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Abstract

Here, we apply the detailed theoretical model of micellar kinetics from part 1 of this study to the case of surfactant adsorption at a

quiescent interface, i.e., to the relaxation of surface tension and adsorption after a small initial perturbation. Our goal is to understand why for

some surfactant solutions the surface tension relaxes as inverse-square-root of time, 1 / t1 / 2, but two different expressions for the characteristic

relaxation time are applicable to different cases. In addition, our aim is to clarify why for other surfactant solutions the surface tension relaxes

exponentially. For this goal, we carried out a computer modeling of the adsorption process, based on the general system of equations derived

in part 1. This analysis reveals the existence of four different consecutive relaxation regimes (stages) for a given micellar solution: two

exponential regimes and two inverse-square-root regimes, following one after another in alternating order. Experimentally, depending on the

specific surfactant and method, one usually registers only one of these regimes. Therefore, to interpret properly the data, one has to identify

which of these four kinetic regimes is observed in the given experiment. Our numerical results for the relaxation of the surface tension,

micelle concentration and aggregation number are presented in the form of kinetic diagrams, which reveal the stages of the relaxation process.

At low micelle concentrations, ‘‘rudimentary’’ kinetic diagrams could be observed, which are characterized by merging of some stages. Thus,

the theoretical modeling reveals a general and physically rich picture of the adsorption process. To facilitate the interpretation of experimental

data, we have derived convenient theoretical expressions for the time dependence of surface tension and adsorption in each of the four

regimes.

D 2005 Elsevier B.V. All rights reserved.
Keywords: Micellar surfactant solutions; Fast and slow micellization processes; Adsorption kinetics of surfactants; Dynamic surface tension; Diffusion in micellar

surfactant solutions
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1. Introduction

In the first part of this study [1], we proposed a theoretical

model, which generalizes previous models of micellization

kinetics in the following aspects. First, we did not apply the

simplifying assumption that the width of the micellar peak is

constant under dynamic conditions. Second, we avoided the

use of the quasi-equilibrium approximation (local chemical

equilibrium between micelles and monomers). Third, we

reduced the problem to a self-consistent system of four

nonlinear differential equations. Its solution gives the concen-

tration of surfactant monomers, total micelle concentration,

mean aggregation number, and half-width of the micellar peak

as functions of the spatial coordinates and time. Further, we

checked the predictions of the model for the case of spatially

uniform bulk perturbations (such as jumps in temperature,

pressure or concentration). A detailed literature review could

be found in [1].

Here, we apply the detailed model from [1] to investigate

theoretically the problem about the kinetics of surfactant

adsorption from micellar solutions. Many works have been

dedicated to this subject [2–20]. The first theoretical model

was developed by Lucassen [2] for the case of periodically

expanding and contracting liquid surface. In this model, a

complete local dynamic equilibrium between monomers and

micelles has been assumed: the equilibrium mass-action law for

the micelle reactions has been used. In such case, the surfactant

transfer can be described as conventional diffusion-limited

adsorption characterized by an apparent diffusion coefficient,

DA , which depends on the micellar concentration and

aggregation number [11,12]. Because of the assumption for

quasi-equilibrium between monomers and micelles, DA is

independent of the rate constants of the fast and slow

micellization processes: km
� and kS

�; for the definitions of the

latter constants—see [1]. Correspondingly, if the quasi-equi-

librium model by Lucassen [2] is applicable to a given

experimental situation, then km
� and kS

� cannot be determined

from the obtained data for the dynamic surface tension or

adsorption.

