to non-localized adsorption. The Frumkin and van der Walls isotherms generalize, 

respectively, the Langmuir and Volmer isotherms for case, in which the is interaction between 

neighboring adsorbed molecules is not negligible. (If the interaction parameter β is set zero, 

the Frumkin and van der Walls isotherms reduce to the Langmuir and Volmer isotherms, 

correspondingly.) The comparison between theory and experiment shows that for air-water 

interfaces β > 0, whereas for oil-water interfaces one can set β = 0.12,13  The latter facts lead to 

the conclusion that for air-water interfaces β takes into account the van der Waals attraction 

between the hydrocarbon tails of the adsorbed surfactant molecules across air; such attraction 

is missing when the hydrophobic phase is oil. (Note that in the case of ionic surfactants it is 

possible to have β < 0, see the next section.) The adsorption parameter K in Table 2 

characterizes the surface activity of the surfactant: the greater K, the higher the surface 

activity. K is related to the standard free energy of adsorption, )0(
1

)0(
1 sf µµ −=∆ , which is the 

energy gain for bringing a molecule from the bulk of the aqueous phase to a diluted 

adsorption layer:14,15 








 −
Γ

=
∞ kT

K s
)0(

1
)0(

11 exp
µµδ         (3) 

The parameter δ1 characterizes the thickness of the adsorption layer; δ1 can be set 

(approximately) equal to the length of the amphiphilic molecule. Γ∞ represents the maximum 

possible value of the adsorption. In the case of localized adsorption (Langmuir and Frumkin 

isotherms) 1/Γ∞ is the area per adsorption site. In the case of non-localized adsorption 

(Volmer and van der Waals isotherms) 1/Γ∞ is the excluded area per molecule.  
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TABLE 2. Types of Adsorption and Surface-Tension Isotherms 

Type of isotherm • Surfactant adsorption isotherms 
(for nonionic surfactants: a1s ≡ c1 ) 

Henry 
∞Γ

Γ
= 1

1sKa  

Freundlich m

sKa
/1

1
1 








Γ
Γ

=
∞

 

Langmuir 
1

1
1 Γ−Γ

Γ
=

∞
sKa  

Volmer 








Γ−Γ

Γ
Γ−Γ

Γ
=

∞∞ 1

1

1

1
1 expsKa  

Frumkin 






 Γ
−

Γ−Γ
Γ

=
∞ kT

Ka s
1

1

1
1

2exp β  

van der Waals 







 Γ
−

Γ−Γ
Γ

Γ−Γ
Γ

=
∞∞ kT

Ka s
1

1

1

1

1
1

2exp β  

 
 

• Surface tension isotherm 
dkTJ σσσ +−= 0  

(for nonionic surfactants: 0≡dσ ) 

Henry 1Γ=J  

Freundlich 
m

J 1Γ
=  

Langmuir 








Γ
Γ

−Γ−=
∞

∞
11lnJ  

Volmer 
1

1

Γ−Γ
ΓΓ

=
∞

∞J  

Frumkin 
kT

J
2

111ln Γ
−








Γ
Γ

−Γ−=
∞

∞

β  

van der Waals 
kT

J
2

1

1

1 Γ
−

Γ−Γ
ΓΓ

=
∞

∞ β  

Note: The surfactant adsorption isotherm and the surface tension isotherm, which are combined to fit 
experimental data, obligatorily must be of the same type. 
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 As already mentioned, the Freundlich adsorption isotherm, unlike the other ones in 

Table 2, does not become linear at low concentrations, but remains convex to the 

concentration axis. Moreover, it does not show a saturation or limiting value. Hence, for the 

Freundlich adsorption isotherm in Table 2 Γ∞ is a parameter scaling the adsorption (rather 

than saturation adsorption). This isotherm can be derived assuming that the surface (as a rule 

solid) is heterogeneous.16,17 Consequently, if the data fit the Freundlich equation, this is an 

indication, but not a proof, that the surface is heterogeneous.6 

 The adsorption isotherms in Table 2 can be applied to both fluid and solid interfaces. 

The surface tension isotherms in Table 2, which relate σ and Γ1, are usually applied to fluid 

interfaces, although they could be used also for solid-liquid interfaces if σ is identified with 

the Gibbs4 superficial tension. (The latter is defined as the force per unit length which 

opposes every increase of the wet area without any deformation of the solid.) 

 The surface tension isotherms in Table 2 are deduced from the respective adsorption 

isotherms in the following way. The integration of Equation 2 yields 

kTJ−= 0σσ ,         (4) 

where σ0 is the interfacial tension of the pure solvent and  

1
1

1

0
1

1

1

0
1

ln11

Γ
Γ

Γ=Γ≡ ∫∫
Γ

d
d

cd
c
cdJ

c

        (5) 

The derivative dlnc1/dΓ1 is calculated for each adsorption isotherm, and then the integration 

in Equation 5 is carried out analytically. The obtained expressions for J are listed in Table 2. 

Each surface tension isotherm, σ(Γ1), has the meaning of a two-dimensional equation of state 

of the adsorption monolayer, which can be applied to both soluble and insoluble 

surfactants.6,18 

An important thermodynamic property of a surfactant adsorption monolayer is its 

Gibbs (surface) elasticity 

T
GE 








Γ

Γ−≡
1

1 ∂
∂σ          (6) 

Expressions for EG, corresponding to various adsorption isotherms, are shown in Table 3. The 

Gibbs elasticity characterizes the lateral fluidity of the surfactant adsorption monolayer. At 

high values of the Gibbs elasticity the adsorption monolayer behaves as tangentially 

immobile. In such case, if two emulsion droplets approach each other, the hydrodynamic flow 
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pattern, and the hydrodynamic interaction as well, is almost the same as if the droplets were 

solid. For lower values of the surfactant adsorption the so called “Marangoni effect” appears, 

which is equivalent to appearance of gradients of surface tension due to gradients of 

surfactant adsorption: ∇sσ = −(EG/Γ1)∇s Γ1 (here ∇s denotes surface gradient operator). The 

Marangoni effect can considerably affect the hydrodynamic interactions of fluid particles 

(drops, bubbles), see section 5.5 below.  

 
Table 3. Elasticity of Adsorption Monolayers at a Fluid Interface 

 

Type of isotherm 
(cf. Table 2) 

 
Gibbs elasticity EG 

 

Henry 1Γ= kTEG  

Freundlich 
m

kTEG
1Γ

=  

Langmuir 

1
1 Γ−Γ

Γ
Γ=

∞

∞kTEG  

Volmer 

( )2
1

2

1
Γ−Γ

Γ
Γ=

∞

∞kTEG  

Frumkin 







 Γ
−

Γ−Γ
Γ

Γ=
∞

∞

kT
kTEG

1

1
1

2β
 

van der Waals 

( ) 









 Γ
−

Γ−Γ

Γ
Γ=

∞

∞

kT
kTEG

1
2

1

2

1
2β

 

 

Note: The above expressions are valid for both nonionic and ionic surfactants. 
 
 

5.2.1.1.2  Derivation from first principles 

Each surfactant adsorption isotherm (that of Langmuir, Volmer, Frumkin, etc.), and the 

related expressions for the surface tension and surface chemical potential, can be derived 

from an expression for the surface free energy, Fs, which corresponds to a given physical 

model. This derivation helps one to obtain (or identify) the selfconsistent system of equations, 

referring to a given model, which is to be applied to interpret a set of experimental data. 
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Combination of equations corresponding to different models (say Langmuir adsorption 

isotherm with Frumkin surface tension isotherm) is incorrect and must be avoided.  

 The general scheme for derivation of the adsorption isotherms is the following: 

(i) With the help of statistical mechanics an expression is obtained, say, for the 

canonical ensemble partition function, Q, from which the surface free energy Fs is 

determined:11 

Fs(T, A, N1) = −kT lnQ(T, A, N1)       (7) 

where A is the interfacial area and N1 is the number of adsorbed surfactant molecules; see 

Table 4. 

 (ii) Differentiating the expression for Fs one derives expressions for the surface 

pressure, πs, and the surface chemical potential of the adsorbed surfactant molecules, µ1s:11 

πs ≡ σ0 − σ = −
1,NT

s

A
F









∂
∂ ,  µ1s = 

AT

s

N
F

,1








∂
∂     (8) 

Combining the obtained expressions for πs and µ1s, one can deduce the respective form of the 

Butler equation,19 see Equation 16 below.  

 (iii) The surfactant adsorption isotherm (Table 2) can be derived by setting the 

obtained expression for the surface chemical potential µ1s equal to the bulk chemical potential 

of the surfactant molecules in the subsurface layer (that is, equilibrium between surface and 

subsurface is assumed):11 

µ1s = )0(
1µ  + kT ln(a1sδ1/Γ∞)        (9) 

Here a1s is the activity of the surfactant molecule in the subsurface layer; a1s is scaled with the 

volume per molecule in a dense (saturated) adsorption layer, v1 = δ1/Γ∞, where δ1 is 

interpreted as the thickness of the adsorption layer, or the length of an adsorbed molecule. In 

terms of the subsurface activity, a1s, Equation 9 can be applied to ionic surfactants and to 

dynamic processes. In the simplest case of nonionic surfactants and equilibrium processes we 

have a1s ≈ c1, where c1 is the bulk surfactant concentration. 



12

 

 

 

Table 4. Free Energy and Chemical Potential for Surfactant Adsorption Layers 

Type of 
isotherm 

• Surface Free Energy  Fs(T, A, N1) 
(M = Γ∞ A) 

Henry Fs = N1
)0(

1sµ + kT [N1ln(N1/M) − N1] 

Freundlich Fs = N1
)0(

1sµ + 
m
kT  [N1ln(N1/M) − N1] 

Langmuir Fs = N1
)0(

1sµ + kT [N1lnN1 + (M − N1)ln(M − N1) − MlnM] 

Volmer Fs = N1
)0(

1sµ + kT [N1lnN1 − N1 − N1ln(M − N1)] 

Frumkin Fs = N1
)0(

1sµ + kT [N1lnN1 + (M − N1)ln(M − N1) − MlnM] 
M
N

2

2
1∞Γ

+
β  

van der Waals Fs = N1
)0(

1sµ + kT [N1lnN1 − N1 − N1ln(M − N1)] M
N

2

2
1∞Γ

+
β  

 
 

• Surface Chemical Potential  µ1s 
(θ ≡ Γ1/Γ∞) 

 

Henry µ1s = )0(
1sµ  + kT lnθ 

Freundlich µ1s = )0(
1sµ  + 

m
kT  lnθ 

Langmuir µ1s = )0(
1sµ  + 

θ
θ
−1

lnkT  

Volmer µ1s = )0(
1sµ  + 








−
+

− θ
θ

θ
θ

1
ln

1
kT  

Frumkin µ1s = )0(
1sµ  + 

θ
θ
−1

lnkT  − 2βΓ1 

van der Waals µ1s = )0(
1sµ  + 








−
+

− θ
θ

θ
θ

1
ln

1
kT  − 2βΓ1 
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 First, let us apply the above general scheme to derive the Frumkin isotherm, which 

corresponds to localized adsorption of interacting molecules. (Expressions corresponding to 

the Langmuir isotherm can be obtained by setting β = 0 in the respective expressions for the 

Frumkin isotherm.) Let us consider the interface as a two-dimensional lattice having M 

adsorption sites. The corresponding partition function is11 

Q(T, M, N1) = [ ] 







−

− kTM
wNnTq

NMN
M cN

2
exp)(

)!(!
! 2

1

11

1     (10) 

The first multiplier in the right-hand side of Equation 10 expresses the number of ways N1 

indistinguishable molecules can be distributed among M labeled sites; the partition function 

for a single adsorbed molecule is q = qx qy qz, where qx, qy and qz are one-dimensional 

harmonic-oscillator partition functions. The exponent in Equation 10 accounts for the 

interaction between adsorbed molecules in the framework of the Bragg-Williams 

approximation.11  w is the nearest-neighbor interaction energy of two molecules and nc is the 

number of nearest-neighbor sites to a given site (for example nc = 4 for a square lattice). Next, 

we substitute Equation 10 into Equation 7 and using the known Stirling approximation, 

ln M! = M lnM − M, we get the expression for the surface free energy corresponding to the 

Frumkin model: 

Fs = kT[N1lnN1 + (M − N1)ln(M − N1) − MlnM − N1lnq(T)] 
M

wNnc

2

2
1+   (11) 

Note that  

M = Γ∞ A,  N1 = Γ1 A       (12) 

where 1−
∞Γ  is the area per one adsorption site in the lattice. Differentiating Equation 11 in 

accordance with Equation 8 one deduces expressions for the surface pressure and chemical 

potential:11 

πs = − Γ∞ kT ln(1 − θ) − β 2
1Γ         (13) 

µ1s = )0(
1sµ  + 

θ
θ
−1

lnkT  − 2βΓ1       (14) 

where we have introduced the notation 

∞Γ
Γ

= 1θ ,  
∞Γ

−=
2

wncβ ,  )0(
1sµ = −kT lnq(T)   (15) 
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One can check that Equation 13 is equivalent to the Frumkin's surface tension isotherm in 

Table 2 for a nonionic surfactant. Furthermore, eliminating ln(1 − θ) between Equations 13 

and 14 one obtains the Butler's19 equation in the form 

µ1s = )0(
1sµ  + sπ1−

∞Γ  + kT ln(γ1sθ)  (Butler equation)   (16) 

where we have introduced the surface activity coefficient  

γ1s = 



 −Γ
− ∞

kT
)2(exp θθβ    (for Frumkin isotherm)  (17) 

(In the special case of Langmuir isotherm we have β = 0, and then γ1s = 1.)  The Butler 

equation is used by many authors12,20-22 as a starting point for development of thermodynamic 

adsorption models. It should be kept in mind that the specific form of the expressions for πs 

and γ1s, which are to be substituted in Equation 16, is not arbitrary, but must correspond to the 

same thermodynamic model (to the same expression for Fs – in our case Equation 11). At last, 

substituting Equation 16 into Equation 9 one derives the Frumkin adsorption isotherm in 

Table 2, where K is defined by Equation 3. 

 Now, let us apply the same general scheme, but this time to the derivation of the van 

der Waals isotherm, which corresponds to non-localized adsorption of interacting molecules. 

(Expressions corresponding to the Volmer isotherm can be obtained by setting β = 0 in the 

respective expressions for the van der Waals isotherm.) Now the adsorbed N1 molecules are 

considered as a two-dimensional gas. The corresponding expression for the canonical 

ensemble partition function is 

Q(T, M, N1) = 







−

kTM
wNnq

N
cN

2
exp

!
1 2

1

1

1       (18) 

where the exponent accounts for the interaction between adsorbed molecules, again in the 

framework of the Bragg-Williams approximation. The partition function for a single adsorbed 

molecule is q = qxy qz, where qz is one-dimensional (normal to the interface) harmonic-

oscillator partition function. On the other hand, the adsorbed molecules have free translational 

motion in the xy-plane (the interface); therefore we have11 

A
h

kTmqxy
ˆ

~2
2
p

π
=          (19) 
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where m~  is the molecular mass, hp is the Planck constant and Â  = A − N1
1−

∞Γ  is the area 

accessible to the moving molecules; the parameter 1−
∞Γ  is the excluded area per molecule, 

which accounts for the molecular size. Having in mind that M ≡ Γ∞ A, we can bring 

Equation 18 into the form 

Q(T, M, N1) = 







−−

kTM
wNnNMq

N
cNN

2
exp)(

!
1 2

1
10

1

11      (20) 

where 

)(
~2)( 2

p
0 Tq

h
kTmTq z
∞Γ

≡
π         (21) 

Further, we substitute Equation 20 into Equation 7 and, using the Stirling approximation, we 

determine the surface free energy corresponding to the van der Waals model:11,18,23 

Fs = kT[N1lnN1 − N1 − N1lnq0(T) − N1ln(M − N1)] M
wNnc

2

2
1+    (22) 

Again, having in mind that M ≡ Γ∞ A, we differentiate Equation 22 in accordance with 

Equation 8 to deduces expressions for the surface pressure and chemical potential: 

πs = Γ∞ kT 

θ
θ
−1

 − β 2
1Γ         (23) 

µ1s = )0(
1sµ  + 








−
+

− θ
θ

θ
θ

1
ln

1
kT  − 2βΓ1      (24) 

where )0(
1sµ = −kT lnq0(T) and β is defined by Equation 15. One can check that Equation 23 is 

equivalent to the van der Waals surface tension isotherm in Table 2 for a nonionic surfactant. 

Furthermore, combining Equations 23 and 24 one obtains the Butler's equation 16, but this 

time with another expression for the surface activity coefficient  

γ1s = 



 −Γ
−

−
∞

kT
)2(exp

1
1 θθβ
θ

  (for van der Waals isotherm)  (25) 

[In the special case of Volmer isotherm we have β = 0, and then γ1s = 1/(1 − θ).]  Finally, 

substituting Equation 24 into Equation 9 one derives the van der Waals adsorption isotherm in 

Table 2, with K defined by Equation 3.  
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In Table 4 we summarize the expressions for the surface free energy, Fs, and chemical 

potential µ1s, for several thermodynamic models of adsorption. We recall that the parameter 

Γ∞ is defined in different ways for the different models. On the other hand, the parameter K is 

defined in the same way for all models, viz. by Equation 3. The expressions in Tables 2–4 can 

be generalized for multicomponent adsorption layers.18,27 

At the end of this section, let us consider n general expression, which allows one to 

obtain the surface activity coefficient γ1s directly from the surface pressure isotherm πs(θ). 

From the Gibbs adsorption isotherm, dπs = Γ1dµ1s, it follows 

T

s

T

s








Γ∂

∂
Γ

=







Γ∂

∂

111

1 1 πµ         (26) 

By substituting µ1s from the Butler's equation 16 into Equation 26, and integrating one can 

derive the sought for expression: 

lnγ1s = ∫ 







−

∂
∂

Γ
−

∞

θ

θ
θ

θ
πθ

0

1)1( d
kT

s        (27) 

One can check that a substitution of πs from Equations 13 and 23 into Equation 27 yields, 

respectively, the Frumkin and van der Waals expressions for γ1s, viz. Equations 17 and 25. 

 

5.2.1.2     Ionic Surfactants 

5.2.1.2.1  The Gouy equation 

The thermodynamics of adsorption of ionic surfactants13,24-28 is more complicated 

(in comparison with that of nonionics) because of the presence of long-range electrostatic 

interactions and, in particular, of electric double layer (EDL) in the system, see Figure 1. The 

electro-chemical potential of the ionic species can be expressed in the form29 

ψµµ eZakT iiii ++= ln)0(         (28) 
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FIGURE 1 Electric double layer in the vicinity of an adsorption layer of ionic surfactant. 
(a) The diffuse layer contains free ions involved in Brownian motion, while the Stern layer 
consists of adsorbed (bound) counterions. (b) Near the charged surface there is an 
accumulation of counterions and a depletion of coions. 
 

where e is the elementary electric charge, ψ  is the electric potential, Zi is the valency of the 

ionic component “i”, and ai is its activity. In the electric double layer (Figure 1) the electric 

potential and the activities of the ions are dependent on the distance z from the phase 

boundary: ψ = ψ(z), ai = ai(z).  At equilibrium the electrochemical potential, µi, is uniform 

throughout the whole solution, including the electric double layer (otherwise diffusion fluxes 

would appear).29  In the bulk of solution (z→∞) the electric potential tends to a constant 

∞c

 z 
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value, which is usually set equal to zero, that is ψ→0 and ∂ψ/∂z→0 for z→∞. If the 

expression for µi at z→∞ and that for µi at some finite z are set equal, from Equation 28 one 

obtains a Boltzmann-type distribution for the activity across the EDL:29 






−= ∞ kT
zeZ

aza i
ii

)(
exp)(

ψ
        (29) 

where ai∞  denotes the value of the activity of ion “i” in the bulk of solution. If the activity in 

the bulk, ai∞ , is known, then Equation 29 determines the activity ai(z) in each point of the 

EDL. A good agreement between theory and experiment can be achieved12,13,27 using the 

following expression for ai∞ : 

∞±∞ = ii ca γ           (30) 

where ci∞  is the bulk concentration of the respective ion, and the activity coefficient γ± is 

calculated from the known formula30 

bI
IdB
IZZA

i

+
+

−= −+
± 1

logγ         (31) 

which originates from the Debye-Hückel theory; I denotes the ionic strength of the solution: 

∞∑≡ i
i

i cZI 2
2
1          (32) 

where the summation is carried out over all ionic species in the solution. When the solution 

contains a mixture of several electrolytes, then Equation 31 defines γ±  for each separate 

electrolyte, with Z+ and Z− being the valences of the cations and anions of this electrolyte, but 

with I  being the total ionic strength of the solution, accounting for all dissolved 

electrolytes.30 The log in Equation 31 is decimal, di is the ionic diameter, A, B, and b are 

parameters, whose values can be found in the book by Robinson and Stokes.30  For example, 

if I is given in moles per liter (M), the parameters values are A = 0.5115 M−1/2,  Bdi = 1.316 

M−1/2 and b = 0.055 M−1 for solutions of NaCl at 25°C. 

 The theory of EDL provides a connection between surface charge and surface 

potential (known as the Gouy equation31,32 of Graham equation33,34), which can be presented 

in the form27,35 

∑
=

Γ
N

i
iiz

1
 = [ ]

2/1

1
1)exp(2









−Φ−∑
=

∞ si

N

i
i

c
za

κ
   (Gouy equation) (33) 



19

 

where Γi (i = 1,...,N) are the adsorptions of the ionic species, zi = Zi /Z1, and the index i = 1 

corresponds to the surfactant ions,  

kT
eZ

c εε
κ

0

22
12 2

≡ ,   
kT
eZ s

s
ψ1≡Φ       (34) 

ε is the dielectric permittivity of the medium (water), ψs = ψ(z=0) is the surface potential. 

