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Abstract

The surfactant transfer in micellar solutions includes transport of all types of aggregates and the exchange of monomers between them. Such

processes are theoretically described by a system containing tens of kinetic equations, which is practically inapplicable. For this reason, one of the

basic problems of micellar kinetics is to simplify the general set of equations without loosing the adequacy and correctness of the theoretical

description. Here, we propose a model, which generalizes previous models in the following aspects. First, we do not use the simplifying

assumption that the width of the micellar peak is constant under dynamic conditions. Second, we avoid the use of the quasi-equilibrium

approximation (local chemical equilibrium between micelles and monomers). Third, we reduce the problem to a self-consistent system of four

nonlinear differential equations. Its solution gives the concentration of surfactant monomers, total micelle concentration, mean aggregation

number, and halfwidth of the micellar peak as functions of the spatial coordinates and time. Further, we check the predictions of the model for the

case of spatially uniform bulk perturbations (such as jumps in temperature, pressure or concentration). The theoretical analysis implies that the

relaxations of the three basic parameters (micelle concentration, mean aggregation number, and polydispersity) are characterized by three different

characteristic relaxation times. Two of them coincide with the slow and fast micellar relaxation times, which are known in the literature. The third

time characterizes the relaxation of the width of the micellar peak (i.e. of the micelle polydispersity). It is intermediate between the slow and fast

relaxation times, in the case of not-too-low micellar concentrations. For low micelle concentrations, the third characteristic time is close to the fast

relaxation time. Procedure for obtaining the exact numerical solution of the problem is formulated. In addition, asymptotic analytical expressions

are derived, which compare very well with the exact numerical solution. In the second part of this study, the obtained set of equations is applied for

theoretical modeling of surfactant adsorption from micellar solutions under various dynamic conditions, corresponding to specific experimental

methods.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In the present series of two articles, we address some

unsolved problems in the theory of adsorption from micellar

surfactant solutions. In general, the diffusion and convective

transport of monomers and aggregates is accompanied by

release or uptake of monomers by the micelles. The first

models of micellar kinetics in spatially uniform solutions have

been developed by Kresheck et al. [1], and Aniansson and Wall

[2]. The model [2] provides explanations of the main

experimental facts, so that it is generally accepted and used

as a basis for further developments. In subsequent studies, it

was upgraded and applied to interpret experimental results for

various micellar systems [3–11]. Detailed reviews on micellar

kinetics and dynamic surface tension have been recently

published by Noskov and Grigoriev [12] and Noskov [13].

The first theoretical model of surfactant adsorption from

micellar solutions was proposed by Lucassen [14] and applied

to interpret the tensiometric data from experimental methods

with oscillating surface area [14,15]. This model uses the

simplifying assumptions that the micelles are monodisperse,

and that the micellization happens as a single step, which is

described as a reversible reaction of order n (n is the micelle

aggregation number). This nonlinear problem was linearized

for the case of small perturbations [14]. Later, Miller [16]

solved numerically the nonlinear problem using the assumption

for monodisperse micelles. An alternative approach to the

nonlinear problem, based on the von Karman’s method in

hydrodynamics, was proposed in [17]. A linearized model was

developed by Fainerman [18] and applied to interpret dynamic

surface tension data [19–21]. Joos and co-authors [22–25]

developed a model, which is based on the assumption for local

quasi-equilibrium between monodisperse micelles and mono-

mers. More realistic models of the diffusion in micellar

solutions, which account for the polydispersity of the micelles

and for the multi-step character of the micellar process, was

developed independently by Noskov [26], Johner and Joanny

[27], and Dushkin et al. [28,29]. Shah and coworkers

investigated the effect of the micellar kinetics on the foaminess

of surfactant solutions, and its scientific and technological

significance [30–32].
Despite the advance in this field, some unsolved questions

remain. In the case, when the deviations from equilibrium are

not small, the available theories are using unjustifiable

assumptions and are describing the kinetics of adsorption only

in a limited number of situations [13]. In addition, depending

on the used experimental method and specific surfactant, the

measured experimental dynamic surface tension of micellar

solutions follows different functional dependencies: inverse

square root of time [21–23], or exponential decay [25,33,34].

Although some encouraging steps in theory have been made

[23,25,33,34], a general theoretical picture is still missing, and

it is not clear why different functional dependencies are

observed under different experimental conditions. An addi-

tional challenge to the theory comes from the necessity to

interpret the data for the dynamic surface tension of micellar

solutions measured by different experimental methods [35],

such as the maximum bubble pressure tensiometry [21,36,37],

the inclined plate method [25,33], the dynamic drop volume

method [22,23], the stripe method [24,25], the oscillatory

methods [14,15], the overflowing cylinder method [38,39], etc.

In an attempt to resolve a part of the above problems, here

we present a general derivation of the mass balances in a

micellar solution avoiding most of the approximations and

simplifying assumptions used in previous studies. First, a

basic system of four nonlinear mass-balance equations is

derived for multi-step micellization (Section 2). We do not use

the simplifying assumption for constant width of the micellar

peak and, in the general case we do not linearize the equations

for small perturbations. The linearized equations are derived in

Section 3, as a special case.

The model is further applied to analyze the evolution of a

micellar system, which is subjected to spatially uniform

perturbations. As a result, we arrive at the non-trivial

conclusion that there are three (rather than two) micelle

relaxation times (Section 4). The third characteristic time

describes the relaxation of the width of the micellar peak. Its

existence is not in conflict with the previous works on micellar

relaxation kinetics. From the viewpoint of applications, the

measurement of the third characteristic time would allow one to

determine the rate constant of the fast micellization process. At

the next step, in the second part of this study [40] we apply the



Fig. 1. Sketch of the typical size distribution of aggregates in a surfactant

solution; cs and s are the aggregate concentration and aggregation number; Xo

Xr and Xm are, respectively, the regions of oligomers, rare aggregates and

abundant micelles; no and nr represent boundaries between the regions; s =m

corresponds to the peak in the region Xm.
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developed theoretical model to investigate the complicated

dynamics of adsorption from micellar solutions.

2. Nonlinear theory of the mass transfer in micellar

solutions

2.1. General set of equations

According to the theory by Aniansson and Wall [2], the

association and dissociation of surfactant aggregates proceeds

in unitary steps, described by the following set of reactions:

A1 þ As�1 $
kþs

k�s
As s ¼ 2; 3; 4; . . .ð Þ ð2:1Þ

Here A1 and As denote, respectively, a surfactant monomer and

an aggregate of s monomers; ks
+ and ks

� are the rate constants

of association and dissociation, respectively. The above

reaction mechanism implies the following balance equations

for the monomers and aggregates [2,26,29]:

dc1

dt
þlII1 ¼ � 2J2 �

XV
s¼3

Js ð2:2Þ

dcs

dt
þlIIs ¼ Js � Jsþ1 s ¼ 2; 3; 4; . . .ð Þ ð2:3Þ

Here, cs is the number concentration of the aggregates As

(s =1,2,3, . . .); t is time;l is the spatial gradient operator; Is is

the diffusion flux of the respective component (s =1,2, . . .); Js
is the flux due to the respective reaction (s =2,3, . . .), see Eq.

(2.7), and d /dt is the material time derivative:

d

dt
¼ B

Bt
þ vIl ð2:4Þ

v is the mean mass velocity (l Iv=0 for an incompressible

fluid). In general, the flux Is expresses the relative motion of

the component s with respect to the mean mass velocity [41]:

Isucs vs � vð Þ s ¼ 1; 2; 3; . . .ð Þ ð2:5Þ

where vs is the velocity of component s. As a next step, one

can postulate the Fick’s law of diffusion:

Is ¼ � Dslcs s ¼ 1; 2; 3; . . .ð Þ ð2:6Þ

where Ds is the diffusivity of the respective component. The

reaction flux Js accounts for the micelle association and

dissociation. In accordance with the reaction mechanism, Eq.

(2.1), this flux is given by the expression:

Jsukþs c1cs�1 � k�s cs s ¼ 2; 3; 4; . . .ð Þ ð2:7Þ

At equilibrium, all reaction fluxes, Js, are equal to zero, and

Eq. (2.7) reduces to the mass action law connecting the

respective equilibrium concentrations:

kþs
k�s

¼ cs;eq

c1;eqcs�1;eq
s ¼ 2; 3; 4; . . .ð Þ ð2:8Þ

Here and hereafter, the subscript ‘‘eq’’ denotes the equilibrium

value of the respective quantity. The balance equation for the
total amount of surfactant (the total number of surfactant

molecules per unit volume), c tot, can be obtained by

multiplying Eq. (2.3) by s, and summing up all equations for

s�1:

dctot

dt
þlIItot ¼ 0 ð2:9Þ

ctotu
XV
s¼1

scs; Itotu
XV
s¼1

sIs ð2:10Þ

where Itot is the total flux of surfactant. Note that the reaction

fluxes disappear from Eq. (2.9), which is due to the

conservation of the total number of surfactant molecules in

the system.