Later, Joos et al. [10–13] confirmed experimentally that in

some cases the adsorption from micellar solutions could be

described as diffusion-limited process characterized by an

apparent diffusion coefficient, DA, but the experimental data

were not in agreement with the expression for DA that follows

from the Lucassen’s model [2]. An alternative semiempirical

expression for DA was proposed [11,12], which agrees well

with the experiment, but lacks a theoretical basis.
In subsequent studies, Joos et al. [14,15] established that

sometimes the dynamics of adsorption from micellar solutions

exhibits a completely different kinetic pattern: the interfacial

relaxation is exponential, rather than inverse-square-root, as it

is for the diffusion-limited kinetics. The theoretical develop-

ments [14,15,19] revealed that the exponential relaxation is

influenced by the kinetics of the micellization processes, and

from its analysis one could, in principle, determine the rate

constants km
� and kS

�. Thus, the physical picture becomes rather

complicated. For example, for the surfactant Triton X-100 one

obtains different types of adsorption kinetics depending on the

used experimental method: exponential kinetics in the case of

the inclined-plate method [14], and inverse-square-root kinetics

for the maximum-bubble-pressure method [13].

Our main goal in the present paper is to give a general

picture of the consecutive regimes of relaxation of the surface

tension of a micellar surfactant solution. For this goal, we

carried out a computer modeling of the adsorption process,

based on the general system of equations derived in [1]. This

analysis reveals the existence of four different consecutive

regimes of interfacial relaxation for the same micellar

surfactant solution: two exponential regimes and two inverse-

square-root regimes, following one after another in alternating

order. Experimentally, depending on the specific surfactant and

method used, one typically registers one of these four regimes.

Then, one has to identify which is the regime to interpret the

obtained experimental results. To facilitate the data interpreta-

tion, we have derived convenient theoretical expressions for the

time dependence of the surface tension and adsorption for each

separate regime.

The paper is organized as follows. In Section 2, we give the

general formulation of the problem for surfactant adsorption

from micellar solution upon small perturbations, including the

convective term in the mass-transport equations. In Section 3,

we specify and simplify the basic set of differential equations

and boundary conditions for the case of adsorption at a

quiescent interface, after a small initial perturbation. The

analysis of this case is the main subject of the present article.

Numerical results for the relaxation of the surface tension,

micelle concentration and aggregation number are presented in

the form of kinetic diagrams, which reveal the stages of the

relaxation process. In Section 4, in the case of regular kinetic

diagram, we consider separately each of the four relaxation

regimes and derive appropriate expressions describing theoret-

ically the time dependence of the interfacial properties. Section

5 is devoted to the ‘‘rudimentary’’ kinetic diagrams, which

could be observed at low micelle concentrations and/or at great
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values of the rate constant of the fast micellization process.

Merging or missing of some kinetic regimes characterizes such

rudimentary diagrams.

The theoretical modeling of the dynamic surface tension of

micellar surfactant solutions reported here reveals a general and

physically rich picture of the adsorption process, which could

find a direct application for the interpretation of experimental

data.

2. General formulation of the problem for small

perturbations

Let us first consider the general case of a planar fluid

interface, which is subjected to uniform expansion and/or

compression. Then, the interfacial area, A, becomes a function

of time, t. We will assume that the initial surface area A0 and

the time dependence, A=A(t), are known. The rate of surface

dilatation, ȧ(t) and, the surface dilatation, ȧ(t), are defined as

follows [21–24]:

ȧa tð Þu 1

A

dA

dt
¼ da tð Þ

dt
; a tð Þ ¼

Z t

0

ȧadt ¼ ln
A tð Þ
A0

ð2:1Þ

One of the two neighboring fluid phases is assumed to be a

micellar surfactant solution. The dilatation of the fluid interface

gives rise to surfactant adsorption and diffusion. The diffusion

flux leads to exchange of surfactant between the bulk and the

interface. Both surfactant monomers and aggregates take part

in the diffusion process. In addition, the aggregates (the

micelles) exchange monomers between each other and with

the surrounding solution (Fig. 1). As demonstrated in the first

part of this study, this complex process can be adequately

described by four functions of the position vector, r, and time,

t. These are the concentration of surfactant monomers, c1(r,t);

the concentration of surfactant micelles, Cm(r,t); the mean

aggregation number of the micelles, m(r,t), and the half-width

of the peak in the micellar size distribution (the polydispersity),

r(r,t). A full system of nonlinear differential equations for

determining the latter four functions has been derived in [1].