Note that the Debye parameter is κ2 = Ic
2κ . 

 For example, let us consider a solution of an ionic surfactant, which is a symmetric 1:1 

electrolyte, in the presence of a symmetric, 1:1, inorganic electrolyte (salt). We assume that 

the counterions due to the surfactant and salt are identical. For example, this can be a solution 

of sodium dodecyl sulfate (SDS) in the presence of NaCl. We denote by c1∞ , c2∞  and c3∞  the 

bulk concentrations of the surface active ions, counterions, and coions, respectively 

(Figure 1). For the special system of SDS with NaCl c1∞ , c2∞  and c3∞  are the bulk 

concentration of the DS−, Na+ and Cl− ions, respectively. The requirement for the bulk 

solution to be electroneutral implies c2∞  = c1∞  + c3∞ . The multiplication of the last equation 

by γ ±  yields 

a2∞ = a1∞ + a3∞          (35) 

The adsorption of the coions of the non-amphiphilic salt is expected to be equal to zero, 

Γ3 = 0, because they are repelled by the similarly charged interface.27,36-38 However, the 

adsorption of surfactant at the interface, Γ1, and the binding of counterions in the Stern layer, 

Γ2, are different from zero (Figure 1). For this system the Gouy equation 33 acquires the form 







 Φ

=Γ−Γ ∞ 2
sinh4

221
s

c
a

κ
   (Z1:Z1 electrolyte)   (36) 
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5.2.1.2.2  Contributions from the adsorption and diffuse layers 

In general, the total adsorption iΓ~  of an ionic species include contributions from both the 

adsorption layer (surfactant adsorption layer + adsorbed counterions in the Stern layer), Γi, 

and the diffuse layer, Λi :13,24,26,27 

iΓ~  = Γi + Λi ,       where      ∫
∞

∞−≡Λ
0

])([ dzaza iii      (37) 

iΓ~  represents a surface excess of component “i” with respect to the uniform bulk solution. 

Since the solution is electroneutral, one has ∑
=

Γ
N

i
iiz

1

~  = 0. Note, however, that ∑
=

Γ
N

i
iiz

1
 ≠  0, see 

the Gouy equation 33. Expressions for Λi can be obtained by using the theory of EDL. For 

example, because of the electroneutrality of the solution, the right-hand side of Equation 36 is 

equal to Λ2 − Λ1 − Λ3, where 

Λ2 = 2a2∞κ−1[exp(Φs/2) − 1];  Λj = 2aj∞κ−1[exp(−Φs/2) − 1],       j = 1,3. (38) 

(κ2 = Ic
2κ ; Z1:Z1 electrolyte). In analogy with Equation 37, the interfacial tension of the 

solution, σ, can be expressed as a sum of contributions from the adsorption and diffuse 

layers:24,27,32 

σ = σa + σd           (39) 

where 

σa = σ0 − kTJ         and        dz
dz
d

d ∫
∞







−=

0

2

0
ψεεσ      (40) 

Expressions for J are given in Table 2 for various types of isotherms. Note that Equations 39 

and 40 are valid under both equilibrium and dynamic conditions. In the special case of SDS + 

NaCl solution (see above), at equilibrium, one can use the theory of EDL to express dψ/dz; 

then from equation 40 one derives24,27,32 









−






 Φ

−= ∞ 1
2

cosh8
2

s

c
d akT

κ
σ   (Z1:Z1 electrolyte, at equilibrium) (41) 

Analytical expressions for σd for the cases of 2:1, 1:2 and 2:2 electrolytes can be found in 

References 27 and 35. 
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 In the case of ionic surfactant Equation 1 can be presented in two alternative, but 

equivalent forms27,35 

∑
=

∞Γ−=
N

i
ii adkTd

1
ln~σ   (T = const.)     (42) 

∑
=

Γ−=
N

i
isia adkTd

1
lnσ   (T = const.)     (43) 

where ais = ai(z=0) is the “subsurface” value of activity ai. From equations 29 and 34 one 

obtains  

)exp( siiis zaa Φ−= ∞ ,        (44) 

The comparison between Equations 42 and 43 shows that the Gibbs adsorption equation can 

be expressed either in terms of σ, ~Γi  and ai∞ , or in terms of σa , Γi and ais . Note that 

equations 42 and 44 are valid under equilibrium conditions, whereas equation 43 can be used 

also for the description of dynamic surface tension (Section 5.2.2) in the case of surfactant 

adsorption under diffusion control, assuming local equilibrium between adsorptions Γi  and 

subsurface concentrations of the respective species.  

The expression σa = σ0 − kTJ, with J given in Table 2, can be used for description of 

both static and dynamic surface tension of ionic and nonionic surfactant solutions. The 

surfactant adsorption isotherms in this table can be used for both ionic and nonionic 

surfactants, with the only difference that in the case of ionic surfactant the adsorption constant 

K depends on the subsurface concentration of the inorganic counterions,27 see Equation 48 

below.  

 

5.2.1.2.3  The effect of counterion binding 

As an example, let us consider again the special case of SDS + NaCl solution. In this case, the 

Gibbs adsorption equation (1.70) takes the form 

)lnln( 2211 ssa adadkTd Γ+Γ−=σ        (45) 

where, as before, the indices “1” and “2” refer to the DS− and Na+ ions, respectively. The 

differentials in the right-hand side of Equation 45 are independent (one can vary 
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independently the concentrations of surfactant and salt), and moreover, dσa is an exact (total) 

differential. Then, according to the Euler condition, the cross derivatives must be equal:27 

ss aa 1

2

2

1

lnln ∂
∂

∂
∂ Γ

=
Γ          (46) 

A surfactant adsorption isotherm, Γ1 = Γ1 (a1s, a2s ), and a counterion adsorption isotherm, 

Γ2 = Γ2 (a1s ,a2s ) , are thermodynamically compatible only if they satisfy Equation 46. The 

counterion adsorption isotherm is usually taken in the form 

s

s

aK
aK

22

22

1

2

1+
=

Γ
Γ    (Stern isotherm)    (47) 

where K2 is a constant parameter. The latter equation, termed the Stern isotherm,39 describes 

Langmuirian adsorption (binding) of counterions in the Stern layer. It can be proven that a 

sufficient condition Γ2 form Equation 47 to satisfy the Euler's condition 46, together with one 

of the surfactant adsorption isotherms for Γ1 in Table 2, is27 

)1( 221 saKKK +=          (48) 

where K1 is another constant parameter. In other words, if K is expressed by Equation 48, the 

Stern isotherm 47 is thermodynamically compatible with every of the surfactant adsorption 

isotherms in Table 2. In analogy with Equation 3, the parameters K1 and K2 are related to the 

respective standard free energies of adsorption of surfactant ions and counterions )0(
iµ∆ : 








 ∆
Γ

=
∞ kT

K ii
i

)0(

exp µδ    (i = 1, 2)     (49) 

where δi stands for the thickness of the respective adsorption layer.  

 

5.2.1.2.4  Dependence of adsorption parameter K on salt concentration 

The physical meaning of Equation 48 can be revealed by chemical-reaction considerations. 

For simplicity, let us consider Langmuir-type adsorption, i.e., we treat the interface as a two-

dimensional lattice. We will use the notation θ0 for the fraction of the free sites in the lattice, 

θ1 for the fraction of sites containing adsorbed surfactant ion S−, and θ2 for the fraction of 

sites containing the complex of an adsorbed surfactant ion + a bound counterion. Obviously, 
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one can write θ0 + θ1 + θ2 = 1. The adsorptions of surfactant ions and counterions can be 

expressed in the form: 

Γ1/Γ∞ = θ1 + θ2 ;   Γ2/Γ∞ = θ2     (50) 

Following Kalinin and Radke [119], we consider the "reaction" of adsorption of S− ions: 

A0 + S− = A0S−         (51) 

where A0 symbolizes an empty adsorption site. In accordance with the rules of the chemical 

kinetics one can express the rates of adsorption and desorption in the form: 

r1,ads = K1,adsθ0 c1s ,   r1,des = K1,desθ1     (52) 

where, as before, c1s is the subsurface concentration of surfactant; K1,ads and K1,des are 

constants. In view of Equation 50 one can write θ0 = (Γ∞ − Γ1)/Γ∞  and  θ1 = (Γ1 − Γ2)/Γ∞. 

Thus, with the help of Equation 52 we obtain the net adsorption flux of surfactant: 

Q1 ≡ r1,ads − r1,des = K1,adsc1s(Γ∞ − Γ1)/Γ∞ − K1,des(Γ1 − Γ2)/Γ∞   (53) 

Next, let us consider the reaction of counterion binding: 

A0S− + M+ = A0SM         (54) 

The rates of the direct and reverse reactions are, respectively,  

r2,ads = K2,adsθ1 c2s ,   r2,des = K2,desθ2     (55) 

where K2,ads and K2,des are the respective rate constants, and c2s is the subsurface concentration 

of counterions. Having in mind that θ1 = (Γ1 − Γ2)/Γ∞ and θ2 = Γ2/Γ∞, with the help of 

Equation 55 we deduce an expression for the adsorption flux of counterions: 

Q2 ≡ r2,ads − r2,des = K2,ads c2s(Γ1 − Γ2)/Γ∞ − K2,des Γ2/Γ∞    (56) 

If we can assume that the reaction of counterion binding is much faster than the surfactant 

adsorption, then we can set Q2 ≡ 0, and Equation 56 reduces to the Stern isotherm, Equation 

47, with K2 ≡ K2,ads/K2,des. Next, a substitution of Γ2 from Equation 47 into Equation 53 

yields35 

Q1 ≡ r1,ads − r1,des = K1,ads c1s(Γ∞ − Γ1)/Γ∞ − K1,des(1 + K2 c2s)−1 Γ1/Γ∞   (57) 

Equation 57 shows that the adsorption flux of surfactant is influenced by the subsurface 

concentration of counterions, c2s. At last, if there is equilibrium between surface and 
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subsurface, we have to set Q1 ≡ 0 in Equation 57, and thus we obtain the Langmuir isotherm 

for an ionic surfactant: 

Kc1s = Γ1/(Γ∞ − Γ1),     with        K ≡ (K1,ads/K1,des)(1 + K2 c2s)   (58) 

Note that K1 ≡ K1,ads/K1,des. This result demonstrates that the linear dependence of K on c2s 

(Equation 48) can be deduced from the reactions of surfactant adsorption and counterion 

binding, Equations 51 and 54. (For I < 0.1 M we have γ± ≈ 1 and then activities and 

concentrations of the ionic species coincide.) 

 

5.2.1.2.5  Comparison of theory and experiment 

As illustration, we consider the interpretation of experimental isotherms by Tajima et al.38,40,41 

for the surface tension σ vs. SDS concentrations at eleven fixed concentrations of NaCl, see 

Figure 2. Processing the set of data for the interfacial tension ),( 21 ∞∞= ccσσ  as a function 

of the bulk concentrations of surfactant (DS−) ions and Na+ counterions, c1∞  and c2∞ , one can 

determine the surfactant adsorption, Γ1 1 2( , )c c∞ ∞ , the counterion adsorption, Γ2 1 2( , )c c∞ ∞ , the 

surface potential, ψ s c c( , )1 2∞ ∞ , and the Gibbs elasticity EG(c1∞, c2∞) for every desirable 

surfactant and salt concentrations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 2. Plot of the surface tension σ vs. the concentration of SDS, c1∞, for 11 fixed NaCl 
concentrations. The symbols are experimental data by Tajima et al.38,40,41  The lines represent 
the best fit42 with the full set of equations specified in the text, involving the van der Waals 
isotherms of adsorption and surface tension (Table 2). 
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 The theoretical dependence ),( 21 ∞∞= ccσσ  is determined by the following full set of 

equations: Equation 44 for i = 1,2; the Gouy equation 36, Equation 39 (with σd expressed by 

Equation 41 and J from Table 2), the Stern isotherm 47, and one surfactant adsorption 

isotherm from Table 2, say the van der Waals one. Thus we get a set of 6 equations for 

determining 6 unknown variables: σ, Φs, a1s, a2s, Γ1 and Γ2. (For I < 0.1 M the activities of the 

ions can be replaced by the respective concentrations.) The principles of the numerical 

procedure are described in Reference 27.  

 The theoretical model contains four parameters, β, Γ∞ , K1 and K2, whose values are to 

be obtained from the best fit of the experimental data. Note that all eleven curves in Figure 2 

are fitted simultaneously.42 In other words, the parameters β, Γ∞ , K1 and K2 are the same for 

all curves. The value of Γ∞ , obtained from the best fit of the data in Figure 2, corresponds to 

1/ Γ∞ = 31 Å2. The respective value of K1 is 82.2 m3/mol, which in view of Equation 49 gives 

a standard free energy of surfactant adsorption ∆µ1
0( ) = 12.3 kT per DS− ion, that is 

30.0 kJ/mol. The determined value of K2 is 8.8×10−4 m3/mol, which after substitution in 

Equation 49 yields a standard free energy of counterion binding ∆µ2
0( ) = 1.9 kT per Na+ ion, 

that is 4.7 kJ/mol. The value of the parameter β  is positive, 2β Γ∞/kT = +2.89, which indicates 

attraction between the hydrocarbon tails of the adsorbed surfactant molecules. However, this 

attraction is too weak to cause two-dimensional phase transition. The van der Waals isotherm 

predicts such transition for 2β Γ∞/kT > 6.75.  

Figure 3 shows calculated curves for the adsorptions of surfactant, Γ1  (the full lines), 

and counterions, Γ2  (the dotted lines), vs. the SDS concentration, c1∞ . These lines represent 

the variation of Γ1  and Γ2  along the experimental curves, which correspond to the lowest and 

highest NaCl concentrations in Figure 2, viz. c3∞ = 0 and 115 mM. One sees that both Γ1  and 

Γ2  are markedly greater when NaCl is present in the solution. The highest values of Γ1  for 

the curves in Figure 3 are 4.2 × 10−6 mol/m2 and 4.0 × 10−6 mol/m2 for the solutions with and 

without NaCl, respectively. The latter two values compare well with the saturation 

adsorptions measured by Tajima et al.40,41 for the same system by means of the radiotracer 

method, viz. Γ1  = 4.3 × 10−6 mol/m2 and 3.2 × 10−6 mol/m2 for the solutions with and without 

NaCl.  
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For the solution without NaCl the occupancy of the Stern layer, Γ2/Γ1 rises from 0.15 

to 0.73 and then exhibits a tendency to level off. The latter value is consonant with data of 

other authors,43-45 who have obtained values of Γ2/Γ1 up to 0.70 − 0.90 for various ionic 

surfactants; pronounced evidences for counterion binding have been obtained also in 

experiments with solutions containing surfactant micelles.46-50 As it could be expected, both 

Γ1 and Γ2 are higher for the solution with NaCl. These results imply that the counterion 

adsorption (binding) should be always taken into account. 

 

 

 

 

 

 

 

 

 

 

FIGURE 3. Plots of the dimensionless adsorptions of surfactant ions Γ1/Γ∞ (DS−, the full 
lines), and counterions Γ2/Γ∞ (Na+, the dotted lines), vs. the surfactant (SDS) concentration, 
c1∞. The lines are calculated42 for NaCl concentrations 0 and 115 mM using parameter values 
determined from the best fit of experimental data (Figure 2).  
 

The fit of the data in Figure 2 gives also the values of the surface electric potential, 

ψ s . For the solutions with 115 mM NaCl the model predicts surface potentials varying in the 

range |ψ s | = 55−95 mV within the experimental interval of surfactant concentrations, whereas 

for the solution without salt the calculated surface potential is higher: |ψ s | = 150-180 mV (for 

SDS ψ s  has a negative sign). Thus it turns out that measurements of surface tension, 

interpreted by means of an appropriate theoretical model, provide a method for determining 

the surface potential ψ s  in a broad range of surfactant and salt concentrations. The described 

approach could be also applied to solve the inverse problem, viz. to process data for the 
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surface potential. In this way, the adsorption of surfactant on solid particles can be determined 

from the measured zeta-potential.51  

5.1.2.2  DYNAMIC SURFACE TENSION 

If the surface of an equilibrium surfactant solution is disturbed (expanded, compressed, 

renewed, etc.), the system will try to restore the equilibrium by exchange of surfactant 

between the surface and the subsurface layer (adsorption-desorption). The change of the 

surfactant concentration in the subsurface layer triggers a diffusion flux in the solution. In 

other words, the process of equilibration (relaxation) of an expanded adsorption monolayer 

involves two consecutive stages:  

(i) diffusion of surfactant molecules from the bulk solution to the subsurface layer and  

(ii) transfer of surfactant molecules from the subsurface to the adsorption layer; the rate of 

transfer is determined by the height of the kinetic barrier to adsorption.  

(In the case of desorption the processes have the opposite direction.) Such interfacial 

expansions are typical for foam generation and emulsification. The rate of adsorption 

relaxation determines whether the formed bubbles / drops will coalesce upon collision, and in 

final reckoning – how large will be the foam volume and the emulsion drop-size.52,53 Below 

we focus our attention on the relaxation time of surface tension, τσ, which characterizes the 

interfacial dynamics. 

 The overall rate of surfactant adsorption is controlled by the slowest stage. If it is 

stage (i), we deal with diffusion control, while if stage (ii) is slower, the adsorption occurs 

under barrier (kinetic) control. The next four subsections are dedicated to processes under 

diffusion control (which are the most frequently observed), whereas in Subsection 5.2.2.5 we 

consider adsorption under barrier control. 

Various experimental methods for dynamic surface tension measurements are 

available. Their operational time-scales cover different time intervals.54,55 Methods with a 

shorter characteristic operational time are the oscillating jet method,56-58 the oscillating 

bubble method,59-62 the fast-formed drop technique,63,64 the surface wave techniques,65-68 and 

the maximum bubble pressure method.69-74  Methods of longer characteristic operational time 

are the inclined plate method,75,76  the drop-weight/volume techniques,77-80 the funnel81 and 

overflowing cylinder82 methods; the axisymmetric drop shape analysis (ADSA);83,84 see 

References 54, 55 and 85 for a more detailed review. 
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 In this section, devoted to dynamic surface tension, we consider mostly nonionic 

surfactant solutions. In Subsection 5.2.2.4 we address the more complicated case of ionic 

surfactants. We will restrict our considerations to the simplest case of relaxation of an initial 

uniform interfacial dilatation. The more complex case of simultaneous adsorption and 

dilatation is considered elsewhere.54,70,74,82,85 

 

5.2.2.1 Adsorption under Diffusion Control 

Here we consider a solution of a nonionic surfactant, whose concentration, c1 = c1(z,t) , 

depends on the position and time because of the diffusion process. (As before, z denotes the 

distance to the interface, which is situated in the plane z = 0.) Correspondingly, the surface 

tension, surfactant adsorption and the subsurface concentration of surfactant vary with time: 

σ = σ (t), Γ1 = Γ1(t) , c1s = c1s(t). The surfactant concentration obeys the equation of diffusion: 

2
1

2

1
1

z
cD

t
c

∂
∂

∂
∂

=      (z > 0, t > 0)   (59) 

where D1 is the diffusion coefficient of the surfactant molecules. The exchange of surfactant 

between the solution and its interface is described by the boundary conditions 

c1(0,t) = c1s(t),  z
cD

td
d

∂
∂ 1

1
1 =

Γ ,  (z = 0, t > 0)   (60) 

The latter equation states that the rate of increase of the adsorption Γ1 is equal to the diffusion 

influx of surfactant per unit area of the interface. Integrating Equation 59, along with 60, one 

can derive the equation of Ward and Tordai:86 
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1
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1 )(2       (61) 

Solving Equation 61 together with some of the adsorption isotherms Γ1 = Γ1(c1s) in Table 2, 

one can in principle determine the two unknown functions Γ1(t) and c1s(t). Since the relation 

Γ1(c1s) is nonlinear (except for the Henry isotherm), this problem, or its equivalent 

formulations, can be solved either numerically,87 or by employing appropriate 

approximations.70,88 
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 In many cases it is convenient to use asymptotic expressions for the functions Γ1(t), 

c1s(t) and σ(t) for short times (t→0) and long times (t→∞). A general asymptotic expression 

for the short times can be derived from Equation 61 substituting c1s ≈ c1s(0) = const.: 

Γ1(t) = Γ1(0) + tccD s )]0([/2 111 −∞π   (t→0)    (62) 

Analogous asymptotic expression can be obtained also for the long times, although the 

derivation is not so simple. Hansen89 derived an useful asymptotics for the subsurface 

concentration: 

c1s(t) = c1∞ − 
tD

e

1

1 )0(
π

Γ−Γ
    (t→∞)     (63) 

where Γ1e is the equilibrium value of the surfactant adsorption. The validity of Hansen's 

equation 63 was confirmed in subsequent studies by other authors.90,91 

 Below we continue our review of the asymptotic expressions considering separately 

the cases of small and large initial perturbations. 