2.2. Real and model micelle size distributions

In the theory by Aniansson and Wall [2], the micelle size

distribution exhibits three different regions (Fig. 1): (i) Region

of the monomers and oligomers, Xo (1� s�no); (ii) Region of

the rare aggregates, Xr (no< s <nr), and (iii) Region of the

abundant micelles, Xm (s�nr). In the region Xr, the aggregate

concentration is assumed to be relatively small (Fig. 1). In the

region Xm, the peak of the micelle size distribution is usually

described by a Gaussian curve [2]:

cs ¼
Cmffiffiffiffiffiffiffiffi
2pr

p exp � s� mð Þ2

2r2

" #
s � nrð Þ ð2:11Þ

Here Cm is the total concentration of the abundant micelles; m

is their mean aggregation number; r2 is the dispersion of the

Gaussian distribution, which characterizes the polydispersity of

the abundant micelles. It is assumed that Eq. (2.11) holds under

both equilibrium and dynamic conditions. In the latter case, the

parameters in Eq. (2.11) depend on the spatial coordinate, r,

and time, t, i.e., we have: Cm(r, t), m(r, t) and r(r, t).
To determine Cm, m, and r , we will impose three

conditions for equivalence of the model Gaussian distribution,

Eq. (2.11), to the real micelle size distribution. For this goal, we

will require the zeroth, first and second moments of the size

distribution of the abundant micelles (s�nr) to be identical for



K.D. Danov et al. / Advances in Colloid and Interface Science 119 (2006) 1–164
the real and model systems. The following relations take place

(see Appendix A):

X
s�nr

cs , Cm ð2:12Þ

X
s�nr

scs ,mCm ð2:13Þ

X
s�nr

s2cs , m2 þ r2
� �

Cm ð2:14Þ

To obtain the latter three equations, we have substituted the

Gaussian distribution, Eq. (2.11), for cs, and replaced the

summation by integration (as an approximation).

To determine the functions Cm(r, t), m(r, t) and r(r, t), we
have to derive a corresponding set of equations. For this goal,

we multiply Eq. (2.3) by si, i=0,1,2, and sum up for s�nr.

Thus, with the help of Eqs. (2.12)– (2.14), we derive

(Appendix A):

dCm

dt
þlIIm;0 ¼ J ð2:15Þ

d

dt
mCmð Þ þlIIm;1 ¼ nrJ þ Jm;0 ð2:16Þ

d

dt
m2 þ r2
� �

Cm

� �
þlIIm;2 ¼ n2r J � Jm;0 þ 2Jm;1 ð2:17Þ

where we have introduced the following notations:

Im;iu
X
s�nr

siIs i ¼ 0; 1; 2;ð Þ ð2:18Þ

JuJnr ; Jm;iu
X
s>nr

siJs i ¼ 0; 1ð Þ ð2:19Þ

Here, Im,i and Jm,i are the i-th moments of the diffusion and

reaction fluxes, respectively; J is the reaction flux for s =nr (at

the boundary between the rare and abundant micelles, see Fig.

1). With the help of Eqs. (2.7) and (2.11), we obtain

(Appendix A):

Jm;0 ¼ k�mCm

c1

c1;eq
exp

r2 � r2
eq

2r4
eq

� m� meq

r2
eq

 !
� 1

" #
ð2:20Þ

Jm;1 ¼ k�mmCm

c1

c1;eq
1�

r2 � r2
eq

mr2
eq

 !"


 exp
r2 � r2

eq

2r4
eq

� m� meq

r2
eq

 !
� 1

#
ð2:21Þ

As before, the subscript ‘‘eq’’ denotes the equilibrium value

of the respective quantity. In addition, following [2] we have

assumed that the dissociation rate constant of the abundant

micelles is (approximately) the same, i.e., ks
�=km

� for s�nr.
Furthermore, applying the Fick’s law, Eq. (2.6), and using Eqs.

(2.12)–(2.14), we derive:

Im;o ¼ � DmlCm; Im;1 ¼ � Dml mCmð Þ ð2:22Þ

Im;2 ¼ � Dml m2 þ r2
� �

Cm

� �
ð2:23Þ

where we have assumed that the diffusivity of the abundant

micelles is (approximately) the same, i.e., Ds=Dm for s�nr.

Thus, Eqs. (2.15)–(2.17) become a set of three equations for

determining the parameters Cm, m, and s of the model micelle

size distribution, Eq. (2.11). To close the system of equations,

we need an additional relationship to determine the unknown

flux J. Such a relationship is derived in the following

subsection; see Eq. (2.32).

2.3. Balance equations for the monomers and oligomers

Let us multiply Eq. (2.3) by s, and sum up for 2� s <nr. In

view of Eqs. (2.2) and (2.19), we can bring the result in the

form:

d

dt
co þ crð Þ þlI Io þ Irð Þ ¼ � nrJ � Jm;0 ð2:24Þ

where

cou
Xno
s¼1

scs; cru
Xnr�1

s¼noþ1

scs ð2:25Þ

co and cr give the total number of monomers (per unit volume)

incorporated, respectively, in oligomers and rare micelles. The

diffusion fluxes in Eq. (2.24) are defined as follows:

Iou
Xno
s¼1

sIs; Iru
Xnr�1

s¼noþ1

sIs ð2:26Þ

The theory by Aniansson and Wall [2] makes use of the

following two simplifying assumptions: (i) In the oligomer

region, Xo (2� s�no), the characteristic time for monomer

release from an aggregate, 1 /ks
� , is much shorter than the

characteristic times of all other processes: convection, diffu-

sion, ‘‘fast’’ and ‘‘slow’’ micelle relaxation processes (see

Section 4). (ii) In the rare-aggregate region, Xr (no< s<nr), the

aggregate concentration is very small in comparison with the

concentrations in the other two regions (Fig. 1). The latter two

assumptions imply that for 2� s<nr the terms in the left hand

side of Eq. (2.3) are negligible (in a first approximation), which

leads to [2]:

J2 ¼ J3 ¼ . . . ¼ JnruJ ð2:27Þ

Using Eqs. (2.8) and (2.27), we succeeded to find an exact

solution of the nonlinear system of algebraic equations, Eq.

(2.7), for cs (2� s�nr), see Appendix A:

cs

cs;eq
¼ cs1

cs1;eq
� J

Xs�2

i¼0

ci1
ci1;eq

1

k�s�ics�i;eq
s ¼ 2; . . . ; nrð Þ

ð2:28Þ
This new result leads to the following two main

conclusions. In the oligomer region, Xo, where 1 /ks
� is a
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small quantity, the term with J in Eq. (2.28) is negligible, and

then

cs=cs;eq ¼ cs1=c
s
1;eq s ¼ 2; . . . ; noð Þ ð2:29Þ

i.e., the oligomers are in quasi-equilibrium with the mono-

mers. Substituting Eq. (2.29) into Eq. (2.25), we express the

total number of surfactant molecules in the region Mo. (Fig. 1)

as a function of c1:

co ¼
Xno
s¼1

scs;eq
cs1
cs1;eq

ð2:30Þ

Because the concentration of the rare aggregates is

negligibly small, crbco, Eq. (2.24) reduces to a balance

equation for the oligomers alone:

dco

dt
þlIIo ¼ � nrJ � Jm;0 ð2:31Þ

To find an expression for J, we match the Gaussian

distribution, Eq. (2.11), with Eq. (2.28) at the boundary

between the regions of abundant and rare micelles (at s =nr):

Cmffiffiffiffiffiffiffiffi
2pr

p exp � nr � mð Þ2

2r2

" #
¼ cnr ;eq

cnr1
cnr1;eq

� J
Xnr�2

i¼0

ci1
ci1;eq

cnr ;eq

k�nr�icnr�i;eq

ð2:32Þ

Eq. (2.32) closes our set of equations, which is described in

the next subsection. After linearization, Eq. (2.32) reduces to

Eq. (3.9); see below.

2.4. Basic system of four nonlinear differential equations

Eqs. (2.15)–(2.17) form a system of four basic differential

equations for determining the monomer concentration, c1(r, t),

and the three parameters of the micelle distribution, Cm(r, t)

m(r, t), and s(r, t). This basic system is to be considered in

conjunction with the following algebraic expressions for the

auxiliary variables: The reaction fluxes Jm,0, Jm,1, and J are

given by Eqs. (2.20) (2.21) (2.32); the diffusion fluxes Im,0,

Im,1, and Im,2 are defined by Eqs. (2.22) and (2.23); the

concentration of surfactant in monomeric and oligomeric form,

co, is given by Eq. (2.30).