For small deviations from equilibrium (small perturbations),

this system of equations can be linearized; see Eqs. (3.3)–(3.6)
Fig. 1. Process of surfactant adsorption from micellar solutions. In the

neighborhood of an expanded adsorption monolayer, the micelles release

monomers to restore the equilibrium surfactant concentration at the surface and

in the bulk. The concentration gradients give rise to bulk diffusion of both

monomers and micelles.
in [1]. Furthermore, substituting the expressions for the

diffusion fluxes, Eqs. (2.22), (2.23) and (2.26), and reaction

fluxes, Eqs. (3.7)–(3.9) in [1], the basic set of equation

acquires the form:

Bc1;p

Bt
� ȧaz

Bc1;p

Bz
¼ Do

S

B
2c1;p

Bz2
� k�S meq � wreq

� �
� c1;eq

S
f s � k�m

bc1;eq
meqS

fm ð2:2Þ

BCm;p

Bt
� ȧaz

BCm;p

Bz
¼ Bm

Do

S

B
2Cm;p

Bz2
þ k�S c1;eq fs ð2:3Þ

Bmp

Bt
� ȧaz

Bmp

Bz
¼ Bm

Do

S

B
2mp

Bz2
� k�s

wmeqreq

b
fs þ k�m fm

ð2:4Þ

Brp

Bt
� ȧaz

Brp

Bz
¼ Bm

Do

S

B
2rp

Bz2
þ k�S w2 � 1

� � reqmeq

b
fs

� k�m
2req

fm � k�m
2

r2
eq

rp ð2:5Þ

Here we use the same notations as in the first part of this

study [1]. The subscripts ‘‘eq’’ and ‘‘p’’ mark the equilibrium

values and the perturbations of the respective variables; z is the

spatial coordinate along the normal to the interface (Fig. 1); km
�

is the rate constant of monomer dissociation from the micelles;

kS
� is the rate constant of the slow micelle relaxation process,

see Eq. (4.26) in [1]. S and Do are defined as follows:

Su
Xno
s¼1

s2
cs;eq

c1;eq
; Dou

Xno
s¼1

s2
cs;eq

c1;eq
Ds ð2:6Þ

where the values of the summation index s correspond to the

region of the surfactant monomers and oligomers, s =1, 2, . . .,

no; cs,eq and Ds are the equilibrium concentration and the

diffusivity of the respective species; note that S�1 and

Do�D1. A reasonable approximation is to assume that the

concentrations of the oligomers, cs ,eq for 2� s�no, are

negligible, and then S =1 and Do=D1. In addition, we have

introduced the notation:

BmuSDm=Do ð2:7Þ

where Dm is the diffusivity of the micelles. The parameter b in

Eqs. (2.2)–(2.5) is the equilibrium concentration of surfactant

in micellar form, scaled by the critical micellization concen-

tration, CMC:

bu Ctot � CMCð Þ=CMC ¼ meqCm;eq=c1;eq ð2:8Þ

Ctot is the total surfactant concentration and c1,eq=CMC.

Another equilibrium dimensionless parameter is

wu meq � nr
� �

=req > 1 ð2:9Þ

where nr is aggregation number at the boundary between the

regions of the rare aggregates and the abundant micelles at

equilibrium; req is the polydispersity of the equilibrium micelle
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size distribution; see Fig. 1 in [1]. Finally, the quantities fm and

fs are related to the reaction fluxes of the fast and slow

micellization processes, Jm,0 and J, see [1]:

Jm;0 ¼
k�mbc1;eq
meq

fm; J ¼ k�S c1;eq fs ð2:10Þ

fmu
c1;p

c1;eq
þ rp � reqmp

r3
eq

ð2:11Þ

fsu meq � wreq

� � c1;p
c1;eq

� meqCm;p

bc1;eq
þ wmp

req

� w2 � 1
� � rp

req

ð2:12Þ

In view of Eqs. (2.11) and (2.12), Eqs. (2.2)–(2.5) form a

system of four linear differential equations for determining the

evolution of the perturbations in the four basic parameters of

the system: c1,p(z,t); Cm,p(z,t); mp(z,t), and rp(z,t). It should be

noted also, that the convective terms in Eqs. (2.2)–(2.5), those

containing ȧ , are obtained by using the approximation of van

Voorst Vader et al. [22], vIlc =� ȧ z(flc /flz), where v is

velocity and c is concentration; see also [18] and [25]. The

validity of this approximation has been mathematically proven

in [20,26,27]. This approximation is based on the fact that in

most of the liquids, the thickness of the diffusion boundary

layer is much smaller than the thickness of the hydrodynamic

boundary layer.

To solve system (2.2)–(2.5) we need boundary conditions at

the interface (z =0) and in the bulk of solution (zYV). Based

on the experimental results, it is usually accepted that the

micelles do not adsorb at the interface, and that only the

monomers can adsorb [4–20]. These assumptions lead to the

following mass balance equations at the interface [1]:

BCp

Bt
þ ȧaCeq ¼ Do

Bc1;p

Bz
at z ¼ 0 and t > 0 ð2:13Þ

BCm;p

Bz
¼ 0;

Bmp

Bz
¼ 0;

Brp

Bz
¼ 0 at z ¼ 0 and t > 0

ð2:14Þ

Here C denotes surfactant adsorption; Ceq and Cp=C�Ceq

are its equilibrium value and perturbation. What concerns the

other limit, zYV, the perturbations c1,p(z,t); Cm,p(z,t); mp(z,t),

and rp(z,t) are assumed to vanish in this limit (in the bulk of

solution).

To close the set of boundary conditions, we have to specify

the mechanism of surfactant adsorption. Here we will assume

that the adsorption occurs under diffusion control. This is the

most typical mechanism, although in some cases adsorption

under barrier control could be also observed [15,19,28–34]. In

the case of diffusion-limited adsorption, the subsurface layer of

the solution is assumed to be in equilibrium with the adsorption

layer at the interface. Then, the adsorption is related to the

subsurface concentration of monomers by means of the

equilibrium adsorption isotherm. For small perturbations, we

have:

Cp ¼ hac1;p; hau
BC
Bc1

� �
eq

; at z ¼ 0 and t > 0 ð2:15Þ
Here ha is the so-called adsorption length, which is to be

calculated from the equilibrium surfactant adsorption isotherm,

C(c1). For micellar solutions, ha should be estimated at the

critical micelle concentration, i.e., at c1=CMC.

The general system of equations and boundary conditions

described in the present section can be applied to describe the

dynamics of surfactant adsorption under various dynamic

regimes, corresponding to different experimental methods.

For example, such regimes could correspond to quiescent,

expanding, or oscillating interface. It turns out that the different

dynamic regimes have different characteristic times, and

correspond to different modified versions of the basis system

of equations. For this reason, the different dynamic regimes

demand separate treatment. In this paper, we will focus our

attention on the detailed investigation of the relaxation of a

quiescent interface after an initial small perturbation.

3. Adsorption at a quiescent interface after a small initial

perturbation

The relaxation methods for measurement of dynamic

surface tension [35–40] are based on an initial perturbation

of the fluid interface, followed by diffusion of surfactant

toward the immobile interface, and relaxation of the surfactant

adsorption and the interfacial tension. At the initial moment,

t=0, the deviation from equilibrium is characterized by the

initial perturbation in adsorption, Cp(0)=C(0)�Ceq. For t >0,

the interface is immobile, ȧ =0 and, and the perturbation in

adsorption, Cp(t)=C(t)�Ceq, tends to zero for tYV. In the

case of micellar surfactant solutions and small perturbations,

this relaxation process is described by the system of Eqs.

(2.2)–(2.5), and the boundary conditions, Eqs. (2.13)–(2.15),

where we have to set ȧ =0.