 

5.2.2.2  Small Initial Perturbation 

When the deviation from equilibrium is small, then the adsorption isotherm can be linearized: 

[ ]es
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Here and hereafter the subscript “e” means that the respective quantity refers to the 

equilibrium state. The set of linear equations, 59, 60 and 64, has been solved by Sutherland.92 

The result, which describes the relaxation of a small initial interfacial dilatation, reads: 
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is the characteristic relaxation time of surface tension and adsorption, and  
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is the so called complementary error function.93,94 The asymptotics of the latter function for 

small and large values of the argument are:93,94 
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Combining Equations 65 and 68 one obtains the short-time and long-time asymptotics of the 

surface tension relaxation: 
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Equation 70 is often used as a test to verify whether the adsorption process is under diffusion 

control: data for σ(t) are plotted vs. 1/ t  and it is checked if the plot complies with a straight 

line; moreover, the intercept of the line gives σe . We recall that Equations 69 and 70 are valid 

in the case of a small initial perturbation; alternative asymptotic expressions for the case of 

large initial perturbation are considered in the next subsection.  

 With the help of the thermodynamic equations 2 and 6 one derives 
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Thus Equation 66 can be expressed in an alternative form:35 
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Substituting EG from Table 3 into Equation 72 one can obtain expressions for τσ  

corresponding to various adsorption isotherms. In the special case of Langmuir adsorption 

isotherm one can present Equation 72 in the form35 
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Equation 73 visualizes the very strong dependence of the relaxation time τσ on the surfactant 

concentration c1; in general, τσ can vary with many orders of magnitude as a function of c1. 

Equation 73 shows also that high Gibbs elasticity corresponds to short relaxation time, and 

vice versa.  

As a quantitative example let us take typical parameter values: K1 = 15 m3/mol, 1/Γ∞ = 40 Å2, 

D1 = 5.5 × 10−6 cm2/s and T = 298 K. Then with c1= 6.5 × 10−6 M, from Table 3 (Langmuir 

isotherm) and Equation 73 we calculate EG ≈ 1.0 mN/m and τσ ≈ 5 s. In the same way, for 

c1 = 6.5 × 10−4 M we calculate EG ≈ 100 mN/m and τσ ≈ 5 × 10−4 s. 

To directly measure the Gibbs elasticity EG, or to precisely investigate the dynamics of 

surface tension, one needs an experimental method, whose characteristic time is smaller 

compared to τσ
 . Equation 73 and the latter numerical example show that when the surfactant 

concentration is higher, the experimental method should be faster.  

 

5.2.2.3  Large Initial Perturbation 

By definition, we have large initial perturbation when at the initial moment the interface is 

clean of surfactant: 

Γ1(0) = 0,   c1s(0) = 0      (74) 

In such case, the Hansen equation 63 reduces to 
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e
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π
Γ

     (t→∞)     (75) 

By substituting c1s(t) for c1 in the Gibbs adsorption equation 2, and integrating, one obtains 

the long-time asymptotics of the surface tension of a nonionic surfactant solution after a large 

initial perturbation: 
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with the help of Equation 72 one can bring Equation 76 into another form: 

σ(t) − σe = 
2/1
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where EG is given in Table 3. It is interesting to note that Equation 77 is applicable to both 

nonionic and ionic surfactants with the only difference that for nonionics τσ is given by 

Equation 66, whereas for ionic surfactants the expression for τσ is somewhat longer, see 

References 35 and 95. 

The above equations show that in the case of adsorption under diffusion control the 

long-lime asymptotics can be expressed in the form 

σ = σe + S t−1/2
          (78) 

In view of Equations 70 and 77, the slope S of the dependence σ vs. t−1/2 is given by the 

expressions95 

Ss = [σ(0) − σe]
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π
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As known, the surfactant adsorption Γ1 monotonically increases with the rise of the surfactant 

concentration, c1. In contrast, the slope Sl is a non-monotonic function of c1: Sl exhibits a 

maximum at a certain concentration. To demonstrate that we will use the expression  

Sl = 
11

2
1

Dc
kT
π

Γ           (81) 

which follows from Equations 76 and 78. In Equation 81 we substitute the expressions for c1 

stemming from the Langmuir and Volmer adsorption isotherms (Table 2 with c1 = a1s); the 

result reads 
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where θ and lS~  are the dimensionless adsorption and slope coefficient: 
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FIGURE 4. Plot of the dimensionless slope, lS~ , vs. the dimensionless equilibrium surfactant 
adsorption, θ = Γ1e

 / Γ∞, in accordance with Equations 82 and 83, corresponding to the cases 
of localized and non-localized adsorption. 
 

Figure 4 compares the dependencies lS~ (θ) given by Equations 82 and 83: one sees that the 

former is symmetric and has a maximum at θ = 0.5, whereas the latter is asymmetric with a 

maximum at θ ≈ 0.29. We recall that the Langmuir and Volmer isotherms correspond to 

localized and non-localized adsorption, respectively (see Section 5.2.1.1.2). Then Figure 4 

shows that the symmetry / asymmetry of the plot lS~  vs. θ  provides a test for verifying 

whether the adsorption is localized or non-localized. (The practice shows that the fits of 

equilibrium surface tension isotherms do not provide such a test: theoretical isotherms 

corresponding to localized and non-localized adsorption are found to fit equally well surface 

tension data!) 

 From another viewpoint, the non-monotonic behavior of Sl(θ) can be interpreted as 

follows. Equation 80 shows that Sl ∝ EG στ ; then the non-monotonic behavior stems from 

the fact that EG is an increasing function of c1, whereas τσ is a decreasing function of c1. This 

qualitative conclusion is valid also for the case of ionic surfactant, as demonstrated in the next 

section. 
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5.2.2.4  Generalization for Ionic Surfactants 

In the case of ionic surfactants the dynamics of adsorption is more complicated because of the 

presence of a dynamic electric double layer. Indeed, the adsorption of surfactant at the 

interface creates surface charge, which is increasing in the course of the adsorption process. 

The charged interface repels the new-coming surfactant molecules, but attracts the conversely 

charged counterions (Figure 1); some of them bind to the surfactant headgroups thus 

decreasing the surface charge density and favoring the adsorption of new surfactant 

molecules. The theoretical description of the overall adsorption process involves the 

(electro)diffusion equations for the surfactant ions, counterions and coions, and the Poisson 

equation from electrodynamics. Different analytical and numerical approaches to the solution 

of this problem have been proposed.13, 95-102  Below we describe an approach to the dynamics 

of ionic surfactant adsorption which is simpler both as a concept, and as a computer-program 

realization, but agrees very well with the experiment.  

Two time scales can be distinguished in the adsorption process of ionic species. The 

first time-scale is characterized by the diffusion relaxation time of the electric double layer, 

)/(1 2
c1edl IDt κ= , see Equations 32 and 34 above. It accounts for the interplay of electrostatic 

interactions and diffusion. The second scale is provided by the characteristic time of the used 

experimental method, texp, viz. the minimum interfacial age which can be achieved with the 

given method; typically texp ≥ 5 × 10−3 s. For example, if the diffusivity is D1 = 5.5 × 10−10 

m2/s, for I = 10−5 M and 10−2 M one calculates, correspondingly, tedl = 1.7 × 10−5 and 

1.7 × 10−8 s. One sees that ε ≡ tedl / texp << 1 is a small parameter. The presence of such small 

parameter implies the existence of two characteristic length scales: inner (in the EDL) 

lin ≡ (D1 tedl)1/2 and outer (outside the EDL) lout ≡ (D1 texp)1/2. In fact, lin characterizes the width 

of the layer in which the variation of the ionic concentrations is governed by the electric field, 

whereas lout scales the width of the zone in which the concentrations of the species vary due to 

the diffusion. Next, one can apply the method of the matched inner and outer asymptotic 

expansions103 to solve the problem. Without entering into mathematical details, here we 

outline the final results and the computational procedure, which is relatively simple:104 

 In the outer zone, where the electrical field is zero one obtains a generalized version of 

the Hansen equation 75 for all diffusing species:  
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where ci,b is the concentration of the respective ion at the inner boundary of the outer zone, Di 

is diffusion coefficient, and ei,
~Γ  is the total equilibrium adsorption of the respective species, 

see Equations 37 and 38. In Section 5.2.1.2.5 we specified the full set of equations which 

allow one to calculate all equilibrium parameters, supposedly the constants β, Γ∞ , K1 and K2 

are determined from the best fit of experimental data – see the discussion related to Figure 2. 

(In the simpler case of nonionic surfactant the full set of equations reduces to a couple of 

corresponding adsorption and surface tension isotherms from Table 2, which enables one to 

calculate Γ1 and σ for each given value of c1.) The computational procedure for the dynamic 

problem is the following one: 

1. One calculates ei,Γ  using the full set of equations in Section 5.2.1.2.5; 

2. Next, from Equation 85 one calculates ci,b(t) for a set of values of t in the experimental 

time interval; 

3. Further, in the full set of equations in Section 5.2.1.2.5 one replaces everywhere ci∞ with 

ci,b(t); then, for each value of t, we solve this system of equations to determine the 

functions Γi(t), Φs(t) and σ(t). In the long-time limit one can determine also Sl = ∂σ/∂t−1/2. 

The justification of this procedure can be accomplished by means of the method of the 

matched asymptotic expansions.104  

Comparison of theory and experiment. To illustrate how the theory compares with the 

experiment, in Figure 5 we present five experimental curves for σ(t) corresponding to five 

different surfactant concentrations, at fixed concentration of added electrolyte, 12 mM NaCl. 

The surfactant is sodium dodecyl-benzene-sulfonate (DDBS). (This specific sample was a 

technical product containing 82.6 wt% pure DDBS and 17.4 wt% Na2SO4.) The dynamic 

surface tension σ(t) was measured by means of the fast formed drop (FFD) technique.63,64  

The method consists in a sudden formation of a drop at the orifice of a capillary by a quick 

breaking of a jet of surfactant solution which flows out of the capillary. Thus a fresh curved 

interface is formed at the capillary tip. The surfactant adsorbs at the immobile curved 

interface and, consequently, the surface tension and the pressure inside the drop decrease with 

time; the pressure is registered by means of a piezo-transducer, whose electric output can be 
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converted in terms of surface tension by using the Laplace equation of capillarity. In this way, 

the curves for σ(t) in Figure 5 were obtained.104 The capillary pressure was recorded every 

0.1 s, which gives a large number of experimental points and provides a good statistics. In 

addition, equilibrium surface tension isotherms have been obtained and processed as 

explained in Section 5.2.1.2.5 to determine the parameters β, Γ∞ , K1, K2, etc. The van der 

Waals isotherm (Table 2) has been employed. 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5. Experimental curves104 for the relaxation of surface tension σ with time t for five 
fixed concentrations (denoted in the figure) of sodium dodecyl-benzene-sulfonate (DDBS). 
The solutions contain 12 mM added NaCl, and Na2SO4 whose concentration is 21 wt% of that 
of DDBS. 
 

The long-time portions of the curves in Figure 5, plotted as σ vs. t−1/2, comply very 

well with straight lines, whose slopes, Sl, are plotted in Figure 6a – the points. The theoretical 

curve for Sl is calculated using the procedure given after Equation 85. The curve is obtained 

using only the parameters of the equilibrium surface tension isotherm  and the diffusion 

coefficients of the ionic species. One sees that the agreement between theory and experiment 

is excellent. (No adjustable parameters have been used to fit the dynamic data.) The plot in 

Figure 6a exhibits a maximum, in agreement with our expectations (see Section 5.2.2.3). 
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FIGURE 6. (a) Plot of the slope coefficient Sl vs. the surfactant (DDBS) concentration; the 
points are the values of Sl for the curves in Figure 5; the line is theoretical curve obtained 
using the procedure described after Equation 85 (no adjustable parameters). (b) Plots of the 
relaxation time τσ and the Gibbs elasticity EG vs. the DDBS concentration; EG is computed 
from the equilibrium surface tension isotherm; τσ = π (Sl /EG)2 is calculated using the above 
values of Sl. 
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 The comparison between theory and experiment could be carried out also in terms of 

the relaxation time of the surface tension, τσ. One can use the connection τσ = π (Sl /EG)2, 

which follows from Equation 80. The Gibbs elasticity EG is calculated from the van der Waals 

expression in Table 3. The results for τσ and EG are shown in Figure 6b. One sees the wide 

range of variation of the characteristic relaxation time τσ, which varies with more than 4 

orders of magnitude in the investigated range of concentrations. Moreover, one sees that for 

the higher surfactant concentrations, the so called “long-time” relaxation could be effectuated 

within 0.01–0.1 seconds. On the other hand, for the low surfactant concentrations the 

relaxation can be longer than 100 s. In part, this variation of the relaxation time tσ with orders 

of magnitude is due to the strong variation of the surface elasticity EG with the surfactant 

concentration, see the right-hand curve in Figure 6b. 

 

5.2.2.5  Adsorption under Barrier Control 

In general, the adsorption is under barrier (kinetic, transfer) control when the stage of 

surfactant transfer from the subsurface to the surface is much slower than the diffusion stage 

because of some kinetic barrier. The latter can be due to steric hindrance, spatial reorientation 

or conformational changes accompanying the adsorption of molecules, including destruction 

of the shells of oriented water molecules wrapping the surfactant hydrocarbon tail in water.105 

We will restrict our considerations to the case of pure barrier control, without double layer 

effects. In such case the surfactant concentration is uniform throughout the solution, 

c1 = const., and the increase of the adsorption Γ1(t) is solely determined by the transitions of 

surfactant molecules over the adsorption barrier, separating subsurface from surface: 

)(),( 1des11ads
1 Γ−Γ≡=

Γ rcrQ
td

d        (86) 

rads and rdes are the rates of surfactant adsorption and desorption. The concept of barrier-

limited adsorption originates from the works of Bond and Puls,106  and Doss,107  and has been 

further developed by other authors.108-115  Table 5 summarizes some expressions for the total 

rate of adsorption under barrier control, Q. The quantities Kads and Kdes in Table 5 are the rate 

constants of adsorption and desorption, respectively. Their ratio is equal to the equilibrium 

constant of adsorption 

KKK =desads / ,         (87) 
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Table 5. Rate of Surfactant Adsorption for Different Kinetic Models 

 

Type of isotherm 
Rate of reversible adsorption 

)(),( 1des11ads Γ−Γ= rcrQ  

Henry Q = Kads c1 − KdesΓ1/Γ∞ 

Freundlich Q = Kads Km−1 mc1  − KdesΓ1/Γ∞ 
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The parameters Γ∞  and K are the same as in Tables 2–4. Setting Q = 0 (assuming equilibrium 

surface–subsurface), from each expression in Table 5 one deduces the respective equilibrium 

adsorption isotherm in Table 2. In addition, for β = 0 the expressions for Q related to the 

Frumkin and van der Waals model reduce, respectively, to the expressions for Q in the 

Langmuir and Volmer models. For Γ1 << Γ∞ both the Frumkin and Langmuir expressions in 

Table 5 reduce to the Henry expression. 

Substituting Q from Table 5 into Equation 86, and integrating, one can derive explicit 

expressions for the relaxation of surfactant adsorption: 
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Equation 88 holds for  σ(t) only in the case of small deviations from equilibrium, whereas 

there is not such a restriction concerning Γ1(t) ; the relaxation time in Equation 88 is given by 

the expressions 
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( ) 1
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∞Γ= Kστ     (Henry and Freundlich)  (89) 
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Equation 88 predicts that the perturbation of surface tension, ∆σ(t) = σ(t) − σe
 , relaxes 

exponentially. This is an important difference with the cases of adsorption under diffusion 

and electro-diffusion control, for which ∆σ(t) ∝ 1/ t , cf. Equations 70, 76 and 78. Thus a 

test whether or not the adsorption occurs under purely barrier control is to plot data for 

ln[∆σ(t)] vs. t and to check if the plot complies with a straight line. 

 In the case of ionic surfactants the adsorption of surfactant ions is accompanied by 

binding of counterions. In addition, the concentrations of the ionic species vary across the 

electric double layer (even at equilibrium). These effects are taken into account in Equation 

57, which can be used as an expression for Q in the case of Langmuirian barrier adsorption of 

an ionic surfactant. 

In fact, a pure barrier regime of adsorption is not frequently observed. It is expected 

that the barrier becomes more important for substances of low surface activity and high 

concentration in the solution. Such adsorption regime was observed with propanol, pentanol, 

1,6 hexanoic acid, etc. – see Reference 85 for details.  

 It may happen that the characteristic times of diffusion and transfer across the barrier 

are comparable. In such case we deal with mixed kinetic regime of adsorption. Insofar as the 

stages of diffusion and transfer are consecutive, the boundary conditions at the interface are 

0

1
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The formal transition in Equation 91 from mixed to diffusion control of adsorption is not 

trivial and demands application of scaling and asymptotic expansions. The criterion for 

occurrence of adsorption under diffusion control (presence of equilibrium between subsurface 

and surface) is  

ecD
Ka









∂
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1

1

1

des >> 1         (92) 

where a is a characteristic thickness of the diffusion layer. 
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 An important difference between the regimes of diffusion and barrier control is in the 

form of the respective initial conditions. In the case of large initial deformations these are 

Γ1(0) = 0,  c1s(0) = 0   (diffusion control)   (93) 

Γ1(0) = 0,  c1s(0) = c1∞   (barrier control)   (94) 

Equation 93 reflects the fact that in diffusion regime the surface is always assumed to be 

equilibrated with the subsurface. In particular, if Γ1 = 0, then one must have c1s = 0. In 

contrast, Equation 94 stems from the presence of barrier: for time intervals shorter than the 

characteristic time of transfer, the removal of the surfactant from the interface (Γ1 = 0) cannot 

affect the subsurface layer (because of the barrier) and then c1s(0) = c1∞. This purely 

theoretical consideration implies that the effect of barrier could show up at the short times of 

adsorption, whereas at the long times the adsorption will occur under diffusion control.116  

The existence of barrier-affected adsorption regime at the short adsorption times could be 

confirmed or rejected by means of the fastest methods for measurement of dynamic surface 

tension. 
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5.3  CAPILLARY HYDROSTATICS AND THERMODYNAMICS 

5.3.1  SHAPES OF FLUID INTERFACES 

5.3.1.1   Laplace and Young Equations 

A necessary condition for mechanical equilibrium of a fluid interface is the Laplace equation 

of capillarity117-120 

2Hσ = ∆P          (95) 

Here H is the local mean curvature of the interface and ∆P is the local jump of the pressure 

across the interface. If z = z(x, y) is the equation of the interface in Cartesian coordinates, then 

H can be expressed in the form120  

( ) 

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∇
⋅∇= 212

s

s
s

1
2

z

zH         (96) 

where ∇s is the gradient operator in the plane xy. More general expressions for H can be 

found in the literature on differential geometry.120-122 Equation 95, along with Equation 96, 

represents a second order partial differential equation which determines the shape of the fluid 

interface. The interface is bounded by a three-phase contact line at which the boundary 

conditions for the differential equation are formulated. The latter are the respective necessary 

conditions for mechanical equilibrium at the contact lines. When one of the three phases is 

solid (Figure 7(a)), the boundary condition takes the form of the Young123 equation: 

σ12 cos α = σ1s − σ2s         (97) 

where α is the three-phase contact angle, σ12 is the tension of the interface between the fluid 

phases 1 and 2, whereas σ1s and σ2s are the tensions of the two fluid-solid interfaces. Insofar 

as the values of the three σ's are determined by the intermolecular forces, the contact angle α 

is a material characteristics of a given three phase system. However, when the solid is not 

smooth and chemically homogeneous, then the contact angle exhibits hysteresis, i.e., α has no 

defined equilibrium value.6, 124 Contact angle hysteresis can be observed even with 

molecularly smooth and homogeneous interfaces under dynamic conditions.125 
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FIGURE 7. Sketch of fluid particle (1) attached to an interface. (a) Fluid particle attached to 
solid interface; α is the contact angle; σ is the interfacial tension of the boundary between the 
two fluid phases. (b) Fluid particle attached to a fluid interface; σ12, σ13 and σ23 are the 
interfacial tensions between the respective phases; ψc is the slope angle of the outer meniscus 
at the contact line. 
 

 When all the three neighboring phases are fluid, then the boundary condition takes the 

form of the Neumann126 vectorial triangle: 

σ12 v12 + σ13 v13 + σ23 v23 = 0        (98) 

(see Figure 7(b)); here vik is a unit vector, which is simultaneously normal to the contact line 

and tangential to the boundary between phases i and k. The Laplace, Young and Neumann 

equations can be derived as conditions for minimum of the free energy of the system;35,120,127 

the effect of the line tension can be also taken into account in Equations 97 and 98.127 

 In the special case of spherical interface H = 1/R, with R being the sphere radius, and 

Equation 95 takes its most popular form, 2σ/R = ∆P. In the case of axisymmetric meniscus 

(z – axis of symmetry, Figure 7) the Laplace equation reduces to either of the following two 

equivalent forms:119,128 
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Two equivalent parametric forms of Laplace equation are often used for calculations:119,128 
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Here, ϕ is the meniscus running slope angle (Figure 7(a)) and s is the arc length along the 

generatrix of the meniscus. Equation 102 is especially convenient for numerical integration, 

whereas Equation 101 may create numerical problems at the points with tanϕ = ±∞, like the 

particle equator in Figure 7(a). A generalized form of Equation 101, with account for the 

interfacial (membrane) bending elastic modulus, kc, 













+∆=






 + )sin(1coscossinsin ϕϕϕϕϕσ r

dr
d

rdr
dr

dr
d

r
k

P
rdr

d c    (103) 

serves for description of the axisymmetric configurations of real and model cell 

membranes.35,129,130  The Laplace equation can be generalized to account also for the 

interfacial bending moment (spontaneous curvature), shear elasticity, etc., for review see 

References 35 and 129. The latter effects are physically important for systems or phenomena 

like capillary waves,131  lipid membranes,132,133 emulsions,134 and microemulsions.135 

 

5.3.1.2  Solutions of Laplace Equations for Menisci of Different Geometry 

Very often the capillary menisci have rotational symmetry. In general, there are three types of 

axially symmetric menisci corresponding to the three regions denoted in Figure 8: 

(1) Meniscus meeting the axis of revolution, (2) Meniscus decaying at infinity, and 

(3) Meniscus confined between two cylinders, 0 < R1 < r < R2 < ∞. These three cases are 

separately considered below. 
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FUGURE 8. Capillary menisci formed around two coaxial cylinders of radii R1 and R2. 
(I) Meniscus meeting the axis of revolution; (II) meniscus decaying at infinity; (III) meniscus 
confined between the two cylinders. h denotes the capillary raise of the liquid in the inner 
cylinder; hc is the elevation of meniscus II at the contact line r = R2. 
 