The considered system is nonlinear, because it contains

several nonlinear equations: Eqs. (2.16) (2.17) (2.20) (2.21)

(2.30) (2.32). In the next section, we address the special case of

small deviations from equilibrium, when all equations can be

linearized.

3. Small deviations from equilibrium

In the case of small deviations from equilibrium, the set of

equations in Section 2 could be linearized and explicit

analytical solutions could be obtained. In particular, one can

derive expressions for the relaxation times, which characterize

how rapidly a micellar solution restores its equilibrium state

after an initial homogeneous bulk perturbation due to a jump in
temperature, pressure or concentration (see Section 4). We will

present the basic variables in the form:

c1 ¼ c1;eq þ c1;p; Cm ¼ Cm;eq þ Cm;p

m ¼ meq þ mp; r ¼ req þ rp ð3:1Þ

where the subscripts ‘‘eq’’ and ‘‘p’’ mark the corresponding

equilibrium values and the perturbations. At equilibrium, all

diffusion and reaction fluxes, Is and Js, are equal to zero.

Therefore, such fluxes could appear in the equations only as

perturbations. For this reason, we will skip the subscript ‘‘p’’

for all fluxes.

Next, we substitute Eq. (3.1) in the balance equation for

monomers and oligomers, Eq. (2.31), expand in series for small

perturbations, and preserve only the linear terms. Introducing

the auxiliary notation

Su
Xno
s¼1

s2
cs;eq

c1;eq
ð3:2Þ

we obtain:

S
dc1;p

dt
þlIIo ¼ � nrJ � Jm;0 ð3:3Þ

If the concentration of the monomers is much greater than

that of all oligomers, then one could keep only the term with

s=1 in Eq. (3.2), which yields S�1. In Appendix B, we show

that the linearization of Eqs. (2.15)–(2.17) leads to the

following equations for the perturbations of Cm, m and r.

dCm;p

dt
þlIIm;0 ¼ J ð3:4Þ

Cm;eq
dmp

dt
þlI Im;1 � meqIm;0

� �
¼ nr � meq

� �
J þ Jm;o ð3:5Þ

2reqCm;eq
drp

dt
þlI Im;2 � 2meqIm;1 þ m2

eq � r2
eq

� �
Im;0

h i
¼ nr � meq

� �2 � r2
eq

h i
J � 2meq þ 1

� �
Jm;0 þ 2Jm;1 ð3:6Þ

Furthermore, substituting Eq. (3.1) into the expressions for

the reaction fluxes, Eqs. (2.20) and (2.21), and linearizing, we

obtain:

Jm;0 ¼ k�mCm;eq
c1;p

c1;eq
þ rp � reqmp

r3
eq

 !
ð3:7Þ

Jm;1 ¼ k�mmeqCm;eq
c1;p

c1;eq
þ rp � reqmp

r3
eq

� 2rp

meqreq

 !
ð3:8Þ

Finally, we substitute Eq. (3.1) into Eq. (2.32), and derive

(Appendix B):

RJ ¼ nrc1;p

c1;eq
� Cm;p

Cm;eq
þ

meq�nr
� �

mp

r2
eq

�
meq�nr
� �2�r2

eq

r2
eq

rp

req

ð3:9Þ

Ru
Xnr
j¼2

1

k�j cj;eq
,
Xnr
j>no

1

k�j cj;eq
ð3:10Þ
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R is termed [2] resistance to ‘‘flow’’ through the region of

the rare micellar aggregates, Xr (Fig. 1). In Eq. (3.10), at the

last step, we have used the fact that the concentrations of

the oligomers are much greater than those of the rare

micelles, and therefore all terms with 2� j�no could be

neglected.

The linear equations obtained in this section will be used for

description of the relaxation of bulk (Section 4) and interfacial

perturbations [40].

4. Relaxation of a spatially uniform perturbation

4.1. Micellar relaxation times

The previous studies are using the simplifying assump-

tion that the width of the micelle size distribution,

characterized by r , is not affected by the perturbation

(rp=0). In such a case, the reaction fluxes J and Jm,0, see

Eqs. (3.7) and (3.9), define two different characteristic

times, which correspond to the known fast and slow

processes of micelle relaxation [2,3,42]; see also [12,13,

28,31,32]. Physically, the fast process corresponds to

variation of the mean aggregation number, m, due to

exchange of monomers between the abundant micelles and

the surrounding solution, at constant total micelle concen-

tration, Cm. The slow relaxation process is related to decay

or formation of abundant micelles and variation in their

total number concentration, Cm.

In the present theoretical model (Section 3), we do not use

the simplifying assumption rp=0. Instead, we derived a new

equation for determining rp, Eq. (3.6), which contains an

additional flux, Jm,1, given by Eq. (3.8). Thus, we could

anticipate that a third relaxation time will appear in the

theory, which characterizes the relaxation of the width of the

micellar peak (see region Xm in Fig. 1). Below, we will see

what is the magnitude of this third relaxation time and

whether it is of importance for the interpretation of

experimental data.

Hereafter, we consider homogeneous bulk perturbations. In

such case, all diffusion and convective fluxes are equal to zero

(unlike the reaction fluxes), and the perturbations depend only

on time, t. If we multiply Eq. (3.4) by meq, and sum up the

result with Eqs. (3.3) and (3.5), we can derive

Sc1;p þ meqCm;p þ mpCm;eq ¼ 0 ð4:1Þ

This is the form of the surfactant conservation law in terms

of perturbations. Eq. (4.1) expresses the perturbation c1,p as a

linear combination of the perturbations Cm,p and mp. Conse-

quently, c1,p is not an independent variable in the considered

case of homogeneous perturbations. In other words, we are

dealing with three independent perturbations, Cm,p, mp and rp,

which have to be determined from Eqs. (3.4)–(3.6). Following

the standard procedure, we assume that these perturbations are

proportional to exp(�mt), where 1 /m is the characteristic

relaxation time. In this way, from Eqs. (3.4)–(3.6) we obtain
the following system of equations, which is applicable to

homogeneous perturbations:

� Cm;pm ¼ J ð4:2Þ

� Cm;eqmpm ¼ nr � meq

� �
J þ Jm;0 ð4:3Þ

� 2reqCm;eqrpm ¼ nr � meq

� �2 � r2
eq

h i
J

� 2meq þ 1
� �

Jm;0 þ 2Jm;1 ð4:4Þ

The equations for the reaction fluxes, Eqs. (3.7)–(3.9),

imply that Eqs. (4.2)–(4.4) form a linear homogeneous system

for determining Cm,p, mp and rp. As known, such a system has

a nontrivial solution only when its determinant is equal to zero.

Thus, from Eqs. (4.2)–(4.4) we obtain a cubic characteristic

equation for m, which has three real positive roots. The

reciprocal values of these roots give the three characteristic

relaxation times: tc, tm, and tr, which are related to the

relaxations of Cm,p, mp and rp, respectively (see Section 4.4

below). Correspondingly, any relaxing parameter, Y, of the

micellar system could be expressed as a linear combination of

three exponents:

Y ¼ Y1exp � t=tcð Þ þ Y2exp � t=tmð Þþ Y3exp � t=trð Þ ð4:5Þ

where Y1, Y2 and Y3 are constant amplitudes; see also Eqs.

(4.34) (4.48) (4.51). To obtain explicit analytical expressions

for the characteristic times tc, tm, and tr, we consider separately

the slow and fast micellar relaxation processes.

4.2. Characteristic time of the slow relaxation process

In this case, by definition km
� /mH1. We substitute the

reaction fluxes Jm,0 and Jm,1 from Eqs. (3.7) and (3.8) into Eqs.

(4.3) and (4.4), and carry out the transition km
�YV. This is

equivalent to set each of the fluxes Jm,0 and Jm,1 equal to zero.

As a result, we obtain:

rp ¼ 0 ð4:6Þ

mp ¼ r2
eq

c1;p

c1;eq
: ð4:7Þ

In other words, for the slow relaxation process, the

perturbation in the width of the micelle size distribution is

equal to zero (rp=0), while the perturbation in the micelle

mean aggregation number is proportional to the perturbation in

the monomer concentration, mp”c1,p. Substituting Eq. (4.7)

into Eqs. (3.9) and (4.1), we obtain the following expressions

for the reaction flux J and monomer concentration, c1,p:

J ¼ 1

R
meq

c1;p

c1;eq
� Cm;p

Cm;eq

� �
ð4:8Þ

c1;p

c
¼ � meqCm;p

r2 C þ Sc
ð4:9Þ
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Finally, we substitute Eq. (4.9) into Eq. (4.8), and the result

—into Eq. (4.2). Thus we obtain the following expression for

mgmc

mc ¼
1

tc
¼ 1

RCm;eq
1þ

m2
eqCm;eq

Sc1;eq þ r2
eqCm;eq

 !
ð4:10Þ

where tc is the relaxation time of the slow process. The latter

expression coincides with the result by Aniansson and Wall [2].