3.1. Dimensionless form of the basic equations

First, let us introduce the following dimensionless variables

and constant parameters:

fu
S

ha
z; su

SDo

h2a
t; Ksu

h2a
SDo

k�S ; Kmu
h2a
SDo

k�m : ð3:1Þ

Here, f, s, Ks, and Km are the dimensionless normal

coordinate, z; time, t, and rate constants of the slow and fast

micellar relaxation processes, kS
� and km

�. Furthermore, it is

convenient to scale the dependent variables as follows:

n1u
ha

Cp 0ð Þ c1;p; ncu
ha

bCp 0ð Þ Cm;p; nmu
hac1;eq

r2
eqCp 0ð Þ mp;

nru
hac1;eq

reqCp 0ð Þ rp ð3:2Þ

Here, n1, nc, nm, and nr are the dimensionless perturbations

in the concentration of surfactant monomers, c1,p; micelle

concentration, Cm,p; micelle mean aggregation number, mp,

and polydispersity of the abundant micelles, rp. It is important

to note that the convenient definitions of the dimensionless

perturbations n1, nc, nm, and nr are different for different
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dynamic problems. Here and in [1], we are using the same

notation for the dimensionless perturbations of the same

variables, despite some differences in the used scaling. This

should not lead to any misunderstandings, because the

treatment of different dynamic problems is completely inde-

pendent here and in [1].

With the help of the above definitions, Eqs. (3.1) and (3.2),

we bring the basic system of Eqs. (2.2)–(2.5), into the

following dimensionless form:

Bn1
Bs

¼ B
2n1
Bf2

� meq � wreq

� � Ks

S
us �

bKm

meqS
um ð3:3Þ

Bnc
Bs

¼ Bm

B
2nc
Bf2

þ Ks

b
us ð3:4Þ

Bnm
Bs

¼ Bm

B
2nm
Bf2

� Ks

wmeq

breq

us þ
Km

r2
eq

um ð3:5Þ

Bnr

Bs
¼ Bm

B
2nr

Bf2
þ Ks w2 � 1

� � meq

2b
us �

Km

2r2
eq

um � 2Km

r2
eq

nr

ð3:6Þ

Here, we have introduced the auxiliary notations.

us ¼
hac1;eq

Cp 0ð Þ fs; um ¼ hac1;eq

Cp 0ð Þ fm ð3:7Þ

In terms of the new variables, defined by Eqs. (3.2) and

(3.7), Eqs. (2.11) and (2.12) acquire the form:

um ¼ hameq

Cp 0ð Þbk�m
Jm;0 ¼ n1 � nm þ nr

r2
eq

ð3:8Þ

us ¼
ha

Cp 0ð Þk�S
J ¼ meq � wreq

� �
n1 � meqnc þ reqwnm

� w2 � 1
� �

nr ð3:9Þ

Eq. (3.8) shows that if nr�0 and n1�nm, then um�0, i.e.,

the system is equilibrated with respect to the fast micelle

relaxation process, Jm,0�0. In addition, Eq. (3.9) implies that if

nr�0, and n1�nc�nm, then us�0, i.e., the system is

equilibrated with respect to the slow micelle relaxation process,

J�0.

For small deviations from equilibrium, the relationships

between interfacial tension, c, and surfactant adsorption, C, as

well as between C and the subsurface concentration of

surfactant monomers, c1(0,t), are linear. Then, in view of Eq.

(3.2), for the relative perturbations of these quantities we have:

c tð Þ � ceq
c 0ð Þ � ceq

¼ C tð Þ � Ceq

C 0ð Þ � Ceq

¼ n1 0; sð Þun1;0 sð Þ ð3:10Þ

see also Eqs. (2.15) and (3.2);n1,0(s) is the dimensionless

perturbation of the subsurface concentration of surfactant

monomers as a function of the dimensionless time, s.
With the help of Eqs. (3.1) (3.2) and (3.10), setting ȧ =0

and we obtain the dimensionless form of the boundary

conditions, Eqs. (2.13) and (2.14):

Bn1
Bs

¼ Bn1
Bf

;
Bnc
Bf

¼ Bnm
Bf

¼Bnr

Bf
¼ 0; at f ¼ 0 and s > 0:

ð3:11Þ

In the bulk of solution (fYV), all perturbations vanish. In

addition, the initial conditions (at t=0) are:

n1 0; 0ð Þ ¼ 1; n1 f; 0ð Þ ¼ 0 for f > 0 ð3:12Þ

nc f; 0ð Þ ¼ nm f; 0ð Þ ¼ nr f; 0ð Þ ¼ 0 for f � 0 ð3:13Þ

The system of differential equations, Eqs. (3.3)–(3.6),

together with the boundary conditions, Eq. (3.11), and the

initial conditions, Eqs. (3.12) and (3.13) can be solved

numerically, as described in Appendix A. The results are

reported below.

3.2. Parameters of the micellar system

To investigate the relaxation of adsorption and surface

tension of micellar surfactant solutions, we calculated numer-

ically the time evolution of the subsurface values (at z =0) of

the parameters of the micellar solution: n1,0(s)Kn1(0,s);
nc,0(s)Knc(0,s); nm,0(s)Knm(0,s), and nr,0(s)Knr(0,s), see

Fig. 2. In our computations, we assigned typical values to the

following constant parameters of the system:

S ¼ 1:1; meq ¼ 60; req ¼ 5; w ¼ 3; Km ¼ 103; Bm ¼ 0:2

ð3:14Þ

The rate constant of the slow process, Ks, is varied. To

illustrate its influence, we obtained numerical data for the

following three values: Km/Ks=10
5 (Fig. 2a); Km/Ks=10

6

(Fig. 2b), and Km/Ks=10
7 (Fig. 2c).

In [1], we developed a general procedure for determination

of the three micellar relaxation times as roots of a cubic

characteristic equation; see Eq. (4.30) in [1]. Two of them, tm
and tr, characterize the fast relaxation process, while the third

one, tc, characterizes the slow relaxation process. In general, tc,

tm and tr are related to the relaxation of the three independent

perturbations: in the micelle concentration, nc; in the micelle

mean aggregation number, nm, and in the micelle polydisper-

sity, nr, respectively. At low micelle concentrations we have

tc > tm> tr, while at high micelle concentrations the two fast

relaxation times exchange their positions: tc> tr > tm; see [1]

for details.

In our computations, we obtain the dimensionless micellar

relaxation times (for details—see below):

si ¼ k�m ti ¼ Kmhi i ¼ c;m; rð Þ ð3:15Þ

Here si , and hi=si /Km are the dimensionless relaxation

times corresponding to the scaling used, respectively, in [1] and

here, see Eq. (3.1). Values of hc, hm, and hr, corresponding to

different Km/Ks and micelle concentration b K (Ctot�CMC)/

CMC, are listed in Table 1. To compute the values in Table 1,



Fig. 2. Time dependence of the perturbations in the subsurface (at z =0)

monomer concentration, n1,0, micelle concentration, nc ,0, mean aggregation

number, nm ,0, and polydispersity, nr,0, for b =100; the other parameters are

given by Eq. (3.14). n1,0 expresses also the dimensionless perturbation in surface

tension and adsorption, see Eq. (3.10). The curves are obtained by numerical

solution of the general system of equations in Section 3.1. (a) Km/Ks=10
5; (b)

Km/Ks=10
6; (c)Km/Ks=10

7. nr ,0, which is similar for (a), (b) and (c), is shown

only in (a). In (c) it is illustrated that the relaxation of n1,0 exhibits two

exponential regimes (AB and CD), and two inverse-square-root regimes (BC

and DE), with different characteristic times, sF, sC, sBC, and sDE (see the text).

hm, hr and hc are the three characteristic micellization times (Table 1).