5.3.1.2.1   Meniscus meeting the axis of revolution 

This includes the cases of a bubble/droplet under a plate (Figure 7(a)), the two surfaces of a 

floating lens (Figure 8(b)), and any kind of sessile or pendant droplets/bubbles. Such a 

meniscus is a part of a sphere when the effect of gravity is negligible, that is when 

∆ρ g b2 / σ << 1         (104) 

Here g is the gravity acceleration, ∆ρ is the difference in the mass densities of the lower and 

the upper fluid and b is a characteristic radius of the meniscus curvature. For example, if 

Equation 104 is satisfied with b = R1 (see Figure 8), the raise, h, of the liquid in the capillary is 

determined by means of the equation6 

h = (2σ cosα)/(∆ρ g R1)        (105) 

 When the gravity effect is not negligible, the capillary pressure, ∆P, becomes 

dependent on the z-coordinate: 

∆P = 2σ / b + ∆ρ g z         (106) 

Here b is the radius of curvature at the particle apex, where the two principal curvatures are 

equal (e.g., the bottom of the bubble in Figure 7(a)). Unfortunately, Equation 99, along with 

Equation 106, has no closed analytical solution. The meniscus shape can be exactly 

determined by numerical integration of Equation 102. Alternatively, various approximate 
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expressions are available.128,136,137 For example, if the meniscus slope is small, 2z′ << 1, 

Equation 99 reduces to a linear differential equation of Bessel type, whose solution reads 

z(r) = 2[I0(qr) − 1]/(bq2)  q ≡ (∆ρ g/σ)1/2      (107) 

where I0(x) is the modified Bessel function of the first kind and zeroth order.138,139 Equation 

107 describes the shape of the lower surface of the lens in Figure 7(b); similar expression can 

be derived also for the upper lens surface. 

5.3.1.2.2   Meniscus decaying at infinity 

Examples are the outer menisci in Figures 7(b) and 8. In this case the action of gravity cannot 

be neglected insofar as the gravity keeps the interface flat far from the contact line. The 

capillary pressure is 

∆P = ∆ρ g z           (108) 

As mentioned above, Equation 99, along with Equation 108, has no closed analytical solution. 

On the other hand, the region far from the contact line has always small slope, 2z′ << 1. In 

this region Equation 99 can be linearized, and then in analogy with Equation 107 one derives 

z(r) = A K0 (qr)   ( 2z′ << 1)     (109) 

where A is a constant of integration and K0(x) is the modified Bessel function of the second 

kind and zeroth order.138,139 The numerical integration of Equation 102 can be carried out by 

using the boundary condition47 z' /z = −qK1(qr)/K0(qr) for some appropriately fixed r << q−1 

(see Equation 109). Alternatively, approximate analytical solutions of the problem are 

available.128,137,140 In particular, Derjaguin141  has derived an asymptotic formula for the 

elevation of the contact line at the outer surface of a thin cylinder, 

hc = −R1 sinψc ln[qR1γe (1 + cosψc)/4] ,  (qR1)2 << 1   (110) 

where R1 is the radius of the contact line, ψc is the meniscus slope angle at the contact line 

(Figure 8), q is defined by Equation 107 and γe = 1.781 072 418...is the constant of Euler-

Masceroni.139 

5.3.1.2.3   Meniscus confined between two cylinders (0 < R1 < r < R2
 < ∞) 

This is the case with the Plateau borders in real foams and emulsions, and with the model 

films in the Scheludko cell;142,143 such is the configuration of the capillary bridges 
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(Figure 9(a)) and of the fluid particles pressed between two surfaces (Figure 9(b)). When the 

gravitational deformation of the meniscus cannot be neglected, the interfacial shape can be 

determined by numerical integration of Equation 102, or by iteration procedure.144 When the 

meniscus deformation caused by gravity is negligible, analytical solution can be found as 

described below. 

 

 

 

 

 

 

 

 

 

FIGURE 9. Concave (a) and convex (b) capillary bridges between two parallel plates. P1 and 
P2 denote the pressures inside and outside the capillary bridge, r0 is the radius of its section 
with the midplane; rc is the radius of the three-phase contact lines. 
 

 To determine the shape of the menisci depicted in Figures 9(a) and 9(b), one integrates 

Equation 101 from r0 to r to derive 
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The pressures in phases 1 and 2, P1 and P2, and r0 are shown in Figure 9. Equation 111 

describes curves, which after Plateau118,119,145-147 are called “nodoid” and “unduloid,” (see 

Figure 10). The nodoid (unlike the unduloid) has points with horizontal tangent, where 

dz/dr = 0. Then with the help of Equation 111 one can deduce that the meniscus generatrix is a 

part of nodoid if k1r0 ∈ (−∞, 0)∪(1, +∞), while the meniscus generatrix is a part of unduloid if 

k1r0 ∈ (0, 1). 
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FIGURE 10. Typical shape of nodoid (a) and unduloid (b) Plateau curves. Note that the 
curves are confined between two cylinders of radii ra and rb. 
 

In the special case, when k1r0 = 1, the meniscus is spherical. In the other special case, 

k1r0
 = 0, the meniscus has the shape of catenoid, i.e. 

( ){ } )0(,1ln 1
2

000 =−+±= krrrrrz      (112) 

 The meniscus has a "neck" (Figure 9(a)) when k1r0 ∈ (−∞, 1/2); in particular, the 

generatrix is nodoid for k1r0 ∈ (−∞, 0), catenoid for k1r0 = 0, and unduloid for k1r0 ∈ (0, 1/2). 

For the configuration depicted in Figure 9(a) one has r1 > r0 (in Figure 10 ra = r0, rb = r1) and 

Equation 111 can be integrated to yield 
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where sngx denotes the sign of x, q1
 = (1 − r0

2 /r1
2)1/2, sinφ1

 = q1
−1(1 − r0

2 /r2)1/2; F(φ, q) and 

E(φ, q) are the standard symbols for elliptic integrals of the first and the second kind.138,139 A 

convenient method for computation of F(φ, q) and E(φ, q) is the method of the arithmetic-

geometric mean (see Reference 138, Chapter 17.6). 

 The meniscus has a "haunch" (Figure 9(b)) when k1r0 ∈ (1/2, +∞); in particular, the 

generatrix is unduloid for k1r0 ∈ (1/2, 1), circumference for k1r0
 = 1, and nodoid for 
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k1r0 ∈ (1, +∞). For the configuration depicted in Figure 9(b) one has r0 > r1 (in Figure 10 

ra
 = r1, rb

 = r0) and Equation 111 can be integrated to yield 

( ) ( ) ( ) ( )[ ] ( )012202210 ,,E,F1 rrrqrqkrrz ≤≤−−= φφm    (114) 

where q2
 = (1 − r1

2/r0
2)1/2, sinφ2

 = q2
−1(1 − r2/r0

2)1/2. Additional information about the shapes, 

stability and nucleation of capillary bridges, and for the capillary-bridge forces between 

particles, can be found in Chapter 11 of Reference 35. 

 

5.3.1.3  Gibbs-Thomson Equation 

The dependence of the capillary pressure on the interfacial curvature leads to a difference 

between the chemical potentials of the components in small droplets (or bubbles) and in the 

large bulk phase. This effect is the driving force of phenomena like nucleation148,149 and 

Ostwald ripening (see Section 5.3.1.4 below). Let us consider the general case of a 

multicomponent two-phase system; we denote the two phases by α and β. Let phase α be a 

liquid droplet of radius R. The two phases are supposed to coexist at equilibrium. Then one 

can derive4,5,150,151 

( ) ( ) ( ) ( )
R
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σµµµµ αααββ 2

=−=− ∞=∞=      (115) 

where µ is chemical potential, Vi is partial volume, the superscripts denote phase and the 

subscripts denote component. Equation 31 is derived under the following assumptions. When 

β is a gaseous phase, it is assumed that the partial volume of each component in the gas is 

much larger than its partial volume in the liquid α; this is fulfilled far enough from the critical 

point.151 When phase β is liquid, it is assumed that Pβ(R) = Pβ(R=∞), where P denotes 

pressure. 

 When phase β is an ideal gas, Equation 115 yields4,5,150,151 

( )
( ) 








=

∞ kTR
V

P
RP i

i

i
α

β

β σ2exp         (116) 

where Pi
β(R) and Pi

β(∞) denote respectively the equilibrium vapor pressure of component i in 

the droplet of radius R and in a large liquid phase of the same composition. Equation 116 

shows that the equilibrium vapor pressure of a droplet increases with the decrease of the 

droplet size. (For a bubble, instead of a droplet, R must be changed to −R in the right-hand 
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side of Equation 116 and the tendency becomes the opposite.) Equation 116 implies that in an 

aerosol of polydisperse droplets the larger droplets will grow and the smaller droplets will 

diminish down to complete disappearance. 

 The small droplets are “protected” against disappearance when phase α contains a 

non-volatile component. Then instead of Equation 116 one has 
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where X denotes the molar fraction of the non-volatile component in phase α; for X(R) = X(∞) 

Equation 117 reduces to Equation 116. Setting the left-hand side of Equation 117 equal to 1, 

one can determine the value X(R) needed for a liquid droplet of radius R, surrounded by the 

gas phase β, to coexist at equilibrium with a large (R = ∞) liquid phase α of composition 

X(∞). 

 When both phases α and β are liquid, Equation 115 yields 
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where Xi
β(R) denotes the equilibrium molar fraction of component i in phase β coexisting 

with a droplet of radius R, and Xi
β(∞) denotes the value of Xi

β(R) for R→∞, i.e., for phase β 

coexisting with a large phase α of the same composition as the droplet. In the case of an oil-

in-water emulsion Xi
β can be the concentration of the oil dissolved in the water. In particular, 

Equation 118 predicts that the large emulsion droplets will grow and the small droplets will 

diminish. This phenomenon is called Ostwald ripening (see the next section). If the droplets 

(phase α) contain a component, which is insoluble in phase β, the small droplets will be 

protected against complete disappearance; a counterpart of Equation 117 can be derived: 
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where X denotes the equilibrium concentration in phase α of the component which is 

insoluble in phase β. Setting the left-hand side of Equation 119 equal to 1, one can determine 

the value X(R) needed for an emulsion droplet of radius R, surrounded by the continuous 

phase β, to coexist at equilibrium with a large (R = ∞) liquid phase α of composition X(∞). 
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5.3.1.4   Kinetics of Ostwald Ripening in Emulsions 

The Ostwald ripening is observed when the substance of the emulsion droplets (we will call it 

component 1) exhibits at least minimal solubility in the continuous phase, β. As discussed 

above, the chemical potential of this substance in the larger droplets is lower than in the 

smaller droplets, see Equation 115. Then a diffusion transport of component 1 from the 

smaller toward the larger droplets will take place. Consequently, the size distribution of the 

droplets in the emulsion will change with time. The kinetic theory of Ostwald ripening was 

developed by Lifshitz and Slyozov,152 Wagner153 and further extended and applied by other 

authors.154-157 The basic equations of this theory are the following. 

 The volume of an emulsion droplet grows (or diminishes) due to the molecules of 

component 1 supplied (or carried away) by the diffusion flux across the continuous medium. 

The balance of component 1 can be presented in the form157 

( ) ( ) ( )[ ]RctcDRVtR
td

d
eqm −= 1

3 4
3

4 ππ       (120) 

where t is time, D is the diffusivity of component 1 in the continuous phase, V1 is the volume 

per molecule of component 1, cm is the number-volume concentration of component 1 in the 

continuous medium far away from the droplets surfaces and ceq(R) is the respective 

equilibrium concentration of the same component for a droplet of radius R as predicted by the 

Gibbs-Thomson equation. Note that Equation 120 is rigorous only for a diluted emulsion, in 

which the interdroplet concentration levels off at a constant value, c = cm, around the middle 

of the space between each two droplets. Some authors155 add in the right-hand side of 

Equation 120 also terms accounting for the convective mass transfer (in the case of moving 

droplets) and thermal contribution to the growth rate. 

 Since the theory is usually applied to droplets of diameter not smaller than micrometer 

(which are observable by optical microscope), the Gibbs-Thomson equation, Equation 118, 

can be linearized to yield157 

( ) ( ) ( )kTVbRbcRceq /2,/1 1σ≡+≈ ∞       (121) 

with c∞ being the value of ceq for flat interface. With σ = 50 mN/m, V1
 = 100 Å3, and T = 25oC 

one estimates b = 2.5 nm. The latter value justifies the linearization of Gibbs-Thomson 

equation for droplets of micrometer size. 
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 Let f(R,t) be the size distribution function of the emulsion droplets such that f(R,t) dR 

is the number of particles per unit volume in the size range from R to (R + dR). The balance of 

the number of particles in the system reads 

( ) ( ) ( )dtdRfjdtjdtjdRdf dRRR ≡− + ,||=      (122) 

The term in the left-hand side of Equation 122 expresses the change of the number of droplets 

whose radius belongs to the interval [R, R + dR] during a time period dt; the two terms in the 

right-hand side represent the number of the incoming and outgoing droplets in the size 

interval [R, R + dR] during time period dt. Dividing both sides of Equation 122 by (dR dt) one 

obtains the so called continuity equation in the space of sizes:153-157 
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 One more equation is needed to determine cm. In a closed system this can be the total 

mass balance of component 1: 
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The first and the second terms in the brackets express the amount of component 1 contained 

in the continuous phase and in the droplets, respectively. This expression is appropriate for 

diluted emulsions when cm is not negligible compared to the integral in the brackets. 

 Alternatively, in opened systems and in concentrated emulsions one can use a mean 

field approximation based on Equation 121 to obtain the following equation for cm: 
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where R0 is a lower limit of the experimental distribution, typically R0
 ≈ 1 µm as smaller 

droplets cannot be observed optically. The estimates show that the neglecting of the integrals 

over the interval 0 < R < R0 in Equation 125 does not affect significantly the value of Rm. One 

sees that Equation 125 treats each emulsion droplet as being surrounded by droplets of 

average radius Rm, which provide a medium concentration cm in accordance with the Gibbs-

Thomson equation, Equation 121. From Equations 120-123 and 125 one can derive a simple 

expression for the flux j: 
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 In calculations one uses the set of Equations 120, 123 and 124 or 125 to determine the 

distribution f(R,t) at known distribution f(R,0) at the initial moment t = 0. In other words, the 

theory predicts the evolution of the system at given initial state. From a computational 

viewpoint it is convenient to calculate f(R,t) in a finite interval R0
 ≤ R < Rmax (see Figure 11). 

The problem can be solved numerically by discretization: the interval R0
 ≤ R < Rmax is 

subdivided into small portions of length δ, the integrals are transformed into sums and the 

problem is reduced to solving a linear set of equations for the unknown functions 

fk(t) ≡ f(Rk, t), where Rk
 = R0

 + kδ,  k = 1,2,... . 

 In practice, the emulsions are formed in the presence of surfactants. At concentrations 

above the critical micellization concentration (CMC) the swollen micelles can serve as 

carriers of oil between the emulsion droplets of different size. In other words, surfactant 

micelles can play the role of mediators of the Ostwald ripening. Micelle-mediated Ostwald 

ripening has been observed in solutions of nonionic surfactants.158-160  In contrast, it was 

found that the micelles do not mediate the Ostwald ripening in undecane-in-water emulsions 

at the presence of an ionic surfactant (SDS).161  It seems that the surface charge due to the 

adsorption of ionic surfactant (and the resulting double layer repulsion) prevents the contact 

of micelles with the oil drops, which is a necessary condition for micelle-mediated Ostwald 

ripening.  

 

 

 

FIGURE 11. Sketch of the droplet 
size distribution function, f(R,t) vs. 
the droplet radius R at a given 
moment t. δ is the length of the 
mesh used when solving the 
problem by discretization. 
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5.3.2    THIN LIQUID FILMS AND PLATEAU BORDERS 

5.3.2.1  Membrane and Detailed Models of a Thin Liquid Film 

Thin liquid films can be formed between two colliding emulsion droplets or between the 

bubbles in a foam. Formation of thin films accompanies the particle-particle and particle-wall 

interactions in colloids. From a mathematical viewpoint a film is thin when its thickness is 

much smaller than its lateral dimension. From a physical viewpoint a liquid film formed 

between two macroscopic phases is thin when the energy of interaction between the two 

phases across the film is not negligible. The specific forces causing the interactions in a thin 

liquid film are called surface forces. Repulsive surface forces stabilize thin films and 

dispersions, whereas attractive surface forces cause film rupture and coagulation. This section 

is devoted to the macroscopic (hydrostatic and thermodynamic) theory of thin films, while the 

molecular theory of surface forces is reviewed in Section 5.4 below.  

 In Figure 12 a sketch of plane-parallel liquid film of thickness h is presented. The 

liquid in the film contacts with the bulk liquid in the Plateau border. The film is symmetrical, 

i.e., it is formed between two identical fluid particles (drops, bubbles) of internal pressure P0. 

The more complex case of non-symmetrical and curved films is reviewed elsewhere.162-164 

 

 

 

 

 

 

 

FIGURE 12. The detailed and membrane models of a thin liquid film (on the left- and right-
hand side, respectively). 
 

 Two different, but supplementary, approaches (models) are used in the macroscopic 

description of a thin liquid film. The first of them, the "membrane approach", treats the film 

as a membrane of zero thickness and one tension, γ, acting tangentially to the membrane (see 

the right-hand side of Figure 12). In the "detailed approach", the film is modeled as a 
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homogeneous liquid layer of thickness h and surface tension σf. The pressure P0 in the fluid 

particles is larger than the pressure, Pl, of the liquid in the Plateau border. The difference 

lc PPP −= 0           (127) 

represents the capillary pressure of the liquid meniscus. By making the balance of the forces 

acting on a plate of unit width along the y-axis and height h placed normally to the film at 

−h/2 < z < h/2 (Figure 12) one derives the Rusanov165 equation: 

hPc
f += σγ 2          (128) 

Equation 128 expresses a condition for equivalence between the membrane and detailed 

models with respect to the lateral force. To derive the normal force balance one considers a 

parcel of unit area from the film surface in the detailed approach. Since the pressure in the 

outer phase P0 is larger than the pressure inside the liquid, Pl, the mechanical equilibrium at 

the film surface is ensured by the action of an additional disjoining pressure, Π(h) 

representing the surface force per unit area of the film surfaces166 

( ) cl PPPh =−=Π 0          (129) 

(see Figure 12). Note that Equation 129 is satisfied only at equilibrium; at non-equilibrium 

conditions the viscous force can also contribute to the force balance per unit film area. In 

general, the disjoining pressure, Π, depends on the film thickness, h. A typical Π(h)-isotherm 

is depicted in Figure 13 (for details see Section 5.4 below). One sees that the equilibrium 

condition, Π = Pc, can be satisfied at three points shown in Figure 13. Point 1 corresponds to a 

film, which is stabilized by the double layer repulsion; sometimes such a film is called the 

"primary film" or "common black film". Point 3 corresponds to unstable equilibrium and 

cannot be observed experimentally. Point 2 corresponds to a very thin film, which is 

stabilized by the short range repulsion; such a film is called the "secondary film" or "Newton 

black film". Transitions from common to Newton black films are often observed with foam 

films.167-170  Note that Π > 0 means repulsion between the film surfaces, whereas Π < 0 

corresponds to attraction. 
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FIGURE 13. Sketch of a disjoining pressure isotherm of the DLVO type, Π vs. h. The 
intersection points of the Π(h)-isotherm with the line Π = Pc correspond to equilibrium films: 
h = h1 (primary film), h=h2 (secondary film). Point 3 corresponds to unstable equilibrium. 
 

5.3.2.2  Thermodynamics of Thin Liquid Films 

In the framework of the membrane approach the film can be treated as a single surface phase, 

whose Gibbs-Duhem equation reads:162,171 

∑
=

Γ−−=
k

i
ii

f dTdsd
1

µγ         (130) 

where γ is the film tension, T is temperature, sf is excess entropy per unit area of the film, Γi 

and µi are the adsorption and the chemical potential of the i-th component. The Gibbs-Duhem 

equations of the liquid phase (l) and the outer phase (o) read 

oldnTdsPd i

k

i
i ,,

1
=+= ∑

=

χµχχ
νχ       (131) 

where χ
νs  and χ

in  are entropy and number of molecules per unit volume, and Pχ is pressure 

(χ = l, o). The combination of Equations 127 and 131 provides an expression for dPc. Let us 
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multiply this expression by h and to subtract the result from the Gibbs-Duhem equation of the 

film, Equation 130. The result reads: 

∑
=

Γ−+−=
k

i
iic dPdhTdsd

1

~~ µγ        (132) 

where 

kihnnhssss l
i

o
iii

lof ,...,1,)(~,)(~ =−+Γ=Γ−+= νν   (133) 

An alternative derivation of the same equations is possible.172,173  Imagine two equidistant 

planes separated at a distance h. The volume confined between the two planes is thought to be 

filled with the bulk liquid phase (l). Taking surface excesses with respect to the bulk phases 

one can derive Equations 132 and 133 with ~ and ~s iΓ  being the excess surface entropy and 

adsorption ascribed to the surfaces of this liquid layer.172,173  A comparison between 

Equations 132 and 130 shows that there is one additional differential in Equation 132. It 

corresponds to one supplementary degree of freedom connected with the choice of the 

parameter h. To specify the model one needs an additional equation to determine h. For 

example, let this equation be 

0~
1 =Γ            (134) 

Equation 134 requires h to be the thickness of a liquid layer from phase (l), containing the 

same amount of component 1 as the real film. This thickness is called the thermodynamic 

thickness of the film.173 It can be on the order of the real film thickness if component 1 is 

chosen in an appropriate way, say the solvent in the film phase. 