At sufficiently high micellar concentrations (Cm,eqHSc1,eq /

r2
eq), Eq. (4.10) predicts a linear increase of the relaxation time,

tc, with Cm,eq:

tc ,
Rr2

eq

m2
eq þ r2

eq

Cm;eq ð4:11Þ

4.3. Two characteristic times of the fast relaxation process

In this case, the characteristic relaxation time, 1 /m, is much

smaller than tc. Thus, carrying out the transition 1 /mY0 in Eq.

(4.2), we obtain Cm,p =�J / mY0. In other words, the

perturbation in the total concentration of the abundant micelles

is zero for the fast process. Setting J /mY0 also in Eqs. (4.3)

and (4.4), we derive:

mpm ¼ � Jm;o

Cm;eq
ð4:12Þ

rpm ¼ 2meq þ 1

2reqCm;eq
Jm;0 �

1

reqCm;eq
Jm;1 ð4:13Þ

Further, substituting Cm,pY0 in the mass conservation law,

Eq. (4.1), we obtain:

c1;p ¼ � Cm;eqmp=S ð4:14Þ

Combining Eqs. (3.7) (4.12) (4.14), we derive:

mpm ¼ k�m
Cm;eqmp

Sc1;eq
� rp � reqmp

r3
eq

 !
ð4:15Þ

Next, we substitute Jm,0 and Jm,1 from Eqs. (3.7) and (3.8)

into Eq. (4.13), and replace c1,p from Eq. (4.14):

2reqrpm
k�m

¼ rp � reqmp

r3
eq

þ 4rp

meqreq

� Cm;eqmp

Sc1;eq
ð4:16Þ

Eqs. (4.15) and (4.16) form a linear homogeneous system for

the perturbations mp and rp. This system has a nontrivial

solution only if its determinant is equal to zero. The latter re-

quirement leads to a quadratic equation for m, whose solution is:

2r2
eq

k�m
m1;2 ¼ 3þ uþ eF 3þ uþ eð Þ2 � 8 1þ uð Þ

h i1=2
ð4:17Þ

uu
r2
eqCm;eq

Sc1;eq
; eu

1

2r2
eq

: ð4:18Þ

Eq. (4.18) implies that the dimensionless parameter u can

vary from zero at the CMC (Cm,eq=0) up to high values,
uH1, at Cm,eqHc1,eq. In addition, for most systems, we have

1 /6req
2 = e / 3b1, and then Eq. (4.17) can be simplified:

m1ummu
1

tm
,

k�m
r2
eq

1þ uð Þ ð4:19Þ

m2umru
1

tr
, 2

k�m
r2
eq

ð4:20Þ

where tm and tr are the two characteristic times of the fast

relaxation process. One can check that the expression for tm
exactly coincides with the expression for the relaxation time of

the fast process derived by Aniansson and Wall [2]. On the

other hand, tr is a new relaxation time, which appears in our

theory because we consider perturbations in the width of the

micellar peak, i.e., rpm0. (The previous studies have used

rpg0 as a simplifying assumption.) Eq. (4.20) implies that tr
is independent on the micelle concentration, Cm,eq, unlike tm.

For 0<u�1, i.e., in the vicinity of the CMC, Eqs. (4.19)

and (4.20) yield tm� tr. Out of this relatively narrow

concentration zone, we have another relation, viz.:

tc > tr > tm u > 1ð Þ ð4:21Þ

In other words, the longest is the relaxation time of the slow

process, tc, which is related to the relaxation of the micelle

concentration, Cm (see Section 4.6 for details). The shortest is

the conventional relaxation time of the fast process, tm, which

is related to the relaxation of the micelle mean aggregation

number, m. The relaxation time, tr, which is related to the

relaxation of the width of the micelle peak, r, has an

intermediate value for u >1.

Both tc and tm are accessible to experimental measurements,

and have been found to affect the occurrence of processes of

scientific and practical importance [3,31,32,42]. Then, Eq.

(4.21) implies that the intermediate relaxation time, tr, should

be also accessible for measurement by the experimental

relaxation methods. Note that tr is simply related to km
�, see

Eq. (4.20), and correspondingly, the measurement of tr allows

one to determine km
�. At surfactant concentrations much above

the CMC (uH1), Eqs. (4.19) and (4.20) predict trH tm. In

such a case, one should be able to clearly distinguish between

these two relaxation times. On the other hand, at u�1 (close to

the CMC) we have tr� tm, and it could be difficult to

distinguish between them (unless they govern the relaxation

of different experimental parameters; see Section 4.6).

It should be noted that Eq. (4.20) for tr is identical with Eq.

(11) (for n =2) in the paper by Wall and Aniansson [5].

However, the two equations have been obtained in quite

different contexts and have different meaning. In [5], the

perturbation is mathematically expressed as an infinite series of

exponentials with different decay times, at constant r . In

contrast, here the width of the micellar peak, r, is variable, and
tr is its characteristic relaxation time. Moreover, in [5] the fast

process is characterized by a single characteristic time, tm,

while here, the fast process is characterized by both tm and tr .

At the lower micelle concentrations (b�1) tm and tr are

comparable by magnitude (see Section 4.5). Then the
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relaxation of the monomer concentration is described by a

superposition of two exponentials (rather than a single one), as

discussed at the end of Section 4.5. In other words, in our case

the relaxation of c1,p is affected by tr. On the other hand, s2 in
Eq. (11) of [5] does not enter the expression for n1 therein.

4.4. Exact solution and interplay of the relaxation processes

In general, we consider small perturbations in the three

parameters describing the shape of the micellar peak (Fig. 1),

viz. its height, position and width, characterized, respectively,

by Cm, m, and r. In Sections 4.2 and 4.3 we derived analytical

expressions for the corresponding relaxation times, tc, tm, and

tr, at the cost of some approximations. However, it is possible

to solve the problem exactly. This will give us the exact values

of the relaxation times; will allow us to check the approximated

expressions and to see whether all of tc, tm, and tr influence the

relaxation of each separate perturbation, Cm,p, mp, and rp. For

this goal, it is convenient to introduce dimensionless variables:

n1u
c1;p

c1;eq
; ncu

Cm;p

Cm;eq
; nmu

mp

meq

; nru
rp

req

ð4:22Þ

From Eqs. (4.1) and (4.22) we express the dimensionless

perturbation in the monomer concentration:

n1 ¼ � b
S

nc þ nmð Þ ð4:23Þ

where we have introduced the relative micelle concentration, b:

bu
Ctot � CMC

CMC
¼ meq

Cm;eq

c1;eq
ð4:24Þ

with Ctot being the total surfactant concentration. Further, from

Eqs. (3.9) and (4.22) we express the reaction flux J:

J

k�S
¼ meq � wreq

� �
n1 � nc þ w

meq

req

nm � w2 � 1
� �

nr

ð4:25Þ

wu
meq � nr

req

> 1; k�S u
1

Rc1;eq
ð4:26Þ

where the equilibrium dimensionless parameter w is propor-

tional to the distance between the positions of the micellar

peak, meq, and the boundary, nr, between the rare aggregates

and the abundant micelles (Fig. 1). The parameter kS
�, defined

by Eq. (4.26), can be interpreted as rate constant of the slow

relaxation processes. Likewise, from Eqs. (3.7), (4.22) and

(4.23) we obtain an expression for the reaction flux, Jm,0:

Jm;0

k�mCm;eq
¼ � b

S
nc �

meq

r2
eq

þ b
S

 !
nm þ 1

r2
eq

nr ð4:27Þ

Finally, from Eqs. (3.8), (4.22) and (4.23) we obtain:

Jm;1

k�mmeqCm;eq
¼ � b

S
nc �

meq

r2
eq

þ b
S

 !
nm þ 1

r2
eq

� 2

meq

 !
nr

ð4:28Þ
The substitution of Eqs. (4.27) and (4.28) into Eqs. (4.2)–

(4.4), after some transformations, leads to a linear homoge-

neous system of equations:X
j¼c;mr

aij � kdij
� �

nj ¼ 0; i ¼ c;m; r ð4:29Þ

where k‘�m /km
� is a dimensionless parameter; dij is the

Kronecker symbol; aij is a matrix, whose elements are given in

Appendix C. The system (4.29) has a nontrivial solution only if

its determinant is equal to zero, which leads to:

k3 � I1k
2 þ I2k � I3 ¼ 0 ð4:30Þ

where the three invariants of the matrix (aij) are

I1 ¼ acc þ amm þ arr;

I2 ¼ accamm � acmamc þ ammarr � amrarm þ accarr � acrarc;

I3 ¼ det aij
� �

ð4:31Þ

Note that aij, I1, I2, and I3 depend on the following

dimensionless parameters of the system:

meq; req; w; b; S; and huk�S =k
�
m ð4:32Þ

Consequently, the same is true for the three roots of Eq.