 From Equations 129, 132 and 134 one obtains172 

∑
=

Γ−Π+−=
k

i
ii ddhTdsd

2

~~ µγ        (135) 

A corollary of Equation 135 is the Frumkin174 equation 

h
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,...,, 2

         (136) 

Equation 136 predicts a rather weak dependence of the film tension γ on the disjoining 

pressure, Π, for equilibrium thin films (small h). By means of Equations 128 and 129 

Equation 135 can be transformed to read173 
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From Equation 137 one can derive the following useful relations172 
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( ) ( )∫
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Π+=
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lf hdhh
2
1σσ         (139) 

with σl being the surface tension of the bulk liquid. Equation 139 allows calculation of the 

film surface tension when the disjoining pressure isotherm is known. 

 Note that the above thermodynamic equations are, in fact, corollaries from the Gibbs-

Duhem equation of the membrane approach Equation 130. There is an equivalent and 

complementary approach, which treats the two film surfaces as separate surface phases with 

their own fundamental equations;165,175,176 thus for a flat symmetric film one postulates. 
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,2 µσ      (140) 

where A is area; Uf, Sf and Ni
f  are excess internal energy, entropy and number of molecules 

ascribed to the film surfaces. Compared with the fundamental equation of a simple surface 

phase,5 Equation 140 contains an additional term, ΠAdh, which takes into account the 

dependence of the film surface energy on the film thickness. Equation 140 provides an 

alternative thermodynamic definition of disjoining pressure: 
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5.3.2.3   The Transition Zone between Thin Film and Plateau Border 

5.3.2.3.1   Macroscopic description 

The thin liquid films formed in foams or emulsions exist in a permanent contact with the bulk 

liquid in the Plateau border, encircling the film. From a macroscopic viewpoint, the boundary 

between film and Plateau border is treated as a three-phase contact line: the line, at which the 

two surfaces of the Plateau border (the two concave menisci sketched in Figure 12) intersect 
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at the plane of the film (see the right-hand side of Figure 12). The angle, α0, subtended 

between the two meniscus surfaces, represents the thin film contact angle. The force balance 

at each point of the contact line is given by Equation 98 with σ12
 = γ  and σ13

 = σ23
 = σl. The 

effect of the line tension, κ, can be also taken into account. For example, in the case of 

symmetrical flat film with circular contact line, like those depicted in Figure 12, one can 

write176 

0cos2 ασκγ l

cr
=+         (142) 

where rc is the radius of the contact line. 

 There are two film surfaces and two contact lines in the detailed approach (see the 

left-hand side of Figure 12). They can be treated thermodynamically as linear phases and an 

one-dimensional counterpart of Equation 140 can be postulated:176 

hdNdLdSdTUd
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L
ii

LL τµκ +++= ∑~2       (143) 

Here UL, SL and Ni
L  are linear excesses, κ~  is the line tension in the detailed approach and 
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is a one-dimensional counterpart of the disjoining pressure (see Equation 141). The quantity 

τ, called the transversal tension, takes into account the interaction between the two contact 

lines. The general force balance at each point of the contact line can be presented in the form 

of the following vectorial sum162 

σ σ σ τi
f

i
l

i i i+ + + = =κ 0 , ,1 2       (145) 

The vectors taking part in Equation 145 are depicted in Figure 14, where σ i i cirκ κ= ~ / . For 

the case of a flat symmetric film (Figure 12) the tangential and normal projections of 

Equation 145, with respect to the plane of the film, read: 

ασκσ cos
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αστ sinl=           (147) 
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FIGURE 14. The force balance in each point of the two contact lines representing the 
boundary between a spherical film and the Plateau border (see Equation 145). 
 

Note that in general α ≠ α0 (see Figure 12). Besides, both α0 and α can depend on the radius 

of the contact line due to line tension effects. In the case of straight contact line from 

Equations 139 and 146 one derives173 
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2
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1 σσ

σα       (148) 

Since cosα ≤ 1, the surface tension of the film must be less than the bulk solution surface 

tension, σf < σl, and the integral term in Equation 148 must be negative in order for a nonzero 

contact angle to be formed. Hence, the contact angle, α, and the transversal tension, τ 

(see Equation 147), are integral effects of the long-range attractive surface forces acting in the 

transition zone between the film and Plateau border, where h > h1 (see Figure 13).  
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FIGURE 15. Sketch of the forces exerted on a fluid particle (bubble, drop, vesicle) attached 
to a solid surface: Π is disjoining pressure, τ is transversal tension, Pl is the pressure in the 
outer liquid phase. 
 

In the case of a fluid particle attached to a surface (Figure 15) the integral of the 

pressure Pl
 = P0

 − ∆ρ g z over the particle surface equals the buoyancy force, Fb, which at 

equilibrium is counterbalanced by the disjoining-pressure and transversal-tension forces:162,177 

Π+= 2
112 cbc rFr πτπ          (149) 

Fb is negligible for bubbles of diameter smaller than c.a. 300 µm. Then the forces due to τ and 

Π counterbalance each other. Hence, at equilibrium the role of the repulsive disjoining 

pressure is to keep the film thickness uniform, whereas the role of the attractive transversal 

tension is to keep the bubble (droplet) attached to the surface. In other words, the particle 

sticks to the surface at its contact line where the long-range attraction prevails (see Figure 13), 

whereas the repulsion predominates inside the film, where Π = Pc
 > 0. Note that this 

conclusion is valid not only for particle-wall attachment, but also for particle-particle 

interaction. For zero contact angle τ is also zero (Equation 147) and the particle will rebound 

from the surface (the other particle), unless some additional external force keeps it attached. 
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FIGURE 16 Liquid film between two attached fluid particles (bubbles, drops, vesicles). The 
solid lines represent the actual interfaces, whereas the dashed lines show the extrapolated 
interfaces in the transition zone between the film and the Plateau border. 

 

5.3.2.3.2   Micromechanical description 

From a microscopic viewpoint, the transition between the film surface and the meniscus is 

smooth, as depicted in Figure 16. As the film thickness increases across the transition zone, 

the disjoining pressure decreases and tends to zero at the Plateau border (see Figures 13 

and 16). Respectively, the surface tension varies from σf for the film to σl for the Plateau 

border.178,179 By using local force balance considerations, one can derive the equations 

governing the shape of the meniscus in the transition zone; in the case of axial symmetry 

(depicted in Figure 16), these equations read:179 

( ) ( ))()(sin)(1sin rhPrr
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d
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where ϕ(r) and h(r) = 2z(r) are the running meniscus slope angle and thickness of the gap. 

Equations 150 and 151 allow calculation of the three unknown functions, z(r), ϕ(r) and σ(r), 

provided that the disjoining pressure, Π(h), is known from the microscopic theory. By 

eliminating Pc between Equations 150 and 151 one can derive179 

( ) ( )rrh
zd

d ϕσ cos)(Π−=         (152) 

This result shows that the hydrostatic equilibrium in the transition region is ensured by 

simultaneous variation of σ and Π. Equation 152 represents a generalization of Equation 138 

for a film of uneven thickness and axial symmetry. Generalization of Equations 150–152 for 

the case of more complicated geometry is also available.162,163 

 For the Plateau border we have z >> h, Π→0, σ→σl = const., and both Equations 150 

and 151 reduce to Equation 101 with ∆P = Pc. The macroscopic contact angle, α, is defined as 

the angle at which the extrapolated meniscus, obeying Equation 101, meets the extrapolated 

film surface (see the dashed line in Figure 16). The real surface, shown by solid line in Figure 

16, differs from this extrapolated (idealized) profile, because of the interactions between the 

two film surfaces, which is taken into account in Equation 150, but not in Equation 101. To 

compensate for the difference between the real and idealized system, the line and transversal 

tensions are ascribed to the contact line in the macroscopic approach. In particular, the line 

tension makes up for the differences in surface tension and running slope angle:179 
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whereas τ compensates for the differences in surface forces (disjoining pressure): 
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The superscripts "real" and "idealized" in Equation 69 mean that the quantities in the 

respective parentheses must be calculated for the real and idealized meniscus profiles; the 

latter coincide for r > rB (Figure 16). Results for κ~  and τ calculated by means of Equations 

153 and 154 can be found in Reference 180. 

 In conclusion, it should be noted that the width of the transition region between a thin 

liquid film and Plateau border is usually very small178 - below 1 µm. That is why the optical 

measurements of the meniscus profile give information about the thickness of the Plateau 

border in the region r > rB (Figure 16). Then if the data are processed by means of the Laplace 

equation (Equation 101), one determines the contact angle, α, as discussed above. In spite of 

being a purely macroscopic quantity, α characterizes the magnitude of the surface forces 

inside the thin liquid film, as implied by Equation 148. This has been pointed out by 

Derjaguin181 and Princen and Mason.182 

 

5.3.2.4   Methods for Measuring Thin Film Contact Angles 

Prins183 and Clint et al.184 developed a method of contact angle measurement for macroscopic 

flat foam films formed in a glass frame in contact with a bulk liquid. They measured the jump 

in the force exerted on the film at the moment, when the contact angle is formed. Similar 

experimental setup was used by Yamanaka185 for measurement of the velocity of motion of 

the three-phase contact line. 

 An alternative method, which can be used in both equilibrium and dynamic 

measurements with vertical macroscopic films, was developed by Princen and Frankel.186,187 

They determined the contact angle from the data for diffraction of a laser beam refracted by 

the Plateau border. 

 In the case of microscopic films, especially appropriate are the interferometric 

methods: light beams reflected or refracted from the liquid meniscus interfere and create 

fringes, which in turn give information about the shape of the liquid surfaces. The fringes are 

usually formed in the vicinity of the contact line, which provides a high precision of the 

extrapolation procedure used to determine the contact angle (see Figure 16). One can 

distinguish several interference techniques depending on how the interference pattern is 
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created. In the usual interferometry the fringes are due to interference of beams reflected from 

the upper and lower meniscus. This technique can be used for contact angle measurements 

with foam films,144,188-190 emulsion films,191,192 and adherent biological cells.130 The method is 

applicable for not-too-large contact angles (α < 8° − 10°); for larger meniscus slopes the 

region of fringes shrinks and the measurements are not possible. 

 The basic principle of the differential interferometry consists of an artificial splitting 

of the original image into two equivalent and overlapping images (see Françon193 or 

Beyer194). Thus interferometric measurements are possible with meniscus surfaces of larger 

slope. The differential interferometry in transmitted light was used by Zorin et al.195,196 to 

determine the contact angles of wetting and free liquid films. This method is applicable when 

the whole system under investigation is transparent to the light. 

 Differential interferometry in reflected light allows measurement of the shape of the 

upper reflecting surface. This method was used by Nikolov et al.177,197-199 to determine the 

contact angle, film and line tension of foam films formed at the top of small bubbles floating 

at the surface of ionic and nonionic surfactant solutions. An alternative method is the 

holographic interferometry applied by Picard et al.200,201 to study the properties of bilayer 

lipid membranes in solution. Film contact angles can be also determined from the Newton 

rings of liquid lenses, which spontaneously form in films from micellar surfactant 

solutions.144 

 Contact angles can be also determined by measuring several geometrical parameters 

characterizing the profile of the liquid meniscus and processing them by using the Laplace 

equation (Equation 101).202,203  The computer technique allows processing of many 

experimental points from meniscus profile and automatic digital image analysis.  

 Contact angles of microscopic particles against another phase boundary can be 

determined interferometrically, by means of a film trapping technique (FTT).204,205 It consists 

in capturing of µm-sized particles, emulsion drops and biological cells in thinning free foam 

films or wetting films. The interference pattern around the entrapped particles allows one to 

reconstruct the meniscus shape, to determine the contact angles, and to calculate the particle-

to-interface adhesion energy.204,205 
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5.3.3     LATERAL CAPILLARY FORCES BETWEEN PARTICLES ATTACHED TO INTERFACES 

5.3.3.1  Particle-Particle Interactions 

The origin of the lateral capillary forces between particles captive at a fluid interface is the 

deformation of the interface, which is supposed to be flat in the absence of particles. The 

larger the interfacial deformation, the stronger the capillary interaction. It is known that two 

similar particles floating on a liquid interface attract each other206-208 (see Figure 17(a)). This 

attraction appears because the liquid meniscus deforms in such a way that the gravitational 

potential energy of the two particles decreases when they approach each other. Hence the 

origin of this force is the particle weight (including the Archimedes force). 

 A force of capillary attraction appears also when the particles (instead of being freely 

floating) are partially immersed in a liquid layer on a substrate209-211 (see Figure 17(b)). The 

deformation of the liquid surface in this case is related to the wetting properties of the particle 

surface, i.e., to the position of the contact line and the magnitude of the contact angle, rather 

than to gravity. 

 To distinguish between the capillary forces in the case of floating particles and in the 

case of partially immersed particles on a substrate, the former are called lateral flotation 

forces and the latter, lateral immersion forces.208,211 These two kinds of force exhibit similar 

dependence on the interparticle separation but very different dependencies on the particle 

radius and the surface tension of the liquid (see References 35 and 212 for comprehensive 

reviews). The flotation and immersion forces can be both attractive (Figures 17(a) and 17(b)) 

and repulsive (Figures 17(c) and 17(d)). This is determined by the signs of the meniscus slope 

angles ψ1 and ψ2 at the two contact lines: the capillary force is attractive when sinψ1 sinψ2
 > 0 

and repulsive when sinψ1 sinψ2
 < 0. In the case of flotation forces ψ > 0 for light particles 

(including bubbles) and ψ < 0 for heavy particles. In the case of immersion forces between 

particles protruding from an aqueous layer ψ > 0 for hydrophilic particles and ψ < 0 for 

hydrophobic particles. When ψ = 0 there is no meniscus deformation and, hence, there is no 

capillary interaction between the particles. This can happen when the weight of the particles 

is too small to create significant surface deformation (Figure 17(e)).  
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FIGURE 17. Flotation (a, c, e) and immersion (b, d, f) lateral capillary forces between two 
particles attached to fluid interface: (a) and (b) are two similar particles; (c) is a light and a 
heavy particle; (d) is a hydrophilic and a hydrophobic particle; (e) is small floating particles 
that do not deform the interface; (f) is small particles captured in a thin liquid film deforming 
the interfaces due to the wetting effects. 

The immersion force appears not only between particles in wetting films (Figures 17(b) (d)), 

but also in symmetric fluid films (Figure 17(f)). The theory provides the following asymptotic 

expression for calculating the lateral capillary force between two particles of radii R1 and R2 

separated by a center-to-center distance L: 35,207-212 

( ) ( )[ ]22
121 1K2 kRqOqLqQQF += σπ    rk << L    (155) 

where σ is the liquid-fluid interfacial tension, r1 and r2 are the radii of the two contact lines 

and Qk
 = rk sinψk (k = 1, 2) is the "capillary charge" of the particle;208,211 in addition 
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Here, ∆ρ is the difference between the mass densities of the two fluids, and Π′ is the 

derivative of the disjoining pressure with respect to the film thickness; K1(x) is the modified 

Bessel function of the first order. The asymptotic form of Equation 155 for qL << 1 

(q−1 = 2.7 mm for water), 

LQQF /2 21σπ=    rk << L << q−1    (157) 

looks like a two-dimensional analogue of Coulomb's law, which explains the name "capillary 

charge" of Q1 and Q2. Note that the immersion and flotation forces exhibit the same 

functional dependence on the interparticle distance, see Equations 155 and 157. On the other 

hand, their different physical origin results in different magnitudes of the "capillary charges" 

of these two kinds of capillary force. In this aspect they resemble the electrostatic and 

gravitational forces, which obey the same power law, but differ in the physical meaning and 

magnitude of the force constants (charges, masses). In the special case when R1 = R2 = R and 

rk << L << q−1 one can derive211,212 
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Hence, the flotation force decreases, while the immersion force increases, when the interfacial 

tension σ increases. Besides, the flotation force decreases much more strongly with the 

decrease of R than the immersion force. Thus Fflotation is negligible for R < 10 µm, whereas 

Fimmersion can be significant even when R = 10 nm. This is demonstrated in Figure 18 where the 

two types of capillary interaction are compared for a wide range of particle sizes. The values 

of the parameters used are: particle mass density ρp = 1.05 g/cm3, surface tension 

σ = 72 mN/m, contact angle α = 30°, interparticle distance L = 2R, and thickness of the non-

disturbed planar film l0 = R. The drastic difference in the magnitudes of the two types of 

capillary forces is due to the different deformation of the water-air interface. The small 

floating particles are too light to create substantial deformation of the liquid surface, and the 

lateral capillary forces are negligible (Figure 17(e)). In the case of immersion forces the 

particles are restricted in the vertical direction by the solid substrate. Therefore, as the film 

becomes thinner, the liquid surface deformation increases, thus giving rise to a strong 

interparticle attraction.  

As seen in Figure 18, the immersion force can be significant between particles whose 

radii are larger than few nanometers. It has been found to promote the growth of two- 
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dimensional crystals from colloid particles,213-216 viruses and globular proteins.217-223  Such 

two-dimensional crystals have found various applications: for nanolithography,224 

microcontact printing,225 as nanostructured materials in photo-electrochemical cells,226 for 

photocatalitic films,227 photo- and electro-luminescent semiconductor materials,228 as samples 

for electron microscopy of proteins and viruses,229 as immunosensors,230 etc. (for reviews see 

References 35 and 231). 

 

 

 

 

 

 

 

 

 

 

FIGURE 18. Plot of the capillary interaction energy in kT units, ∆W/kT, vs. the radius, R, of 
two similar particles separated at a center-to-center distance L = 2R.  

 In the case of interactions between inclusions in lipid bilayers (Figure 19) the 

elasticity of the bilayer interior must also be taken into account. The calculated energy of 

capillary interaction between integral membrane proteins turns out to be of the order of 

several kT.133 hence, this interaction can be a possible explanation of the observed 

aggregation of membrane proteins.133,232-234  The lateral capillary forces have been calculated 

also for the case of particles captured in a spherical (rather than planar) thin liquid film or 

vesicle.235 

 Lateral capillary forces between vertical cylinders or between spherical particles have 

been measured by means of sensitive electromechanical balance,236 piezo-transduser 

balance237 and torsion micro-balance.238 Good agreement between theory and experiment has 

been established.237,238 
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FIGURE 19. Inclusions (say, membrane proteins) in a lipid bilayer: the thickness of the 
inclusion can be greater (a) or smaller (b) than the thickness of the (nondisturbed) lipid 
bilayer. In both cases, the overlap of the deformations around the inclusions leads to an 
attraction between them (see References 35 and 133). 

 As already mentioned, the weight of µm-sized and sub-µm floating particles is not 

sufficient to deform the fluid interface and to bring about capillary force between the particles 

(Figure 17(e)). However, the situation changes if the contact line at the particle surface has 

undulated or irregular shape (Figure 20(a)). This may happen when the particle surface is 

rough, angular or heterogeneous. In such cases, the contact line sticks to an edge or to the 

boundary between two domains of the heterogeneous surface. The undulated contact line 

induces undulations in the surrounding fluid interface.231,239-241  Let z = ζ(x, y) be the equation 

describing the interfacial shape around such isolated particle. Using polar coordinates (r, ϕ) in 

the xy-plane, one can express the interfacial shape as a Fourier expansion: 

ζ(r,ϕ) = ∑
∞

=

−

1m

mr (Am cos mϕ + Bm sin mϕ)      (159) 

where r is the distance from the particle centre, Am and Bm are coefficients. In analogy with 

electrostatics, Equation 159 can be interpreted as a multipole expansion: the terms with m = 1, 

2, 3, ... , play the role of capillary “dipoles”, “quadrupoles”, “hexapoles”, etc.231,240,241  The 

term with m = 0 (capillary “charge”) is missing since there is no axisymmetric contribution to 

the deformation (negligible particle weight). Moreover, the dipolar term with m = 2 is also 

absent because it is annihilated by a spontaneous rotation of the floating particle around a 

horizontal axis.240 Therefore, the leading term becomes the quadrupolar one, with m = 2. The 

interaction between capillary quadrupoles has been investigated theoretically.240,241 This 

interaction is non-monotonic: attractive at long distances, but repulsive at short distances. 

Expressions for the rheological properties (surface dilatational and shear elasticity and yield 

stress) of Langmuir monolayers from angular particles have been derived.35,241 “Mesoscale” 



 
71

capillary multipoles have been experimentally realized by Bowden et al.,242,243 by appropriate 

hydrophobization or hydrophilization of the sides of floating plates. 

 

 

 

 

 

 

FIGURE 20. Special types of immersion capillary forces: (a) The contact line attachment to 
an irregular edge on the particle surface produces undulations in the surrounding fluid 
interface, which give rise to lateral capillary force between the particles. (b) When the size of 
particles, entrapped in a liquid film, is much greater than the non-perturbed film thickness, the 
meniscus surfaces meet at a finite distance, rp; in this case, the capillary interaction begins at 
L ≤ 2rp. 

 At last, let us consider another type of capillary interactions – between particles 

surrounded by finite menisci. Such interactions appear when µm-sized or sub-µm particles are 

captured in a liquid film of much smaller thickness (Figure 20(b)).244-247  If such particles are 

approaching each other, the interaction begins when the menisci around the two particles 

overlap, L < 2rp in Figure 20(b). The capillary force in this case is non-monotonic: initially 

the attractive force increases with the increase of interparticle distance, then it reaches a 

maximum and further decays.247  In addition, there are hysteresis effects: the force is different 

on approach and separation at distances around L = 2rp.247 

 

5.3.3.2  Particle-Wall Interactions 

The overlap of the meniscus around a floating particle with the meniscus on a vertical wall 

gives rise to a particle-wall interaction, which can be both repulsive and attractive. An 

example for a controlled meniscus on the wall is shown in Figure 21, where the "wall" is a 

hydrophobic Teflon barrier whose position along the vertical can be precisely varied and 

adjusted. 

 Two types of boundary conditions at the wall are analyzed theoretically:35,248 fixed 

contact line (Figure 21) or, alternatively, fixed contact angle. In particular, the lateral 
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capillary force exerted on the particle depicted in Figure 21 is given by the following 

asymptotic expression:35,248 

( )[ ]xqQeHreHQqF qxqx
1

2
222 K22 −+−= −−σπ      (160) 

Here, Q2 and r2 are the particle capillary charge and contact line radius, H characterizes the 

position of the contact line on the wall with respect to the nondisturbed horizontal liquid 

surface (Figure 21); x is the particle-wall distance; q is defined by Equation 156 (thick films). 

The first term in the right-hand side of Equation 160 expresses the gravity force pushing the 

particle to slide down over the inclined meniscus on the wall; the second term originates from 

the pressure difference across the meniscus on the wall; the third term expresses the so-called 

capillary image force, that is the particle is repelled by its mirror image with respect to the 

wall surface.35,248 

 

 

 

 

 

 

 

 

 

FIGURE 21. Experimental setup for studying the capillary interaction between a floating 
particle (1) and a vertical hydrophobic plate (2) separated at a distance, x. The edge of the 
plate is at a distance, H, lower than the level of the horizontal liquid surface far from the 
plate; (3) and (4) are micrometric table and screw (see References 249 and 250 for details). 

 Static249 and dynamic250 measurements with particles near walls have been carried out. 

In the static measurements the equilibrium distance of the particle from the wall (the distance 

at which F = 0) has been measured and a good agreement with the theory has been 

established.249 
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 In the dynamic experiments250 knowing the capillary force F (from Equation 160), and 

measuring the particle velocity, x& , one can determine the drag force, Fd: 

xfRFFxmF ddd &&& 26, ηπ≡−=       (161) 

where R2, m and x&&  are the particle radius, mass and acceleration, η is the viscosity of the 

liquid and fd is the drag coefficient. If the particle were in the bulk liquid, fd would be equal to 

1 and Fd would be given by the Stokes formula. In general, fd differs from unity because the 

particle is attached to the interface. The experiment250 gives fd varying between 0.68 and 0.54 

for particle contact angle varying from 49° to 82°; the data are in good quantitative agreement 

with the hydrodynamic theory of the drag coefficient.251 In other words, the less the depth of 

particle immersion, the less the drag coefficient, as could be expected. However, if the 

floating particle is heavy enough, it deforms the surrounding liquid surface; the deformation 

travels together with the particle, thus increasing fd several times.250 The addition of surfactant 

strongly increases fd. The latter effect can be used to measure the surface viscosity of 

adsorption monolayers from low molecular weight surfactants,252 which is not accessible to 

the standard methods for measurement of surface viscosity. 

 In the case of protein adsorption layers, the surface elasticity is so strong that the 

particle (Figure 21) is arrested in the adsorption film. Nevertheless, with heavier particles and 

at larger meniscus slopes, it is possible to break the protein adsorption layer. Based on such 

experiments, a method for determining surface elasticity and yield stress has been 

developed.253 

 

5.4  SURFACE FORCES 

5.4.1  DERJAGUIN APPROXIMATION 

The excess surface free energy per unit area of a plane-parallel film of thickness h is14,254 

( ) ( )∫
∞

Π=
h

dhhhf          (162) 

where, as before, Π denotes disjoining pressure. Derjaguin255 derived an approximate 
formula, which expresses the energy of interaction between two spherical particles of radii R1 
and R2 through integral of f(h): 
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Here h0 is the shortest distance between the surfaces of the two particles (see Figure 22). In 
the derivation of Equation 163 it is assumed that the interaction between two parcels from the 
particle surfaces, separated at the distance h, is approximately the same as that between two 
similar parcels in a plane-parallel film. This assumption is correct when the range of action of 
the surface forces and the distance h0 are small compared to the curvature radii R1 and R2. It 
has been established, both experimentally34 and theoretically,256 that Equation 163 provides a 
good approximation in the range of its validity. 

 

 

 

 

 

 

 

 

 

FIGURE 22. Two spherical particles of radii R1 and R2; the shortest and the running surface-
to-surface distances are denoted by h0 and h, respectively. 

 Equation 163 can be generalized for smooth surfaces of arbitrary shape (not 
necessarily spheres). For that purpose, the surfaces of the two particles are approximated with 
paraboloids in the vicinity of the point of closest approach (h = h0). Let the principle 
curvatures at this point be c1 and 1c′  for the first particle, and c2 and 2c′  for the second 

particle. Then the generalization of Equation 163 reads:254 

∫
∞

=
0

)(2)( 0
h

dhhf
C

hU π         (164) 

( ) ( ) ωω 2
2121

2
21212211 cossin ccccccccccccC ′+′+′′++′+′≡  

where ω is the angle subtended between the directions of the principle curvatures of the two 
approaching surfaces. For two spheres one has 222111 /1,/1 RccRcc =′==′= , and Equation 

164 reduces to Equation 163. 
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 For two cylinders of radii r1 and r2 crossed at angle ω one has c1 = c2 = 0; 11 /1 rc =′ , 

22 /1 rc =′  and Equation 164 yields 
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∞
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hU
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π
        (165) 

Equation 165 is often used in connection to the experiments with the surface force 
apparatus,34,257 in which the interacting surfaces are two crossed cylindrical mica sheets. The 
divergence in Equation 165 for ω = 0 reflects the fact that the axes of the two infinitely long 
cylinders are parallel for ω = 0 and thus the area of the interaction zone becomes infinite. 

 The main features of the Derjaguin approximation are the following: (1) It is 
applicable to any type of force law (attractive, repulsive, oscillatory), if the range of the forces 
is much smaller than the particles radii and (2) It reduces the problem for interactions between 
particles to the simpler problem for interactions in plane-parallel films. 

 

5.4.2  VAN DER WAALS SURFACE FORCES 

The van der Waals interaction between molecules i and j obeys the law: 

( ) 6r
ru ij

ij
α

−=           (166) 

where uij is the potential energy of interaction, r is the distance between the two molecules, 
and αij is a constant characterizing the interaction. In fact, the van der Waals forces represent 
an averaged dipole-dipole interaction, which is a superposition of three main terms: 
(1) orientation interaction: interaction between two permanent dipoles;258 (2) induction 
interaction: interaction between one permanent dipole and one induced dipole;259 
(3) dispersion interaction: interaction between two induced dipoles.260 The theory yields:34 
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where pi and αi0 are molecular dipole moment and electronic polarizability; hp is the Planck 
constant; and νi is the orbiting frequency of the electron in the Bohr atom. 

 For van der Waals interactions between molecules in a gas phase, the orientation 
interaction can yield from 0% (nonpolar molecules) up to 70% (molecules of large permanent 
dipole moment, like H2O) of the value of αij; the contribution of the induction interaction in 
αij is usually low, about 5 to 10%; the contribution of the dispersion interaction might be 
between 24% (water) and 100% (nonpolar hydrocarbons); for numerical data, see 
Reference 34. 
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 According to the microscopic theory by Hamaker,261 the van der Waals interaction 
between two macroscopic bodies can be found by integration of Equation 166 over all 
couples of molecules, followed by subtraction of the interaction energy at infinite separation 
between the bodies. The result depends on the geometry of the system. For a plane-parallel 
film from component 3 located between two semiinfinite phases composed from components 
1 and 2, the van der Waals interaction energy per unit area and the respective disjoining 
pressure, stemming from Equation 166, are:261 

3
Hvw

vw2
H

vw 6
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π

−=−=Π−=      (168) 

where, as usual, h is the thickness of the film and AH is the compound Hamaker constant:14 

( )3,2,1,,2
23131233H ==−−+= jiAAAAAA ijjiij αρρπ   (169) 

Aij is the Hamaker constant of components i and j; ρi and ρj are the molecular number 
densities of phases i and j built up from components i and j, respectively. If Aii and Ajj are 
known, one can calculate Aij by using the Hamaker approximation 

( ) 2/1
jjiiij AAA =          (170) 

In fact, Equation 170 is applicable to the dispersion contribution in the van der Waals 
interaction.34  

 When components 1 and 2 are identical, AH is positive (see Equation 169), therefore, 
the van der Waals interaction between identical bodies, in any medium, is always attractive. 
Besides, two dense bodies (even if nonidentical) will attract each other when placed in 
medium 3 of low density (gas, vacuum). When the phase in the middle (component 3) has 
intermediate Hamaker constant between those of bodies 1 and 2, AH can be negative and the 
van der Waals disjoining pressure can be repulsive (positive). Such is the case of an aqueous 
film between mercury and gas.262 

 Lifshitz et al.263,264 developed an alternative approach to the calculation of the 
Hamaker constant AH in condensed phases, called the macroscopic theory. The latter is not 
limited by the assumption for pairwise additivity of the van der Waals interaction (see also 
References 34, 254 and 265). The Lifshitz theory treats each phase as a continuous medium 
characterized by a given uniform dielectric permittivity, which is dependent on the frequency, 
ν, of the propagating electromagnetic waves. For the symmetric configuration of two identical 
phases “i” interacting across a medium “j”, the macroscopic theory provides the expression34  
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where εi and εj are the dielectric constants of phases i and j; ni and nj are the respective 
refractive indices for visible light; as usual, hp is the Planck constant; νe is the main electronic 

absorption frequency which is 15100.3 ×≈ Hz for water and the most organic liquids.34 The 

first term in the right-hand side of Equation 171, )0( =ν
ijiA , is the so called zero-frequency term, 

expressing the contribution of the orientation and induction interactions. Indeed, these two 
contributions to the van der Waals force represent electrostatic effects. Equation 171 shows 

that the zero-frequency term can never exceed 4
3 kT ≈ 3 × 10−21 J.  The last term in 

Equation 171, )0( >ν
ijiA , accounts for the dispersion interaction. If the two phases, i and j, have 

comparable densities (as for emulsion systems, say oil-water-oil), then )0( >ν
ijiA  and )0( =ν

ijiA  are 

comparable by magnitude. If one of the phases, i or j, has a low density (gas, vacuum), one 

obtains )0( >ν
ijiA >> )0( =ν

ijiA . In the latter case, the Hamaker's microscopic approach may give 

comparable )0( >ν
ijiA  and )0( =ν

ijiA  in contradiction to the Lifshitz macroscopic theory, which is 

more accurate for condensed phases.  

 A geometrical configuration, which is important for disperse systems, is the case of 
two spheres of radii R1 and R2 interacting across a medium (component 3). Hamaker261 has 
derived the following expression for the van der Waals interaction energy between two 
spheres: 
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where 

1/,2/ 1210 ≤== RRyRhx        (173) 

and h0 is the same as in Figure 22. For x << 1 Equation 172 reduces to 

( ) 0

H

21

21H
0 12

2
112

)(
h

A
RR
RR

xy
yA

hU
π

π
+

−=
+

−≈       (174) 

Equation 174 can be also derived by combining Equation 168 with the Derjaguin 
approximation (Equation 163). It is worthwhile noting, that the logarithmic term in 
Equation 172 can be neglected only if x << 1. For example, even when x = 5 × 10−3, the 
contribution of the logarithmic term amounts to about 10% of the result (for y = 1); 
consequently, for larger values of x this term must be retained. 
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FIGURE 23. Thin film of radius r and 
thickness h formed between two attached 
fluid particles; the spherical part of the 
particle surface has radius Rs. 

 

 Another geometrical configuration, which corresponds to two colliding deformable 
emulsion droplets, is sketched in Figure 23. In this case the interaction energy is given by the 
expression266 
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where h and r are the thickness and the radius of the flat film formed between the two 
deformed drops, respectively. Rs is the radius of the spherical part of the drop surface (see 
Figure 23). Equation 175 is a truncated series expansion; the exact formula, which is more 
voluminous, can be found in Reference 266. Expressions for U for other geometrical 
configurations are also available.35,265 

 The asymptotic behavior of the dispersion interaction at large intermolecular 
separations does not obey Equation 166; instead uij

 ∝ 1/r7 due to the electromagnetic 
retardation effect established by Casimir and Polder.267 Various expressions have been 
proposed to account for this effect in the Hamaker constant.265 

 The orientation and induction interactions are electrostatic effects, so they are not 
subjected to electromagnetic retardation. Instead, they are subject to Debye screening due to 
the presence of electrolyte ions in the liquid phases. Thus for the interaction across an 
electrolyte solution the screened Hamaker constant is given by the expression34,268 

d
h AeAhA += − κκ 2

0H 2         (176) 
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where A0 denotes the contribution of orientation and induction interaction into the Hamaker 
constant and Ad is the contribution of the dispersion interaction; κ is the Debye screening 
parameter: κ = κc I1/2 (see Equation 34). 

 

5.4.3     ELECTROSTATIC SURFACE FORCES 

5.4.3.1  Two Identically Charged Planes 

First we consider the electrostatic (double layer) interaction between two identical charged 
plane parallel surfaces across solution of symmetrical Z:Z electrolyte. The charge of a 
counterion (i.e., ion with charge opposite to that of the surface) is −Ze, whereas the charge of 
a coion is +Ze (Z = ±1, ±2, ...) with e being the elementary charge. If the separation between 
the two planes is very large, the number concentration of both counterions and coions would 
be equal to its bulk value, n0, in the middle of the film. However, at finite separation, h, 
between the surfaces the two electric double layers overlap and the counterion and coion 
concentrations in the middle of the film, n10 and n20, are no longer equal. Since the solution 
inside the film is supposed to be in electrochemical (Donnan) equilibrium with the bulk 

electrolyte solution of concentration n0, one can write269 2
02010 nnn = , or alternatively 

1020020010 /,,/ nnmmnnmnn ≡==     (177) 

As pointed out by Langmuir,270 the electrostatic disjoining pressure, Πel, can be identified 
with the excess osmotic pressure in the middle of the film: 

( ) ( )24/14/1
002010el 2 −−=−+=Π mmTknnnnTk      (178) 

Equation 178 demonstrates that for two identically charged surfaces Πel, is always positive, 
i.e., corresponds to repulsion between the surfaces. In general, one has 0 < m ≤1, because the 
coions are repelled from the film due to the interaction with the film surfaces. To find the 
exact dependence of Πel on the film thickness, h, one solves the Poisson-Boltzmann equation 
for the distribution of the electrostatic potential inside the film. The solution provides the 
following connection between Πel and h for symmetric electrolytes:254,271 

( ) θθϕκθ sin,F2,cot4 2
0el ==Π hTkn      (179) 

where F(ϕ, θ) is an elliptic integral of the first kind, and ϕ is related with θ as follows: 

cosϕ = (cotθ)/sinh(ZΦs / 2)  (fixed surface potential Φs)   (180) 

tanϕ = (tanθ)sinh(ZΦ∞ / 2)  (fixed surface charge σs)   (181) 



 
80

Tk
e

Tk
eZ

Z s
s

s ψ
κεε

σ
≡Φ








+=Φ∞ ,

2
11)(cosh

2

0
     (182) 

Here, Φs is the dimensionless surface potential and Φ∞ is the value of Φs for h → ∞. 
Equation 179 expresses the dependence Πel(h) in a parametric form: Πel(θ), h(θ). Fixed 
surface potential or charge means that Φs or σs does not depend on the film thickness h. The 
latter is important to be specified when integrating Π(h) or f(h) (in accordance with Equations 
162 to 165) to calculate the interaction energy. 

 In principle, it is possible neither the surface potential nor the surface charge to be 
constant.272 In such case a condition for charge regulation is applied, which in fact represents 
the condition for dynamic equilibrium of the counterion exchange between the Stern and 
diffuse parts of the electric double layer. As discussed in Section 5.2.1.2.3, the Stern layer 
itself can be considered as a Langmuirian adsorption layer of counterions. One can relate the 
maximum possible surface charge density (due to all surface ionizable groups) to Γ1 in 
Equation 47: σmax = ZeΓ1. Likewise, the effective surface charge density, σs, which is smaller 
by magnitude than σmax (because some ionizable groups are blocked by adsorbed counterions) 
can be expressed as σs = Ze(Γ1 − Γ2). Then, with the help of Equation 44, the Stern isotherm 
(Equation 47) can be represented in the form 
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The product ZΦs is always positive. At high surface potential, ZΦs → ∞, from Equation 183 
one obtains σs → σmax , that is no blocking of surface ionizable by adsorbed counterions. 

 When the film thickness is large enough (κh ≥ 1) the difference between the regimes 
of constant potential, constant charge and charge regulation becomes negligible, i.e., the 
usage of each of them leads to the same results for Πel(h).14 

 When the dimensionless electrostatic potential in the middle of the film 
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is small enough (the film thickness, h, is large enough), one can suppose that Φm
 ≈ 2Φ1(h/2), 

where Φ1 is the dimensionless electric potential at a distance h/2 from the surface (of the film) 
when the other surface is removed at infinity. Since 

( ) ( )4/tanhe42/ 4/
1 s

h ZhZ Φ=Φ −κ        (185) 

from Equations 178, 184 and 185 one obtains a useful asymptotic formula273 
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It is interesting to note, that when Φs is large enough, the hyperbolic tangent in Equation 186 
is identically 1, and Πel (as well as fel) becomes independent of the surface potential 
(or charge). Equation 186 can be generalized for the case of 2:1 electrolyte (bivalent 
counterion) and 1:2 electrolyte (bivalent coion):274 
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where n(2) is the concentration of the bivalent ions, the subscript "i:j" takes value "2:1" or 
"1:2", and 

( )[ ] ( )[ ]3/1e2ln,e21/3ln 2:11:2 +=+= ΦΦ− ss vv     (188) 

 

5.4.3.2   Two Nonidentically Charged Planes 

Contrary to the case of two identically charged surfaces, which always repel each other (see 
Equation 178), the electrostatic interaction between two plane-parallel surfaces of different 
potentials, ψs1 and ψs2, can be either repulsive or attractive.254,275 Here, we will restrict our 
considerations to the case of low surface potentials, when the Poisson-Boltzmann equation 
can be linearized. In spite of being not too general quantitatively, this case exhibits 
qualitatively all features of the electrostatic interaction between different surfaces. 

 If ψs1 = const., and ψs2 = const., then the disjoining pressure at constant surface 
potential reads:254 
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When the two surface potentials have opposite signs, i.e., when ψψψ el21 ,0 Π<ss  is negative 

for all h and corresponds to electrostatic attraction (see Figure 24(a)). This result could have 
been anticipated, since two charges of opposite sign attract each other. More interesting is the 
case, when ψs1ψs2 > 0, but ψs1 ≠ ψs2. In the latter case, the two surfaces repel each other for 
h > h0, whereas they attract each other for h < h0 (Figure 24(a)); h0 is determined by the 
equation ( ) .;/ln 12120 ssssh ψψψψκ >=  In addition, the electrostatic repulsion has a 

maximum value of: 
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FIGURE 24. Electrostatic disjoining pressure at (a) fixed surface potential, ψ
elΠ , and 

(b) fixed surface charge density, σ
elΠ , both of them plotted vs. the film thickness h. ψs1 and 

ψs2 are the potentials of the two surfaces; σs1 and σs2 are the respective surface charge 
densities. 

 Similar electrostatic disjoining pressure isotherm has been used to interpret the 

experimental data for aqueous films on mercury.147 It is worthwhile noting, that ( )maxel
ψΠ  

depends only on ψs1, i.e., the maximum repulsion is determined by the potential of the surface 
of lower charge. 

 If σs1 = const., and σs2 = const., then instead of Equation 189 one has254 
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When σ1σ2 > 0 Equation 191 yields 0el >Πσ  for every h (see Figure 24(b)). However, when 

σ1σ2 < 0, σ
elΠ  is repulsive for small thickness, h < h0 and attractive for larger separations, 

h > h0; h0 is determined by the equation ( ) .;/ln 12120 ssssh σσσσκ >−=  The electrostatic 

disjoining pressure in this case has a minimum value 
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 Finally, it should be noted, that all curves depicted in Figures 24(a) and (b) decay 
exponentially at h→∞. An asymptotic expression for Z:Z electrolytes, which generalizes 
Equation 186, holds:254,273 

( ) 2,1,
4

tanh,e64 210el =







≡=Π − k

Tk
eZ

Tknh sk
k

h ψ
γγγ κ    (193) 

Equation 193 is valid for both low and high surface potentials, if only exp(−κh) << 1. 