(4.30), which determine the three characteristic relaxation times

of the system:

kju� 1

sj
u� 1

k�m tj
; j ¼ c;m; r ð4:33Þ

Solving Eq. (4.30), we determine the three eigenvalues, kc,
km, and ks. In general, the matrix aij is non-symmetric, but

nevertheless, for physically reasonable values of the system’s

parameters, all three eigenvalues are real and negative, see

Section 4.5. The next step is to determine the three

eigenvectors, f (c), f (m), and f (s), from Eq. (4.29). The

components, f i
( j ), of the latter three vectors could be

determined by means of a standard software, using the matrix

elements, aij, as input parameters; see Appendix C. Further, the

relaxation of an arbitrary perturbation, in either Cm, m, or r ,

can be expressed in the general form [43]:

ni ¼
X

j¼c;m;r

Xj f
jð Þ

i exp � s=sj
� �

; i ¼ c;m; r ð4:34Þ

where s =km
�t is the dimensionless time. The constants Xj have

to be determined from the initial conditions, at s =0. It is useful
to consider the following three normalized independent modes:

nc 0ð Þ ¼ 1; nm 0ð Þ ¼ 0; nr 0ð Þ ¼ 0 : mode 1; 0; 0ð Þ
ð4:35Þ

nc 0ð Þ ¼ 0; nm 0ð Þ ¼ 1; nr 0ð Þ ¼ 0 : mode 0; 1; 0ð Þ
ð4:36Þ

nc 0ð Þ ¼ 0; nm 0ð Þ ¼ 0; nr 0ð Þ ¼ 1 : mode 0; 0; 1ð Þ
ð4:37Þ

For each mode, we substituted the respective initial

condition into Eq. (4.34), and determined the respective values
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of the constants Xj. In Appendix C it is explained how one

could determine the coefficients to Eq. (4.37) Xj
(c)

corresponding to Eq. (4.35), Xj
(m) corresponding to Eq.

(4.36), and Xj
(r) corresponding to Eq. (4.37). Then, the

evolution of each of Cm, m, and r corresponding to the

boundary conditions, Eqs. (4.35)–(4.37), is given by the

respective version of Eq. (4.34):

n kð Þ
i ¼

X
j¼c;m;r

X
kð Þ

j f
jð Þ

i exp � s=sj
� �

; i; k ¼ c;m;r ð4:38Þ

ni
(k) (t) expresses the evolution of the parameter . ni(i=c,m,r),

which is due to the relaxation of an initial perturbation,

nk(0)=1, in the parameter k (k =c,m,r). In general, an initial

perturbation in one of the parameters, for example Cm,

engenders variation also in the other two parameters, m and

r. This fact is important for the interpretation of experimental

data, and is illustrated in Section 4.5, where graphs of ni
(k)(t) are

given for all i, k =c,m,r.
Finally, let us consider an arbitrary perturbation,

corresponding to the initial condition:

nc 0ð Þ ¼ Ac; nm 0ð Þ ¼ Am; nr 0ð Þ ¼ Ar ð4:39Þ

Then, we can calculate the evolution of each parameter,

nc(t), nm(t), and nr(t), due to the relaxation of the considered

initial perturbation:

ni tð Þ ¼
X

k¼c;m;r

Akn
kð Þ
i tð Þ; i ¼ c;m; r ð4:40Þ

Here ni
(k) is defined by Eq. (4.38). This completes the

solution of our problem.

Because we are dealing with small perturbations, the

amplitudes in Eq. (4.40) must be small, Akb1, while the

characteristic functions ni
(k)(t) could be of the order of 1, see

Figs. 2 – 4. Note also, that simple and accurate asymptotic

expressions for nc(t), nm(t) and nr(t) can be derived in the case

when tcH tm, tr; see Eqs. (4.46) (4.48) (4.51).

4.5. Numerical results and discussion

To obtain numerical results, we have to assign physically

reasonable values to the system’s parameters, specified by Eq.

(4.32). We used the following values:

meq ¼ 60; req ¼ 5; w ¼ 3; S ¼ 1:1; h ¼ 10�7 ð4:41Þ

In particular, w =3 means that the concentration of the rare

aggregates is �0.001 cm; this follows from Eq. (2.11), where

(s�m)2 /r2 should be replaced by w2. The value S =1.1 means

that the oligomers give a contribution of 10% to the sum in Eq.

(3.2); if the monomers were completely predominant, then we

would have S =1. To determine hQk�
S /k

�
m, we varied this

ratio until we found a value, for which the theoretical

predictions were similar to what we know from the experiment

[3]. We carried out calculations at two values b =1 and 100,

corresponding to surfactant concentrations 2
CMC, and well

above the CMC; see Eq. (4.24).
Next, we calculated the matrix elements aij, using equations

from Appendix C, and the invariants I1, I2, and I3, given by

Eq. (4.31). Further, we solved Eq. (4.30) numerically, and with

the help of Eq. (4.33) we determined the exact values of the

three dimensionless relaxation times, sc, sm, and sr. In Table

1, they are compared with the output of the respective

approximated expressions, as follows. The characteristic time

of the slow process, sc, was calculated from Eqs. (4.10) and

(4.11), which have been transformed in the following

dimensionless form:

1

sc
¼ meqh

b
1þ meqb

S þ r2
eqb=meq

 !
ð4:42Þ

sc ,
br2

eq

m2
eq þ r2

eq

� �
meqh

bH1ð Þ ð4:43Þ

See also Eqs. (4.24) and (4.26). Note that Eq. (4.42) is

more accurate expression for sc, while Eq. (4.43) is its

simplified version for bH1. Furthermore, the relaxation times
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concentrations: b =1 and 100; the other parameters are given by Eq. (4.41).

(a) Diagonal term nm
(m) (b) Cross terms nr

(m) and nc
(m).
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of the mean micelle aggregation number and polydispersity,

sm and sr, were calculated from the dimensionless forms of

Eqs. (4.17)–(4.19):

2r2
eq

sm;r
¼ 3þ uþ eF 3þ uþ eð Þ2 � 8 1þ uð Þ

h i1=2
ð4:44Þ

1

sm
,

1

r2
eq

1þ uð Þ; 1

sr
,

2

r2
eq

ð4:45Þ

where u =(br2
eq) / (Smeq), and e =(2req

2 )� 1. Note that Eq.

(4.44) is more accurate expression for sm and sr, while Eq.

(4.45) is its simplified version for eb3.

The results in Table 1 indicate that the approximate Eqs.

(4.42)–(4.45) give the values of the relaxation times very

accurately, except Eq. (4.43) at b =1 (where the latter equation

is out of the range of its validity). In particular, Eq. (4.45)

enables one to identify which of the roots of Eq. (4.44), or of

the exact Eq. (4.30), corresponds to sm and sr. As expected,

both the exact and approximate solutions imply that sr is
practically independent of the surfactant concentration, char-

acterized by b. On the other hand, when the surfactant

concentration rises, sc increases, while sm decreases.



Table 1

Calculated values of the micellar relaxation times

Dimensionless

relax. time

Exact,

Eq. (4.30)

More accurate

expressions,

Eqs. (4.42) and (4.44)

Simplified

expressions,

Eqs. (4.43) and (4.45)

b =1

sc 4.12
103 4.11
103 1.15
103

sm 1.87
101 1.87
101 1.81
101

sr 1.21
101 1.21
101 1.25
101

b =100

sc 1.18
105 1.18
105 1.15
105

sm 6.43
10�1 6.43
10�1 6.43
10�1

sr 1.25
101 1.25
101 1.25
101
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Next, let us imagine an initial perturbation in the polydis-

persity, r, at fixed micelleconcentration and aggregation

number. Such a perturbation is described by Eq. (4.37).

Determining fi
( j) and Xj

(r) , as explained in Appendix C, we

applied Eq. (4.38) to calculate the time dependencies of the

height, position and width of the micellar peak, described by

the functions nc
(r)(t), nm

(r)(t), and nr
(r)(t).