 

5.4.3.3   Two Charged Spheres 

When the electric double layers are thin compared with the particle radii (κ−1 << R1, R2) and 
the gap between the particles is small (h0 << R1, R2), one can use Equation 193 in conjunction 
with the Derjaguin approximation, Equations 162 and 163. The result for the energy of 
electrostatic interaction between two spheres reads: 
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Equation 194 is valid for any surface potentials ψs1 and ψs2 but only for exp(κh) >> 1. 
Complementary expressions, which are valid for every h << R1,R2, but for small surface 
potentials, can be derived by integrating Equations 189 and 191, instead of Equation 193. In 
this way, for ψs1 = const. and ψs2 = const., one can derive:276 
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or alternatively, for σs1 = const. and σs2 = const. one obtains277 
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The range of validity of the different approximations involved in the derivations of 
Equations 194 to 196 is discussed in the book of Russel et al.278 

 As mentioned above, Equations 194 to 196 hold for h0 << R. In the opposite case, 
when h0 is comparable to or larger than the particle radius R, one can use the equation14 

0e
2

4
)(

0

22
0

0el
hs

hR
R

hU κψπεε −

+
=         (197) 

stemming from the theory of Debye and Hückel279 for two identical particles. Equation 197 
was derived by using the superposition approximation (valid for weak overlap of the two 
electric double layers) and the linearized Poisson-Boltzmann equation. A simple approximate 
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formula, representing in fact interpolation between Equations 197 and 195 (the latter for 
R1 = R2 = R), has been derived by McCartney and Levine280 
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Equation 198 has the advantage to give a good approximation for every h0 provided that the 
Poisson-Boltzmann equation can be linearized. Similar expressions for the energy of 
electrostatic interaction between two deformed droplets or bubbles (Figure 23) can be 
derived.266 

 

5.4.4    DLVO  THEORY 

The first quantitative theory of interactions in thin liquid films and dispersions is the DLVO 
theory called after the names of the authors: Derjaguin and Landau281 and Verwey and 
Overbeek.273 In this theory, the total interaction is supposed to be a superposition of van der 
Waals and double layer interactions. In other words, the total disjoining pressure and the total 
interaction energy are presented in the form: 

elvwelvw , UUU +=Π+Π=Π       (199) 

A typical curve, Π vs. h, exhibits a maximum representing a barrier against coagulation, and 
two minima, called primary and secondary minimum (see Figure 13); the U vs. h curve has a 
similar shape. The primary minimum appears if strong short-range repulsive forces 
(e.g., steric forces) are present. With small particles, the depth of the secondary minimum is 
usually small (Umin < kT). If the particles cannot overcome the barrier, coagulation 
(flocculation) does not take place, and the dispersion is stable due to the electrostatic 
repulsion, which gives rise to the barrier. With larger colloidal particles (R > 0.1 µm) the 
secondary minimum could be deep enough to cause coagulation and even formation of 
ordered structures of particles.282 

 By addition of electrolyte or by decreasing the surface potential of the particles, one 
can suppress the electrostatic repulsion and thus decrease the height of the barrier. According 
to DLVO theory, the critical condition determining the onset of rapid coagulation is 
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where h = hmax denotes the position of the barrier. 



 
85

 By using Equation 174 for Uvw and Equation 194 for Uel one derives from Equations 
199 and 200 the following criterion for the threshold of rapid coagulation of identical 
particles (R1 = R2 = R;  γ1 = γ2 = γ): 
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For a Z:Z electrolyte, substituting κ2 = (2Z2e2n0)/(ε0εkT) into Equation 201, one obtains: 
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When ψs is high enough, the hyperbolic tangent equals 1 and Equation 202 yields 
n0(critical) ∝ Z−6 which is, in fact, the empirical rule established earlier by Schulze283 and 
Hardy.284 

 

5.4.5   NON-DLVO SURFACE FORCES 

After 1980, a number of surface forces have been found out which are not taken into account 
by conventional DLVO theory. They are considered separately below. 

5.4.5.1   Ion Correlation Forces 

As shown by Debye and Hückel,279 due to the strong electrostatic interaction between the ions 
in a solution, the positions of the ions are correlated in such a way that a counterion 
atmosphere appears around each ion, thus screening its Coulomb potential. The energy of 
formation of the counterion atmospheres gives a contribution to the free energy of the system 
called correlation energy.23 The correlation energy affects also a contribution to the osmotic 
pressure of the electrolyte solution, which can be presented in the form23 

π
κ

24

2

1
osm

kTnkT
k

i
i −=Π ∑

=

        (203) 

The first term in the right-hand side of the Equation 117 corresponds to an ideal solution, 
whereas the second term takes into account the effect of electrostatic interactions between the 
ions (the same effect is accounted for thermodynamically by the activity coefficient, see 
Equation 31). 

 The expression for Πel in the DLVO theory (Equation 178) obviously corresponds to 
an ideal solution, the contribution of the ionic correlations being neglected. Hence, in a more 
general theory, instead of Equation 199 one writes: 

corelvw Π+Π+Π=Π         (204) 
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where Πcor is the contribution of the ionic correlations to the disjoining pressure. The theory 
of Πcor takes into account the following effects: (1) the different ionic concentration (and 
hence the different Debye screening) in the film compared to that in the bulk solution; (2) the 
energy of deformation of the counterion atmosphere due to the image forces; (3) the energy of 
the long-range correlations between charge-density fluctuations in the two opposite electric 
double layers. For calculating Πcor both numerical solutions285,286 and analytical 
expressions287,288 have been obtained. For example, in the case when the electrolyte is 
symmetrical (Z:Z) and exp(−κh) << 1 one can use the asymptotic formula287 
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where Πel is the conventional DLVO electrostatic disjoining pressure, 
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 The results for the case of symmetric electrolytes are the following. Πcor is negative 
and corresponds to attraction, which can be comparable by magnitude with Πvw. In the case of 
1:1 electrolyte Πcor is usually small correction to Πel. In the case of 2:2 electrolyte, however, 
the situation can be quite different: the attractive forces, Πcor + Πvw, prevails over Πel and the 
total disjoining pressure, Π, becomes negative. The effect of Πcor is even larger in the 
presence of ions of higher valence. Thus, the ion-correlation attraction could be the 
explanation for the sign inversion of the second virial coefficient, β2, of micellar surfactant 
solutions (from β2 > 0 to β2 < 0, measured by light scattering) when the Na+ ions are replaced 
by Al3+ ions at fixed total ionic strength (see Figure 31 in Reference 289). Short-range net 
attractive ion-correlation forces have been measured by Marra290,291 and Kjellander et al.292,293 
between highly charged anionic bilayer surfaces in CaCl2 solutions. These forces are believed 
to be responsible for the strong adhesion of some surfaces (clay and bilayer membranes) in 
the presence of divalent counterions.34,292,294 On the other hand, Kohonen et al.295 measured a 
monotonic repulsion between two mica surfaces in 4.8 × 10−3 M solution of MgSO4. 
Additional work is necessary to verify the theoretical predictions and to clarify the physical 
significance of the ion-correlation surface force. 
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 Note that the theory predicts ion-correlation attraction not only across water films with 
overlapping electric double layers, but also across oily films intervening between two water 
phases. In the latter case, Πcor is not zero because the ions belonging to the two outer double 
layers interact across the thin dielectric (oil) film. The theory for such a film296 predicts that 
Πcor is negative (attractive) and strongly dependent on the dielectric permittivity of the oil 
film; Πcor can be comparable by magnitude with Πvw; Πel = 0 in this case. 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 25. Polymeric chains adsorbed at an interface: (a) terminally anchored polymer 
chain of mean end-to-end distance L; (b) a brush of anchored chains; (c) adsorbed (but not 
anchored) polymer coils; (d) configuration with a loop, trains and tails; (e) bridging of two 
surfaces by adsorbed polymer chains. 

 

5.4.5.2     Steric Interaction 

5.4.5.2.1  Physical background 

The steric interaction between two surfaces appears when chain molecules, attached at some 
point(s) to a surface, dangle out into the solution (see Figure 25). When two such surfaces 
approach each other, the following effects take place:34,297-299  (1) The entropy decreases due 
to the confining of the dangling chains which results in a repulsive osmotic force known as 
steric or overlap repulsion. (2) In a poor solvent, the segments of the chain molecules attract 
each other; hence the overlap of the two approaching layers of polymer molecules will be 
accompanied with some intersegment attraction; the latter can prevail for small overlap, 
however at the distance of larger overlap it becomes negligible compared with the osmotic 
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repulsion. (3) Another effect, known as the bridging attraction, occurs when two opposite 
ends of chain molecule can attach (adsorb) to the opposite approaching surfaces, thus forming 
a bridge between them (see Figure 25(e)). 

 Steric interaction can be observed in foam or emulsion films stabilized with nonionic 
surfactants or with various polymers, including proteins. The usual nonionic surfactants 
molecules are anchored (grafted) to the liquid interface by their hydrophobic moieties. When 
the surface concentration of adsorbed molecules is high enough, the hydrophilic chains are 
called to form a brush (Figure 25(b)). The coils of macromolecules, like proteins, can also 
adsorb at a liquid surface (Figure 25(c)). Sometimes the configurations of the adsorbed 
polymers are very different from the statistical coil: loops, trains, and tails can be 
distinguished (Figure 25(d)). 

 The osmotic pressure of either dilute or concentrated polymer solutions can be 
expressed in the form:300 
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       (206) 

Here N is the number of segments in the polymer chain, n is the number segment density, v 
and w account for the pair and triplet interactions, respectively, between segments. In fact, 
v and w are counterparts of the second and third virial coefficients in the theory of imperfect 
gases;11  v and w can be calculated if information about the polymer chain and the solvent is 
available:278 

( )χ21,/ 2/1
A
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where v  (m3/kg) is the specific volume per segment, m (kg/mol) is the molecular weight per 
segment, NA is the Avogadro number and χ is the Flory parameter. The latter depends on both 
the temperature and the energy of solvent-segment interaction. Then, v can be zero 
(see Equation 207) for some special temperature, called the theta temperature. The solvent at 
the theta temperature is known as the theta solvent or ideal solvent. The theta temperature in 
polymer solutions is a counterpart of the Boil temperature in imperfect gases: this is the 
temperature at which the intermolecular (intersegment) attraction and repulsion are exactly 
counterbalanced. In a good solvent, however, the repulsion due mainly to the excluded 
volume effect dominates the attraction and v > 0. In contrast, in a poor solvent the 
intersegment attraction prevails, so v < 0. 

5.4.5.2.2 Thickness of the polymer adsorption layer 

The steric interaction between two approaching surfaces appears when the film thickness 
becomes of the order of, or smaller than 2L where L is the mean-square end-to-end distance of 
the hydrophilic portion of the chain. If the chain was entirely extended, then L would be equal 



 
89

to Nl with l being the length of a segment; however, due to the Brownian motion L < Nl. For 
an anchored chain, like that depicted in Figure 25(a), in a theta solvent, L can be estimated 
as:278 

NlLL ≡≈ 0          (208) 

In a good solvent L > L0, whereas in a poor solvent L < L0. In addition, L depends on the 
surface concentration, Γ, of the adsorbed chains, i.e., L is different for an isolated molecule 
and for a brush (see Figures 25(a) and (b)). The mean field approach278,301 applied to polymer 
solutions provides the following equation for calculating L 
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where vL ~and~,~
Γ  are the dimensionless values of L, Γ and v defined as follows: 

( ) lNvvlwNNlLL /~,/~,/~ 2/3Γ=Γ=Γ=      (210) 

For an isolated adsorbed molecule )0~( =Γ  in an ideal solvent ( )0~ =v  Equation 209 predicts 

1~ =L , i.e., L = L0. 

5.4.5.2.3    Overlap of adsorption layers 

We now consider the case of terminally anchored chains, like those depicted in Figures 25(a) 
and (b). Dolan and Edwards302 calculated the steric interaction free energy per unit area, f, as 
a function on the film thickness, h, in a theta solvent: 
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where L0 is the end-to-end distance as defined by Equation 208. The boundary between the 

power-law regime (f ∝ 1/h2) and the exponential decay regime is at h = L0 3 ≈ 1.7 L0, the 

latter being slightly less than 2L0, which is the intuitively expected onset of the steric overlap. 
The first term in the right-hand side of Equation 211 comes from the osmotic repulsion 
between the brushes, which opposes the approach of the two surfaces; the second term is 
negative and accounts effectively for the decrease of the elastic energy of the initially 
extended chains when the thickness of each of the two brushes, pressed against each other, 
decreases. 
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 In the case of good solvent the disjoining pressure Π = −df/dh can be calculated by 
means of Alexander-de Gennes theory as:303,304 
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where Lg is the thickness of a brush in a good solvent.305 The positive and the negative terms 
in the right-hand side of Equation 213 correspond to osmotic repulsion and elastic attraction. 
The validity of Alexander-de Gennes theory was experimentally confirmed by Taunton 
et al.306 who measured the forces between two brush layers grafted on the surfaces of two 
crossed mica cylinders. 

 In the case of adsorbed molecules, like these in Figure 25(c), which are not anchored 
to the surface, the measured surface forces depend significantly on the rate of approaching of 
the two surfaces.307,308 The latter effect can be attributed to the comparatively low rate of 
exchange of polymer between the adsorption layer and the bulk solution. This leads to a 
hysteresis of the surface force: different interaction on approach and separation of the two 
surfaces.34 In addition, one can observe two regimes of steric repulsion: (1) weaker repulsion 
at larger separations due to the overlap of the tails (Figure 25(d)) and (2) stronger repulsion at 
smaller separations indicating overlap of the loops.309 

 

5.4.5.3    Oscillatory Structural Forces 

5.4.5.3.1  Origin of the structural forces 

Oscillatory structural forces appear in two cases: (1) in thin films of pure solvent between two 
smooth solid surfaces; (2) in thin liquid films containing colloidal particles (including 
macromolecules and surfactant micelles). In the first case, the oscillatory forces are called the 
solvation forces;34,310 they are important for the short-range interactions between solid 
particles and dispersions. In the second case, the structural forces affect the stability of foam 
and emulsion films as well as the flocculation processes in various colloids. At higher particle 
concentrations, the structural forces stabilize the liquid films and colloids.311-315 At lower 
particle concentrations, the structural forces degenerate into the so called depletion attraction, 
which is found to destabilize various dispersions.316,317 

 In all cases, the oscillatory structural forces appear when monodisperse spherical (in 
some cases ellipsoidal or cylindrical) particles are confined between the two surfaces of a thin 
film. Even one “hard wall” can induce ordering among the neighboring molecules. The 
oscillatory structural force is a result of overlap of the structured zones at two approaching 
surfaces.318-321  A simple connection between density distribution and structural force is given 
by the contact value theorem:34,321,322 
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( ) ( ) ( )[ ]∞−=Π ss nhnkThos         (214) 

where Πos is the disjoining pressure component due to the oscillatory structural forces, ns(h) is 
the particle number density in the subsurface layer as a function of the distance between the 
walls, h. Figure 26 illustrates the variation of ns with h and the resulting disjoining pressure, 
Πos. One sees that in the limit of very small separations, as the last layer of particles is 
eventually squeezed out, ns → 0 and 

( ) ( ) 0foros →∞−→Π hnkTh s        (215) 

In other words, at small separations Πos is negative (attractive). Equation 215 holds for both 
solvation forces and colloid structural forces. In the latter case, Equation 215 represents the 
osmotic pressure of the colloid particles and the resulting attractive force is known as the 
depletion force (Section 5.4.5.3.3 below). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 26. (a) Sketch of the consecutive stages of the thinning of a liquid film containing 
spherical particles; (b) plot of the related oscillatory structural component of disjoining 
pressure, Πos, vs. the film thickness h (see Reference 34 for details). 
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FIGURE 27. Dimensionless oscillatory disjoining pressure, Πosd3/kT, plotted vs. h/d. The 
solid curve calculated from Equation 216 is compared to the theories by Henderson323 (the 
dotted curve), Kjellander and Sarman326 (the dashed curve), and Karlström329 (the x points). 
(From Kralchevsky, P.A. and Denkov, N.D., Chem. Phys Lett., 240, 385, 1995. With 
permission.) 

 It is worthwhile noting that the wall can induce structuring in the neighboring fluid 
only if the magnitude of the surface roughness is negligible compared with the particle 
diameter, d. Indeed, when surface irregularities are present, the oscillations are smeared out 
and oscillatory structural force does not appear. If the film surfaces are fluid, the role of the 
surface roughness is played by the interfacial fluctuation capillary waves, whose amplitude 
(usually between 1 and 5 Å) is comparable to the diameter of the solvent molecules. That is 
why oscillatory solvation forces (due to structuring of solvent molecules) are observed only 
with liquid films, which are confined between smooth solid surfaces.34 In order for structural 
forces to be observed in foam or emulsion films, the diameter of the colloidal particles must 
be much larger than the amplitude of the surface corrugations.315 

 The period of the oscillations is, in fact, always about the particle diameter.34,315 In 
this aspect, the structural forces are appropriately called the "volume exclusion forces" by 
Henderson,323 who derived an explicit (though rather complex) formula for calculating these 
forces. 

 A semiempirical formula for the oscillatory structural component of disjoining 
pressure was proposed324 
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where d is the diameter of the hard spheres, d1 and d2 are the period and the decay length of 
the oscillations which are related to the particle volume fraction, φ, as follows324 
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Here ∆φ = φmax − φ with φmax = π/( 23 ) being the value of φ at close packing. P0 is the 
particle osmotic pressure determined by means of Carnahan-Starling formula325 

( ) 33

32

0
6,

1
1

d
nkTnP

π
φ

φ
φφφ

=
−

−++
=      (218) 

where n is the particle number density. It is clear that for h < d, when the particles are 
expelled from the slit into the neighboring bulk suspension, Equation 216 describes the 
depletion attraction. On the other hand, for h > d the structural disjoining pressure oscillates 
around P0 as defined by Equation 218 in agreement with the finding of Kjellander and 
Sarman.326 The finite discontinuity of Πos at h = d is not surprising as, at this point, the 
interaction is switched over from oscillatory to depletion regime. 

 It is interesting to note that in an oscillatory regime the concentration dependence of 
Πos is dominated by the decay length d2 in the exponent (see Equations 216 and 217). 
Roughly speaking, for a given distance h, the oscillatory disjoining pressure Πos increases five 
times when φ is increased 10%.324 

 The contribution of the oscillatory structural forces to the interaction free energy per 
unit area of the film can be obtained by integrating Πos: 
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 It should be noted that Equations 216 and 219 refer to hard spheres of diameter d. In 
practice, however, the interparticle potential can be “soft” because of the action of some long-
range forces. If such is the case, one can obtain an estimation of the structural force by 
introducing an effective hard-core diameter314 
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where β2 is the second virial coefficient in the virial expansion of the particle osmotic 
pressure: Posm/(nkT) = 1 + β2n/2+ ... .  When the particles are ionic surfactant micelles (or 
other electrically charged particles), the diameter of the effective hard sphere can be 
approximated as d ≈ dH + 2κ−1, where the Debye screening length κ−1, involves contributions 
from both the background electrolyte and the counterions dissociated from the 
micelles:312,313,327,328  
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2
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Here, dH is the micelle hydrodynamic diameter (usually measured by dynamic light 
scattering); as before, CMC stands for the critical micellization concentration, Cs is the total 
concentration of ionic surfactant; Ia is the ionic strength due to added inorganic electrolyte (if 
any), and αd is the degree of ionization of the micelle surface ionizable groups (non-
neutralized by bound counterions).  

 In Figure 27 a curve calculated from Equation 216 is compared with the predictions of 
other studies. The dotted line is calculated by means of the Henderson theory.323 The 
theoretical curve calculated by Kjellander and Sarman316 for φ = 0.357 and h > 2 by using the 
anisotropic Percus-Yevick approximation is shown by the dashed line; the crosses represent 
grand canonical Monte Carlo simulation results due to Karlström.329 We proceed now with 
separate descriptions of solvation, depletion and colloid structural forces. 

5.4.5.3.2   Oscillatory solvation forces 

When the role of hard spheres, like those depicted in Figure 26, is played by the molecules of 
solvent, the resulting volume exclusion force is called the oscillatory solvation force, or 
sometimes when the solvent is water, oscillatory hydration force.34 The latter should be 
distinguished from the monotonic hydration force, which has different physical origin and is 
considered separately in Section 5.4.5.4 below. 

 Measurement of the oscillatory solvation force became possible after the precise 
surface force apparatus had been constructed.34 This apparatus allowed to measure the surface 
forces in thin liquid films confined between mica (or modified mica) surfaces and in this way 
to check the validity of the DLVO theory down to thickness of about 5 Å and even smaller. 
The experimental results with non-aqueous liquids of both spherical (CCl4) or cylindrical 
(linear alkanes) molecules showed that at larger separations the DLVO theory is satisfied, 
whereas at separations on the order of several molecular diameters an oscillatory force is 
superimposed over the DLVO force law. In aqueous solutions, oscillatory forces were 
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observed at higher electrolyte concentrations with periodicity of 0.22 to 0.26 nm, about the 
diameter of the water molecule.34 As mentioned above, the oscillatory solvation forces can 
exist only between smooth solid surfaces. 

 

 

 

 

 

 

 

 

 

FIGURE 28. Overlap of the depletion zones around two particles of diameter D separated at 
a surface-to-surface distance h0; the smaller particles have diameter d. 