Fig. 2a shows the calculated dependence nr
(r)(t). The curves

corresponding to b =1 and 100 coincide, which indicates that

nr
(r)(t) is insensitive to the micelle concentration. The inflexion

point of the curve nr
(r)(t) corresponds to s�sr: compare Table

1 and Fig. 2a. Hence, the decay of nr
(r) at long times is

determined by sr.

Fig. 2b shows the cross terms, nc
(r)(t) and nm

(r)(t), which are

the dimensionless variations of Cm and m, induced by the

initial perturbation of r. It is important to note that both nc
(r)

and nm
(r) are very small. For this reason, we have plotted them

multiplied by 1000. In addition, we have nc
(r)<0, but nc

(r) > 0,

which means that an initial increase in r engenders a small

decrease in Cm, and a small increase in m. By definition, we

have nc
(r)(0)=nm

(r)(0)=0 at the initial moment. In addition,

these quantities should decay for tYV. For this reason, the

respective time dependencies exhibit maxima or minima. For

the same reason, all cross terms plotted in Figs. 3b and 4b

exhibit maxima or minima.

In summary, an initial perturbation in the micelle polydis-

persity, r, induces a relaxation of r with characteristic time sr,

but it does not perturb noticeably the micelle concentration,

Cm, and the mean aggregation number, m (Fig. 2).

Fig. 3a shows the calculated dependence n(m)
m (t). The

curves corresponding to b =1 and 100 are rather different,

which indicates that n(m)
m (t) is sensitive to the micelle

concentration. The inflexion points of the curves n(m)
m (t)

correspond to the values of tm for the respective b: compare

Table 1 and Fig. 3a. Hence, the decay of n(m)
m at long times is

determined by tm.

Fig. 3b shows nc
(m)(t) and nr

(m)(t), which are the dimen-

sionless variations of Cm and r, induced by the initial

perturbation of m. It is important to note that nc
(m) is very

small, and for this reason it is plotted multiplied by 1000. In

contrast, nr
(m) is not small at all; close to its maximum it can be

of the order of 1. (Despite the fact that here we are working

with small perturbations, the characteristic functions ni
(m) could
be of the order of 1; see the paragraph after Eq. (4.40).) In

addition, we have nc
(m) <0, but nr

(m) >0, which means that an

initial increase in m engenders a small decrease in Cm, and a

considerable increase in r.
In summary, an initial perturbation in the micelle mean

aggregation number, m, induces a relaxation of m with

characteristic time sm, and a significant perturbation of r,
but it does not affect considerably the micelle concentra-

tion, Cm.

Finally, Fig. 4a shows the calculated dependence nc
(c)(t).

The curves corresponding to b =1 and 100 are rather different,

which indicates that nc
(c )(t) is sensitive to the micelle

concentration. The inflexion points of the curves nc
(c)(t)

correspond to the values of sc for the respective b: compare

Table 1 and Fig. 4a. Hence, the decay of nc
(c) at long times is

determined by sc.
Fig. 4b shows the cross terms, n(c)

m (t). and nr
(c)(t), which are

the dimensionless variations of m and r, induced by the initial

perturbation of Cm. It is important to note that both n(c)
m and

nr
(c) are considerable, especially at the higher micelle concen-

tration (b =100). As in the previous cases, n(c)
r decays for

sHsr (see the values of the relaxation times in Table 1). On

the other hand, n(c)m decays for sHsc, which means that in the

considered case sc (rather than sm) characterizes the decay of

n(c)m at the long times. In addition, we have n(c)
m <0, but n(c)r >0,

which means that an initial increase in Cm engenders decrease

in m, and increase in r.
Thus, an initial perturbation in the micelle concentration,

Cm, induces a relaxation of Cm with characteristic time sc,
and considerable perturbations of m and r. What concerns

the perturbation in the monomer concentration, n1, in

accordance with Eq. (4.23) we have: n1=� (b /S)(nc +nm).
To illustrate the relaxation of n1

(c), in Fig. 4c we have plotted

nc
(c) +nm

(c) vs. the dimensionless time, t, for two different

values of b. At the higher micelle concentration, b =100, we

observe a conventional relaxation curve, with two character-

istic relaxation times: fast, sm, and slow, sc. In Fig. 4c, sm
and sc correspond to the inflection points of the kinetic

curves, and are denoted by arrows. For the considered

numerical example, the values of sm, sc and ss can be found

in Table 1.

The curve for b =1 in Fig. 4c deserves a special discussion.

In this case, the two dimensionless fast relaxation times are

close to each other: sm=18.7 and sr =12.1; see Table 1. Hence,

in this time interval (around s�sm�sr), the dependence

n1
(c)(s) must be fitted with a superposition of two exponents,

those with j =m, s in Eq. (4.38), or with the full theory from

Section 4.4. In contrast, if one fits n1
(c)(s) in the same time

interval with a single exponent, one will obtain an apparent

dimensionless fast relaxation time, s*, which is typically

greater than sm and sr. If the determined s* is (incorrectly!)

identified with sm, one will find that the relaxation time of the

fast process does not comply with Eq. (4.19) at the lower

micelle concentrations, where the plot of the apparent 1 /sm vs.

u will deviate from a straight line. Such deviations have been

really observed; see Figs. 9 and 10 in [3]. The present model

could give a possible explanation.
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Finally, it should be noted that relaxation curves, like that

with b =1 in Fig. 4c, can be theoretically described by the exact

solution of the linear system in Section 4.4. The approximate

expressions derived in Section 4.6 (for smbsrbsc) are not

applicable for low micelle concentrations, where sm and ss
have the same order of magnitude.

4.6. Analytical expressions for the micellar evolution

Experimentally, either of the parameters Cm, m, and r, or all
of them, could be measured as functions of time. To interpret

the obtained data one could apply the theory described in

Section 4.4. However, it is possible to derive much simpler

asymptotic expressions for the typical case of not-too-low

micelle concentrations, when the three characteristic micellar

times markedly differ from each other, viz. scHsrHsm.
The latter relation is fulfilled for the numerical data with

b =100 given in Table 1 and Figs. 2–4. In these figures, one

sees that initial perturbations in m and r cannot produce

significant perturbations in Cm. In other words, the cross

terms nc
(m) and nc

(r) are small. The same is true for nm
(r) , see

Fig. 2b.

Now, let us consider a general initial perturbation in Cm, m,

and r , with perturbation amplitudes Ac, Am, and Ar. Having in

mind that nc
(m), nc

(r)b1, from Eqs. (4.38)–(4.40) it follows:

nc tð Þ , Acexp � t=tcð Þ tcHtrHtmð Þ ð4:46Þ

In other words, the relaxation of the micelle concentration,

Cm, is determined solely by tc. (As before, the relation between

the dimensional time, t, and the dimensionless time, s, is

s =k�mt ; see also Eq. (4.33)). Eq. (4.46) implies that the

relaxation time of the slow process, tc, can be directly

determined from data for the relaxation of Cm.

On the other hand, as seen in Fig. 4, an initial perturbation in

Cm induces also a significant long-time perturbation, nc
(c) in the

micelle mean aggregation number, m, while the perturbation

induced in r, n(c)
r, decays much faster. Then, for meqH1 the

last term in Eq. (4.27) is negligible, and setting the left-hand

side equal to zero (for the slow process) we obtain:

n cð Þ
m ,

� r2
eqb

Smeq þ r2
eqb

nc , � smb
Smeq

nc ð4:47Þ

see Eq. (4.45) for sm. Then, from Eqs. (4.38–4.40) (4.46) and

(4.47), we obtain:

nm tð Þ ,� Ac

smb
Smeq

expð� t=tcÞþ Am þ Ac

smb
Smeq

� �
expð� t=tmÞ

ð4:48Þ

(tcH trH tm). Note that the initial condition, nm(0)=Am is

fulfilled. Eq. (4.48) implies that the relaxation of the micelle

mean mass aggregation number, m, after a general initial

perturbation, involves two relaxation processes, characterized

by relaxation times tc and tm. Despite the fact that r is also

perturbed, exp(� t / tr ) does not enter Eq. (4.48).
The variation of m, nm, induces a variation nr
(m) in r. In

view of Eqs. (3.6) and (4.4), for uniform perturbations we

have:

2r2
eqCm;eq

Bnr

Bt
¼ nr � meq

� �2 � r2
eq

h i
J

� 2meq þ 1
� �

Jm;0 þ 2Jm;1 ð4:49Þ

For tcH tmH tr, the term with J in the latter equation is

negligible. Furthermore, in Eqs. (4.27) and (4.28) the terms with

nc are annihilated by the first term of nm in Eq. (4.48), but the last

term in nm remains. Thus, Eq. (4.49) is reduced to a first order

inhomogeneous differential equation for nr, whose solution

gives the effect, Dnr, of the perturbations in Cm and m on nr:

Dnr ¼ Am þ Ac

smb
Smeq

� �
meqtr

2 tm � trð Þr2
eq

exp � t=tmð Þ ð4:50Þ

Finally, from Eqs. (4.38–4.40), we obtain:

nr tð Þ , Arexp � t=trð Þ þ Am þ Ac

smb
Smeq

� �


 meq

2r2
eq

tr

tm � tr
exp � t=tmð Þ � exp � t=trð Þ½ � ð4:51Þ

(tcH trH tm). Note that the initial condition, nr(0)=Ar is

satisfied. One sees that the relaxation of the width of the

micelle peak, described by nr(t), is determined by the two

characteristic relaxation times of the fast process, tm and tr.

Despite the fact that Cm is also perturbed, exp(� t / tc) does not

enter Eq. (4.51). The presence of the three perturbation

amplitudes, Ac, Am, and Ar, in Eq. (4.51) implies that initial

perturbations in either Cm, m, or r, can produce a variation of

r. This result is also in agreement with Figs. 2 3 and 4. The

developed theoretical model predicts that, in general, the

relaxation of the micelle polydispersity, r, will exhibit two

characteristic relaxation times, tm and tr, which could be

determined by fitting the experimental dependence. nr(t) with

the help of Eq. (4.51). Further, from either tm or tr one can

calculate the demicellization rate constant, km
�, see Eqs. (4.19)

and (4.20). The coincidence of the values of km
� obtained from

tm and tr could be a criterion for the adequacy of the proposed

model.

It is important to note that Eqs. (4.46) (4.48) (4.51), along

with the initial condition, Eqs. (4.35)–(4.37), reproduce

perfectly the exact curves for n(r)r, n(m)
m, nr

(m), nc
(c), nm

(c), and

nr
(c) in Figs. 2-4 for b =100. The negligible cross terms

(nc
(r),nm

(r),nc
(m)b1), which are shown multiplied by 1000 in

Figs. 2 and 3, cannot be reproduced by the above approximate

equations. In addition, as mentioned at the end of Section 4.5,

at low micelle concentrations we have tr� tm, and one of the

presumptions used to derive Eqs. (4.46) (4.48) (4.51) is

violated. In the latter case, one should use the exact solution

of the linear system in Section 4.4 to calculate nc(t), nm(t) and
nr(t).

Having determined nc(t) and nm(t), one could easily

calculate the perturbation in the monomer concentration,

1=� (b /S)(nc +nm), see Eq. (4.23).



K.D. Danov et al. / Advances in Colloid and Interface Science 119 (2006) 1–16 13
4.7. Discussion on the limitations of the present theoretical

model

The basic assumption of the model by Aniansson and Wall

[2], is the stepwise kinetic scheme of micelle association and

dissociation, Eq. (2.1), which is used also in the present paper.

Deviations from this kinetic scheme could happen for long

cylindrical (rodlike, wormlike) micelles, which could split to

smaller aggregates, of aggregation number greater than s =1;

see e.g., [44]. Hence, Eq. (2.1) can be used for not-too-large

micelles (spherical and elongated), for which such splitting is

not observed.

Another assumption in [2], which is used here, is the

approximation of the micellar peak with a Gaussian curve; see

Eq. (2.11) and Fig. 1. In fact, every peak could be

approximated with a Gaussian curve, unless it is markedly

asymmetric. Such asymmetric distribution is typical for the

giant cylindrical micelles [45,46], which are out of the scope of

the present study, as discussed above. In principle, asymmetry

in the micellar peak could appear also upon large deviations

from equilibrium. However, the agreement of the theory by

Aniansson and Wall [2] with the experiment [3,47] indicates

that the micellar peak is sufficiently symmetric and can be

adequately described by a Gaussian curve for a wide class of

dynamic processes.

5. Summary and conclusions

The model proposed here represents a generalization of

previous models in the following three aspects. First, we do not

use the simplifying assumption that the width of the micellar

peak is constant during the transport process. Second, we avoid

the use of the quasi-equilibrium approximation, which pre-

sumes that the micelles are in local chemical equilibrium with

the monomers. Third, we reduced the initial set, containing tens

of equations, to a system containing only four nonlinear

differential equations, Eqs. (2.15–2.17).

The solution of the latter system gives the following

parameters: (i) the concentration of surfactant monomers,

c1(r, t); (ii) the total number concentration of surfactant micelles,

Cm(r, t); (iii) the micelle mean aggregation number, m(r, t), and

(iv) the halfwidth of the micellar peak, r(r, t). The general set

of four equations could be applied to solve various problems,

like the relaxation problem in the case of a spatially uniform

perturbation (due to jumps in pressure temperature or concen-

tration), or the problem about the kinetics of adsorption from

micellar solutions, and the respective dynamic surface tension.

To derive the basic system of four differential equations

(Section 2) we imposed the natural requirement that the model

Gaussian curve (describing the micellar size distribution) must

be equivalent to the real micellar peak with respect to the total

micelle concentration, mean micelle aggregation number, and

micelle polydispersity, i.e., with respect to the position, height

and width of the micellar peak (Fig. 1). In the case of small

deviations from equilibrium, all equations can be linearized.

The respective linear system, Eqs. (3.3)–(3.6), is derived in

Section 3.
In Section 4 we apply the derived system of equations to

describe the relaxation of small uniform bulk perturbations.

The theoretical analysis implies that the relaxation of the three

basic parameters, the micelle concentration, Cm, the mean

aggregation number, m, and the polydispersity, r, are

characterized by three distinct relaxation times: tc, tm, and tr,

see Eqs. (4.10), (4.19) and (4.20). The first two of them, tc and

tm, coincide with the conventional slow and fast micellar

relaxation times [2,42]. The third relaxation time, tr, is close to

tm for low micelle concentrations, but at high micelle

concentrations we have tc > tr> tm. The interplay of the three

relaxation processes is illustrated in Figs. 2–4. Asymptotic

analytical expressions, viz. Eqs. (4.46) (4.48) (4.51), are

derived for the typical case tcH trH tm. These asymptotic

equations indicate that the relaxation of Cm is affected by tc
alone; the relaxation of m is affected by both tc and tm, while

the relaxation of m is affected by tr and tm. This result is in

agreement with previous experimental studies, which are based

on measurements of c1, Cm and m, and establish the existence

of two relaxation times: tc and tm. In addition, the developed

model (Section 4.4) describes also the case of low micelle

concentrations (b�1), where tr and tm have the same order of

magnitude, and where the third relaxation time, tr, should be

taken into account when interpreting experimental data; see

Fig. 4c and the related text.

Our analysis indicates that if the relaxation time of

micelle polydispersity, tr , is measured, one could indepen-

dently determine the demicellization rate constant, km
�, by

using Eq. (4.20). Moreover, it turns out that the existence of

a third relaxation time, tr, has an essential impact on the

kinetics of adsorption from micellar solutions. Qualitatively,

this is understandable, because the broadening or narrowing

of the micellar peak must be accompanied by uptake or

release of surfactant monomers. The respective quantitative

analysis of the adsorption dynamics demands additional

theoretical work, which is reported in the second part of this

study [40].

Finally, it is worthwhile noting that simple, but accurate

analytical expressions are available for calculation of the three

relaxation times, Eqs. (4.42)–(4.45); see Table 1, and for

describing the evolution of a micellar system: Eqs. (4.46)

(4.48) (4.51); see Figs. 2–4.
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Appendix A. Derivation of some equations in Section 2

Using the Gaussian distribution, Eq. (2.11), and replacing

the sum with integral, we derive:

XV
s¼nr

cs¼
Cmffiffiffiffiffiffi
2p

p
r

XV
s¼nr

exp � s�mð Þ2

2r2

" #
,

Cmffiffiffiffiffiffi
2p

p
r

Z V

�V

exp � s2

2r2

� �


 ds ¼ Cm ðA:1Þ
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Likewise, we obtain Eq. (2.13):

XV
s¼nr

scs ¼
Cmffiffiffiffiffiffi
2p

p
r

XV
s¼nr

s� mð Þexp � s� mð Þ2

2r2

" #

þ mCmffiffiffiffiffiffi
2p

p
r

XV
s¼nr

exp � s� mð Þ2

2r2

" #
,mCm ðA:2Þ

To derive Eq. (2.14), we are using the substitution y = s�m:

XV
s¼nr

s2cs ,
Cmffiffiffiffiffiffi
2p

p
r

Z V

�V

yþ mð Þ2exp � y2

2r2

� �
dy

¼ Cmffiffiffiffiffiffi
2p

p
r

Z V

�V

y2exp � y2

2r2

� �
dyþ m2Cm

¼ r2 þ m2
� �

Cm ðA:3Þ

Using the assumption for equal dissociation rates, ks
�=km

�

for s�nr, from Eqs. (2.7) (2.8) (2.12) (2.19), we obtain:

Jm;0 ¼
X
s>nr

kþs c1cs�1 � k�mcs
� �

¼ k�m
X
s>nr

cs;eq

c1;eqcs�1;eq
c1cs�1 � cs

� �

, k�m
c1

c1;eq

X
s>nr

cs;eq

cs�1;eq
cs�1 � Cm

 !
ðA:4Þ

Further, the three concentrations appearing under the sign of

the latter sum are substituted from Eq. (2.11):

X
s>nr

cs;eq

cs�1;eq
cs�1 ¼

Cmffiffiffiffiffiffi
2p

p
r

X
s>nr

exp �
s� meq

� �2
2r2

eq

"

þ
s� 1� meq

� �2
2r2

eq

� s� 1� mð Þ2

2r2

#
ðA:5Þ

Next, we substitute n = s�1�m, and bring the latter sum

into the form:

Cmffiffiffiffiffiffi
2p

p
r
exp

r2 � r2
eq

2r4
eq

� m� meq

r2
eq

 !