5.4.5.3.3   Depletion forces 

Bondy330 observed coagulation of rubber latex in presence of polymer molecules in the 
disperse medium. Asakura an Oosawa316 published a theory, which attributed the observed 
interparticle attraction to the overlap of the depletion layers at the surfaces of two 
approaching colloidal particles (see Figure 28). The centers of the smaller particles, of 
diameter, d, cannot approach the surface of a bigger particle (of diameter D) at a distance 
shorter than d/2, which is the thickness of the depletion layer. When the two depletion layers 
overlap (Figure 28), some volume between the large particles becomes inaccessible for the 
smaller particles. This gives rise to an osmotic pressure, which tends to suck out the solvent 
between the bigger particles, thus forcing them against each other. The total depletion force 
experienced by one of the bigger particles is316 

( )0dep hSnkTF −=          (222) 

where the effective depletion area is 
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Here, h0 is the shortest distance between the surfaces of the larger particles, and n is the 
number density of the smaller particles. By integrating Equation 222 one can derive an 
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expression for the depletion interaction energy between the two larger particles, Udep(h0). For 
D >> d this expression reads: 

( ) ( ) dhhd
d
DkThU ≤≤−−≈ 0

2
030dep 0

2
3/ φ     (224) 

where φ = πnd3/6 is the volume fraction of the small particles. The maximum value of Udep at 
h0 = 0 is ( ) ( )dDkTU 2/3/0dep φ−≈ . For example, if D/d = 50 and φ = 0.1, then Udep(0) 

= 7.5 kT. This depletion attraction turns out to be large enough to cause flocculation in 
dispersions. De Hek and Vrij317 studied systematically the flocculation of sterically stabilized 
silica suspensions in cyclohexane by polystyrene molecules. Patel and Russel331 investigated 
the phase separation and rheology of aqueous polystyrene latex suspensions in the presence of 
polymer (Dextran T-500). The stability of dispersions is often determined by the competition 
between electrostatic repulsion and depletion attraction.332 An interplay of steric repulsion 
and depletion attraction was studied theoretically by van Lent et al.333 for the case of polymer 
solution between two surfaces coated with anchored polymer layers. Joanny et al.334 and 
Russel et al.278 re-examined the theory of depletion interaction by taking into account the 
internal degrees of freedom of the polymer molecules; their analysis confirmed the earlier 
results of Asakura and Oosawa.316 

 In the case of plane-parallel films the depletion component of disjoining pressure is 
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which is similar to Equation 215. This is not surprising because in both case we are dealing 
with the excluded volume effect. Evans and Needham335 succeeded to measure the depletion 
energy of two interacting bilayer surfaces in a concentrated Dextran solution; their results 
confirm the validity of Equation 225. 

 The depletion interaction is present always when a film is formed from micellar 
surfactant solution; the micelles play the role of the smaller particles. At higher micellar 
concentrations, the volume exclusion interaction becomes more complicated: it follows the 
oscillatory curve depicted in Figure 26. In this case only, the first minimum (that at h → 0) 
corresponds to the conventional depletion force. 

5.4.5.3.4   Colloid structural forces 

In the beginning of the 20th century, Johnott336 and Perrin337 observed that soap films 
decrease their thickness by several stepwise transitions. The phenomenon was called 
stratification. Bruil and Lyklema338 and Friberg et al.339 studied systematically the effect of 
ionic surfactants and electrolytes on the occurrence of the stepwise transitions. Keuskamp and 
Lyklema340 anticipated that some oscillatory interaction between the film surfaces must be 
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responsible for the observed phenomenon. Kruglyakov et al.341,342 reported the existence of 
stratification with emulsion films. 

 The experimental results obtained called for some theoretical interpretation. Some 
authors342,343 suggested that a possible explanation of the phenomenon can be the formation of 
lamella liquid-crystal structure inside the film. Such lamellar micelles are observed to form in 
surfactant solutions, but at concentrations much higher than those used in the experiments 
with stratifying films. The latter fact makes the lamella-liquid-crystal explanation 
problematic. Nikolov et al.311,312,344 observed stratification not only with micellar surfactant 
solutions but also with latex suspensions. The heights of the step-wise changes in the film 
thickness were approximately equal to the diameter of the spherical particles, contained in the 
foam film.311-315,345 

 The experimental observations show that stratification is always observed when 
spherical colloidal particles are present in the film at a sufficiently high volume fraction; 
therefore, a realistic explanation can be that the stepwise transitions are manifestations of the 
oscillatory structural forces. The role of the “hard spheres” this time is played by the colloidal 
particles rather than by the solvent molecules. The mechanism of stratification was studied 
theoretically in Reference 346, where the appearance and expansion of black spots in the 
stratifying films were described as being a process of condensation of vacancies in a colloid 
crystal of ordered micelles within the film. 

 Two pronounced effects with stratifying films deserve to be mentioned: (1) The 
increase of electrolyte ionic strength, Ia, leads to smoother and faster thinning of the foam 
films from ionic surfactant solutions. When Ia becomes high enough, the stepwise transitions 
disappear.312 This can be explained by suppression of the oscillatory structural forces due to 
decrease of the effective micelle volume fraction because of shrinkage of the counterion 
atmospheres (see Equation 221). (2) In the case of nonionic surfactant micelles, an increase of 
temperature leads to a similar effect - disappearance of the stepwise character of the film 
thinning.314 This can be attributed to the change of the intermicellar interaction from being 
repulsive to being attractive with an increase of temperature.347 The electrolyte and 
temperature dependence of the colloid structural forces provides a tool for the control of the 
stability of dispersions. 

 Oscillatory structural forces due to micelles328 and microemulsion droplets348 were 
directly measured by means of a surface force balance. The application of interference 
methods to free vertical stratifying films, containing 100 nm latex particles, showed that the 
particles form a colloid crystal structure of hexagonal packing inside the films.349 Structuring 
of latex particles, analogous to stratification, was observed also in wetting films.350 The 
measured contact angles of stratifying emulsion films, containing surfactant micelles, were 
found to agree well with Equation 219 (see also Equation 148).192 Theoretical modeling of the 



 
98

oscillatory force and the stepwise film thinning by means of the integral equations of 
statistical mechanics351 and numerical simulations352,353 has been carried out. 

 

5.4.5.4  Repulsive Hydration and Attractive Hydrophobic Forces 

These two surface forces are observed in thin aqueous films. Their appearance is somehow 
connected with the unique properties of the water as solvent: small molecular size, large 
dipole moment, high dielectric constant, and formation of an extensive hydrogen-bonding 
network.34,354 

5.4.5.4.1   Repulsive hydration forces 

In their experiments with films from aqueous electrolyte solutions confined between two mica 
surfaces, Israelachvili et al.355,356 and Pashley357,358 examined the validity of the DLVO theory 
at small film thickness. At electrolyte concentrations below 10−4 mol/l (KNO3 or KCl), they 
observed the typical DLVO maximum (see Figure 13); however, at electrolyte concentrations 
higher than 10−3 mol/l they did not observe the expected DLVO maximum and primary 
minimum. Instead a strong short-range repulsion was detected. Empirically, this force, called 
the hydration repulsion, appears to follow an exponential law34 

( ) 0/
0hydr

λhefhf −=          (226) 

where the decay length λ0 ≈ 0.6–1.1 nm for 1:1 electrolytes and f0 depends on the hydration of 
the surfaces but is usually about 3 to 30 mJ/m2. 

 The physical importance of the hydration force is that it stabilizes some dispersions 
preventing coagulation in the primary minimum. It is believed that the hydration force is 
connected with the binding of strongly hydrated ions at the interface. This is probably the 
explanation of the experimental results of Healy et al.,359 who found that even high electrolyte 
concentrations cannot cause coagulation of amphoteric latex particles due to binding of 
strongly hydrated Li+ ions at the particle surfaces. If the Li+ ions are replaced by weakly 
hydrated Cs+ ions, the hydration repulsion becomes negligible, compared with the van der 
Waals attraction, and the particles coagulate as predicted by the DLVO theory. Hence, the 
hydration repulsion can be regulated by ion exchange. 

 For the time being, there is no generally accepted theory of the repulsive hydration 
forces. The first quantitative theory by Marčelja and Radič360 attributes the hydration 
repulsion to the water structuring in the vicinity of a surface, which leads to the appearance of 
a decaying polarization profile. This model was further developed by other authors361,362. 
A different approach was proposed by Jönsson and Wennerström,363 who developed an 
explicit electrostatic model based on the image charge concept. Leikin and Kornyshev364 
combined the main features of the solvent polarization360 and image charge363 models in a 



 
99

nonlocal electrostatic theory of the repulsion between electroneutral lipid bilayers. On the 
other hand, Israelachvili and Wennerström365 demonstrated that the short-range repulsion 
between lipid membranes may also be a manifestation of undulation, peristaltic and 
protrusion forces, which are due to thermally excited fluctuations at the interfaces (see the 
next section). 

 In the case of charged surfaces, Henderson and Losada-Cassou366 pointed out that the 
physical origin of the hydration repulsion can be attributed to the presence of a layer of lower 
dielectric constant, ε, in the vicinity of the interface. It was demonstrated that the DLVO 
theory complemented with such a layer correctly predicts the dependence of hydration 
repulsion on the electrolyte concentration. A further extension of this approach was given by 
Basu and Sharma,367 who incorporated the effect of the variation of ε in the theory of 
electrostatic disjoining pressure. Their model provides quantitative agreement with the 
experimental data at low electrolyte concentration and pH, and qualitative agreement at 
higher electrolyte concentration and pH. 

 A further development of the theory368 demonstrates that if the theory of Basu and 
Sharma367 is further extended by taking into account the finite size of the ions, then 
quantitative agreement between theory and experiment can be achieved for all electrolyte 
concentrations and pH. In summary, the hydration repulsion can be attributed to the interplay 
of the following two effects, which are neglected in the conventional DLVO theory. 

 The effect of the dielectric saturation is due to the presumed preferential alignment of 
the solvent dipoles near a charged surface. From the viewpoint of the macroscopic continuum 
theory, this effect is represented by a reduced dielectric permittivity, ε, in the vicinity of the 
interface.367,368 One can use the Booth369 formula to relate ε with the intensity of the electric 
field, E = |dψ/dx|: 
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where nr = 1.33 is the refractive index of water, εb is the bulk dielectric constant (for E = 0) 
and µ = 1.85 × 10−18 CGSE units is the dipole moment of water. Equation 227 is used by Basu 
and Sharma367 to calculate the hydration repulsion. However, it turns out that the finite size of 
the ions also gives a considerable contribution to the hydration repulsion. 

 The volume excluded by the ions becomes important in relatively thin films, insofar as 
the counterion concentration is markedly higher in the vicinity of a charged surface. This 
effect was taken into account368 by means of the Bikerman equation:370,371 
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Here, x is the distance to the charged surface; ni and Ui are, respectively, the number density 
and the potential energy (in kT units) of the i-th ion in the double electric layer; ni0 is the 
value of ni in the bulk solution; the summation is carried out over all ionic species; v is the 
average excluded volume per counterion and can be theoretically estimated368 as being equal 
to 8 times the volume of the hydrated counterion. 

 The electrostatic boundary problem accounting for the effects of dielectric saturation 
and ionic excluded volume can be formulated as follows.368 The electric potential in the film, 
ψ(x), satisfies the Poisson equation 
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where ε is given by Equation 227 and the surface charge density, ρ(x), is determined from 
Equation 228: 

( )
∑∑

∑
+

≡
+

=

k
k

i
i

i
i

i

ii
i

i

n
n

n
Un

UneZ
x

0

0*
*

*

v1
,

expv1

exp
ρ      (230) 

The potential energy Ui accounts for both the mean-field electrostatic energy and the energy 
of hydration367 
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where di is the diameter of the i-th ion. The boundary condition of the charged surface reads: 
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where σs is determined by the Stern isotherm, Equation 183. The boundary problem 
(Equations 229 to 232) can be solved numerically. Then, the total electrostatic disjoining 
pressure can be calculated by means of the expression368 
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where the subscript "m" denotes values of the respective variables at the midplane of the film. 
Finally, the non-DLVO hydration force can be determined as an excess over the conventional 
DLVO electrostatic disjoining pressure: 

DLVO
el

tot
elhr Π−Π≡Π          (234) 

where DLVO
elΠ  is defined by Equation 178, which can be deduced from Equation 233 for 

v → 0 and ε ≡ εb. Note that both the effect of v ≠ 0 and ε ≠ εb lead to a larger value of ψm, 
which contributes to a positive (repulsive) Πhr. 

 The theory368 based on Equations 227 to 234 gives an excellent numerical agreement 
with the experimental data of Pashley,357,358 Claesson et al.372 and Horn et al.373 An 
illustration is given in Figure 29, where v is equal to 8 times the volume of the hydrated Na+ 

ion. In all cases, acceptable values of the adjustable parameters, σmax and Φa = )0(
2µ∆−  in the 

Stern isotherm are obtained (see Equations 49 and 183). It is interesting to note that in all 
investigated cases the effect of v ≠ 0 gives about 4 times larger contribution in Πhr compared 
to the effect of ε ≠ εb. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 29. Comparison of theory368 with experimental data357 measured with solution of 
5 mM NaCl at pH = 6.3 between mica surfaces: the total interaction free energy, 
f = fvw + fel + fhr, is plotted against the film thickness h (see Equations 162 and 233). The solid 
line is the best fit calculated with adsorption energy Φa = −5.4 kT per Na+ ion, and area per 
surface ionizable group 0.714 nm2. 
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5.4.5.4.2   Hydrophobic attraction 

The water does not spread spontaneously on hydrocarbons and the aqueous films on 
hydrocarbons are rather unstable.374 The cause for these effects is a strong attractive 
hydrophobic force, which is found to appear in aqueous films in contact with hydrophobic 
surfaces. The experiments showed, that the nature of the hydrophobic surface force is 
different from the van der Waals and double layer interactions.375-379 It turns out that the 
hydrophobic interaction decays exponentially with the increase of the film thickness, h. The 
hydrophobic free energy per unit area of the film can be described by means of the equation34 

0/
chydrophobi 2 λγ hef −−=         (235) 

where typically γ = 10–50 mJ/m2, and λ0 = 1–2 nm in the range 0 < h < 10 nm. Larger decay 
length, λ0 = 12–16 nm, was reported by Christenson et al.379 for the range 20 < h < 90 nm. 
This amazingly long-range attraction entirely dominates the van der Waals forces. In 
particular, it can create rupture of foam films containing small oil droplets or larger 
hydrophobic surfaces. Ducker et al.380 measured the force between hydrophobic and 
hydrophilic silica particles and air bubbles by means of an atomic force microscope. 

 It was found experimentally that 1:1 and 2:2 electrolytes reduce considerably the long-
range part of the hydrophobic attraction.378,379 The results suggest that this reduction is due to 
ion adsorption or ion exchange at the surfaces rather than to the presence of electrolyte in the 
solution itself. Therefore, the physical implication (which might seem trivial) is that the 
hydrophobic attraction across aqueous films can be suppressed by making the surfaces more 
hydrophilic. Besides, some special polar solutes are found to suppress the hydrophobic 
interaction at molecular level in the bulk solution, e.g., urea, (NH2)2CO, dissolved in water 
can cause proteins to unfold. The polar solutes are believed to destroy the hydrogen-bond 
structuring in water; therefore they are sometimes called chaotropic agents.34  

 There is no generally accepted explanation of hydrophobic forces. Nevertheless, many 
authors agree that hydrogen bonding in water and other associated liquids is the main 
underlying factor.34,381 One possible qualitative picture of the hydrophobic interaction is the 
following. If there were no thermal motion, the water molecules would form an ice-like 
tetrahedral network with four nearest neighbors per molecule (instead of 12 neighbors at close 
packing), since this configuration is favored by the hydrogen-bond formation. However, due 
to the thermal motion a water molecule forms only about 3 to 3.5 transient hydrogen-bonds 
with its neighbors in the liquid382 with lifetime of a hydrogen-bond being about 10−11 sec. 
When a water molecule is brought in contact with a non-hydrogen-bonding molecule or 
surface, the number of its possible favorable configurations is decreased. This effect also 
reduces the number of advantageous configurations of the neighbors of the subsurface water 
molecules and some ordering propagates in the depth of the liquid. This ordering might be 
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initiated by the orientation of the water dipoles at a water-air or water-hydrocarbon interface, 
with the oxygen atom being oriented toward the hydrophobic phase.383-386 Such ordering in 
the vicinity of the hydrophobic wall is entropically unfavorable. When two hydrophobic 
surfaces approach each other, the entropically unfavored water is ejected into the bulk, 
thereby reducing the total free energy of the system. The resulting attraction can in principle 
explain the hydrophobic forces. However, the existing theory381 is still far from quantitative 
explanation for the experimental data. 

Another hypothesis for the physical origin of the hydrophobic force considers a 
possible role of formation of gaseous capillary bridges between the two hydrophobic surfaces 
(see Figure 9(a)).34,387,388  In this case, the hydrophobic force would be a kind of capillary-
bridge force (see Chapter 11 in Reference 35). Such bridges could appear spontaneously, by 
nucleation (spontaneous dewetting), when the distance between the two surfaces becomes 
smaller than a certain threshold value, of the order of several hundred nanometers. Gaseous 
bridges could appear even if there is no dissolved gas in the water phase; the pressure inside a 
bridge can be as low as the equilibrium vapor pressure of water (23.8 mm Hg at 25°C) owing 
to the high interfacial curvature of nodoid-shaped bridges (see Section 5.3.1.2.3 and 
Reference 35). A number of studies389-397 provide evidence in support of the capillary-bridge 
origin of the long-range hydrophobic surface force. In particular, the observation of “steps” in 
the experimental data was interpreted as an indication for separate acts of bridge 
nucleation.393 

In summary, it is more likely that two different effects are called hydrophobic 
interaction: (1) the known molecular hydrophobic effect34,398 which could bring about a 
relatively short-range attractive surface force,381,399 and (2) formation of capillary bridges-
cavities between two hydrophobic surfaces.387-397 For the time being, there are sufficiently 
evidences showing that both effects exist in reality, often in interplay with each other. 

 

5.4.5.5   Fluctuation Wave Forces 

All fluid interfaces, including liquid membranes and surfactant lamellas, are involved in a 
thermal fluctuation wave motion. The configurational confinement of such thermally exited 
modes within the narrow space between two approaching interfaces gives rise to short-range 
repulsive surface forces, which are considered below. 

5.4.5.5.1   Undulation forces 

The undulation force arises from the configurational confinement related to the bending mode 
of deformation of two fluid bilayers. This mode consists in undulation of the bilayer at 
constant bilayer area and thickness (Figure 30(a)). Helfrich et al.400,401 established that two 
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such bilayers, apart at a mean distance h, experience a repulsive disjoining pressure given by 
the expression: 
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where kt is the bending elastic modulus of the bilayer as a whole. The experiment402 and the 
theory35,133 show that kt is of the order of 10−19 J for lipid bilayers. The undulation force has 
been measured, and the dependence Πund ∝ h−3 confirmed experimentally.403-405 

 

FIGURE 30. Surface forces due 
to configurational confinement of 
thermally exited modes into a 
narrow region of space between 
two approaching interfaces: 
(a) bending mode of membrane 
fluctuations giving rise to the 
undulation force; (b) squeezing 
mode of membrane fluctuations 
producing the peristaltic force; (c) 
fluctuating protrusion of adsorbed 
amphiphilic molecules engender-
ing the protrusion surface force. 

 

 

 

5.4.5.5.2   Peristaltic force 

The peristaltic force365 originates from the configurational confinement related to the 
peristaltic (squeezing) mode of deformation of a fluid bilayer (Figure 30(b)). This mode of 
deformation consists in fluctuation of the bilayer thickness at fixed position of the bilayer 
midsurface. The peristaltic deformation is accompanied with extension of the bilayer surfaces. 
Israelachvili and Wennerstöm365 demonstrated that the peristaltic disjoining pressure is 
related to the stretching modulus, ks, of the bilayer: 
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The experiment406 gives values of ks varying between 135 and 500 mN/m, depending on 
temperature and composition of the lipid membrane. 

 

5.4.5.6   Protrusion Force 

Due to the thermal motion, the protrusion of an amphiphilic molecule in an adsorption 
monolayer (or micelle) may fluctuate about the equilibrium position of the molecule 
(Figure 30(c)). In other words, the adsorbed molecules are involved in a discrete wave 
motion, which differs from the continuous modes of deformation considered above. Anianson 
et al.407,408 analyzed the energy of protrusion in relation to the micelle kinetics. These authors 
assumed the energy of molecular protrusion to be of the form u(z) = αz, where z is the 
distance out of the surface (z > 0) and determined α ≈ 3 × 10−11 J/m for single-chained 
surfactants. The average length of the Brownian protrusion of the amphiphilic molecules is on 
the order of λ ≡ kT/α.365 

 By using a mean-field approach Israelachvili and Wennerström365 derived the 
following expression for the protrusion disjoining pressure which appears when two 
protrusion zones overlap (Figure 30(c)): 
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where λ is the characteristic protrusion length; λ = 0.14 nm at 25°C for surfactants with 
paraffin chain; Γ denotes the number of protrusion sites per unit area. Note that Πprotr decays 
exponentially for h >> λ, but Π protr ∝ h−1 for h < λ, i.e., Πprotr is divergent at h → 0. The 
respective interaction free energy (per unit film area) is 
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 Equation 238 was found to fit well experimental data for the disjoining pressure of 
liquid films stabilized by adsorbed protein molecules: bovine serum albumin (BSA).409 In that 
case, Γ was identified with the surface density of the loose secondary protein adsorption 
layer, while λ turned out to be about the size of the BSA molecule.409 
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