XV
n¼�V

exp � 1

2r2
nþ r2

r2
eq

 !2
2
4

3
5

,Cmexp
r2 � r2

eq

2r4
eq

� m� meq

r2
eq

 !
ðA:6Þ

Substituting the latter result into Eq. (A.4), we obtain Eq.

(2.20). In analogy with Eq. (A.4), using Eqs. (2.7) (2.8) (2.13)

(2.19), we derive:

Jm;1 ¼
X
s>nr

s kþs c1cs�1 � k�mcs
� �

, k�m
c1

c1;eq

XV
s>nr

s
cs;eq

cs�1;eq
cs�1 � mCm

 !
ðA:7Þ
Again, the three concentrations appearing under the sign of

the latter sum are substituted from Eq. (2.11), and n = s�1�m

is introduced. Thus, we obtain a counterpart of Eq. (A.6):XV
s>nr

s
cs;eq

cs�1;eq
cs�1

,
Cmffiffiffiffiffiffi
2p

p
r
exp

r2 � r2
eq

2r4
eq

� m� meq

r2
eq

 ! XV
n¼�V

nþ mþ 1ð Þ


 exp � 1

2r2
nþ r2

r2
eq

 !2
2
4

3
5 ,Cm m�

r2 � r2
eq

r2
eq

 !


 exp
r2 � r2

eq

2r4
eq

� m� meq

r2
eq

 !
ðA:8Þ

Substituting the latter result into Eq. (A.7), we arrive at Eq.

(2.21). To derive Eq. (2.28), we will use a proof by

mathematical induction. For s =2, Eq. (2.28) reduces to:

c2

c2;eq
¼ c21

c21;eq
� J

k�2 c2;eq
ðA:9Þ

which is equivalent to

J ¼ k�2 c2;eq
c21
c21;eq

� k�2 c2 ¼ kþ2 c
2
1 � k�2 c2 ðA:10Þ

At the last step we applied Eq. (2.8). In view of Eq. (2.7),

Eq. (A.10) is satisfied, because it is a special case of Eq. (2.7)

for s = 2. Next, assuming that Eq. (2.28) is valid for s= 2,

3, . . .,n�1, our aim is to prove that Eq. (2.28) is valid also for

s=n (n�nr). From Eqs. (2.7) (2.8) (2.27), for s =n, we obtain:

cn

cn;eq
¼ kþn c1cn�1

k�n cn;eq
� J

k�n cn;eq
¼ c1cn�1

c1;eqcn�1;eq
� J

k�n cn;eq
ðA:11Þ

In the latter equation, we substitute cn�1 /cn�1,eq from Eq.

(2.28) for s =n�1. As a result, we obtain:

cn

cn;eq
¼ cn1

cn1;eq
� J

c1

c1;eq

Xn�3

i¼0

c i1
ci1;eq

1

k�n�1�icn�1�i;eq
� J

k�n cn;eq

¼ cn1
cn1;eq

� J
Xn�2

j¼1

c
j
1

c
j
1;eq

1

k�n�jcn�j;eq
� J

k�n cn;eq

¼ cn1
cn1;eq

� J
Xn�2

j¼0

c
j
1

c
j
1;eq

1

k�n�jcn�j;eq
ðA:12Þ

where we have substituted j= i +1. Hence, Eq. (2.28) is valid

for all values of s, for which Eq. (2.27) holds, i.e., for

2� s�nr.

Appendix B. Derivation of some equations in Section 3

Using Eq. (3.1), we obtain the linearized version of Eq.

(2.16) in the form:

Cm;eq
dmp

dt
þ meq

dCm;p

dt
þlIIm;1 ¼ nrJ þ Jm;0 ðB:1Þ
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Next, we multiply Eq. (3.4) by meq and subtract the result

from Eq. (B.1). Thus we obtain Eq. (3.5). Furthermore,

substituting Eq. (3.1) into Eq. (2.17), and expanding in series

for small perturbations, we get:

m2
eq þ r2

eq

� � dCm;p

dt
þ 2meqCm;eq

dmp

dt
þ 2reqCm;eq

drp

dt

þlIIm;1 ¼ n2r J � Jm;0 þ 2Jm;1 ðB:2Þ

To eliminate the perturbations Cm,p and mp, we multiply Eq.

(3.4) by meq
2 +req

2 and Eq. (3.5) by 2meq, and subtract the

results from Eq. (B.2). In this way we derive Eq. (3.6).

Setting s =nr into Eq. (2.11), we obtain:

cnr ;eq ¼
Cm;eqffiffiffiffiffiffi
2p

p
req

exp �
nr � meq

� �2
2r2

eq

" #
ðB:3Þ

A substitution of Eq. (B.3) into the right-hand side of Eq.

(2.32), after some transformations, yields:

Cmreq

rCm;eq
exp

nr � meq

� �2
2r2

eq

� nr � mð Þ2

2r2

" #
, 1þ nrc1;p

c1;eq

� RJ ðB:4Þ

where we have introduced the notation:

Ru
Xnr�2

i¼0

1

k�nr�icnr�i;eq
¼
Xnr
j¼2

1

k�j cj;eq
ðB:5Þ

At the last step, we made the replacement j =nr� i. We

recall that J represents a perturbation, and for this reason the

equilibrium value of the sum in Eq. (2.32) has been taken.

Finally, in Eq. (B.4) we expand in series for mYmeq and

rYreq. As a result, we obtain Eq. (3.9).

Appendix C. Matrix elements in Section 4

The relaxation of a uniform perturbation of a micellar

solution is described by the linear system of Eq. (4.29). All

elements of the matrix aij can be expressed in terms of the

system parameters given in Eq. (4.32). It is convenient to

introduce the following auxiliary parameters:

yumeq

h
b
; zu

meq

req

;Qu meq � wreq

� � b
S
; smu

Smeqr2
eq

Smeq þ r2
eqb

ðC:1Þ

In fact, sm represents the dimensionless relaxation time of

the micelle mean aggregation number, m; see Eq. (4.45). Then,

the matrix elements are expressed as follows:

acc ¼ � Qþ 1ð Þy; acm ¼ wz� Qð Þy ðC:2Þ

acr ¼ � w2 � 1
� �

y; amc ¼ � w

z
acc �

b
Smeq

ðC:3Þ

amm ¼ � w

z
acm � 1

sm
ðC:4Þ
amr ¼ � w

z
acr þ

1

r2
eqmeq

ðC:5Þ

arc ¼
acr

2
Qþ 1ð Þ þ b

2r2
eqS

ðC:6Þ

arm ¼ acm

2
w2 � 1
� �

þ z

2reqsm
ðC:7Þ

arr ¼ � y

2
w2 � 1
� �2 � 1þ 4r2

eq

2r4
eq

ðC:8Þ

To determine the three dimensionless characteristic relaxa-

tion times, one should substitute Eqs. (C.2) (C.3) (C.4) (C.5)

(C.6) (C.7) (C.8) into Eq. (4.31), and then to solve the cubic

equation, Eq. (4.30).

Alternatively, because this is a standard problem for

determining the eigenvalues, kc, km, and kr, and eigenvectors,

f (c), f (m), and f (r), of the matrix aij, one could use some

available program package. For example, the program ‘‘Math-

ematica 5.0’’ provides a module ‘‘Eigensystem’’ for the

calculation of the eigenvalues and the components of the

eigenvectors, fi
( j). Another module, FLinearSolve’’, could be

applied to calculate the coefficients Xi
(k), which appear in Eq.

(4.38). This, in principle, solves the problem.
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