Table 1

Calculated values of the dimensionless micellar relaxation times, hc, hm, and hr

Relax. time Km/Ks=10
5 Km/Ks=10

6 Km/Ks=10
7

b= 1

hc 5.44�10�2 4.21�10�1 4.12�100

hm 1.82�10�2 1.86�10�2 1.87�10�2

hr 9.41�10�3 1.19�10�2 1.21�10�2

b= 100

hc 1.20�100 1.18�101 1.18�102

hm 6.36�10�4 6.42�10�4 6.43�10�4

hr 1.25�10�2 1.25�10�2 1.25�10�2
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we first calculated sc, sm, and sr using the procedure

developed in [1]. The respective values of hc, hm, and hr are

shown by vertical dashed lines in Fig. 2 to show how they are

related to the stages of the interfacial relaxation. Table 1

indicates that hc is sensitive to the variation of both b and Km/

Ks;hm is sensitive to b, but insensitive to Km/Ks; hr is

insensitive to both b and Km/Ks.
3.3. Numerical results and discussion

The results reported here are obtained by solving numeri-

cally the general system of equations in Section 3.1 by means

of the numerical procedure described in Appendix A. The

calculated curves n1,0(s), nc,0(s), and nm,0(s) are shown in Fig.

2 for a relatively high micelle concentration, b =100. The

perturbation nr,0(s), which is similar for Fig. 2a, b and c, is

shown only in Fig. 2a. Note that n1,0 expresses not only the

perturbation in the subsurface monomer concentration, but also

the perturbations in the surface tension and adsorption, see Eq.

(3.10).

The general picture in a regular kinetic diagram (Fig. 2) is

the following. At the initial stage (denoted by A) the

perturbation of the subsurface concentration of monomers is

n1,0�1, while the other perturbations, nc,0, nm,0, and nr,0, are

�0. In the limit of long times, sYV, all perturbations become

zero again. For this reason, nc,0, nm,0, and nr,0 have extremum,

while n1,0 monotonically decays with time. Note, that the

minimum of nr,0 and the maximum of nc,0 correspond to the

respective micellar relaxation times, hr and hc. In contrast, the

maximum of nm,0(s) appears at smhm.
The most important feature of the relaxation curves (Fig. 2)

is that nm,0 merges with n1,0 at a given point, denoted by B,

while nc,0 merges with n1,0 (and nm,0) at another point, denoted

by D. The moments of time, corresponding to the points B and

D, will be denoted below by sB and sD, respectively. As seen in
Fig. 2, for s >sB, we have nr,0�0 and n1,0=nm,0. In view of

Eq. (3.8), this means that for s >sB the flux of the fast micelle

relaxation process, Jm,0, is equal to zero. In other words, for

s >sB the monomers and micelles are equilibrated with respect

to the fast relaxation process. It turns out that for a regular

relaxation process sB�2hr
1 / 2, see Eq. (4.9).

In Section 4 we derive asymptotic analytical expressions

describing the regions AB, BC, CD and DE of the relaxation

curve n1,0(s) (Fig. 2). In particular, the point C corresponds to

the moment sC�hc. It turns out that n1,0(s) exhibits two

exponential regimes, AB and CD, and two inverse-square-root

regimes, BC and DE, see Fig. 2b. Expressions for the

respective characteristic adsorption relaxation times, sF, sC,
sBC, and sDE, are also derived.

It should be also noted that in addition to the regular kinetic

diagrams (Fig. 2 and Section 4) one could sometimes observe a

‘‘rudimentary’’ kinetic diagram, characterized by merging or

disappearance of the stages BC and CD, see Section 5.
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4. Stages of a regular kinetic diagram

4.1. Initial relaxation regime AB

For the initial relaxation regime (stage) AB (Fig. 2), we have

nc,0 �nm,0 �nr,0 �0. Hence, the respective terms in Eqs. (3.3)

(3.8) and (3.9) can be neglected. Thus, Eq. (3.3) acquires the

form:

Bn1
Bs

¼ B
2n1
Bf2

� 1þ Rsð Þ2 bKm

meqS
n1 ð4:1Þ

where the parameter Rs characterizes the relative importance of

the slow micellar process with respect to the fast one:

Rsumeq meq � wreq

� �2 Ks

bKm

ð4:2Þ

For the parameter values in Eq. (3.14), we obtain:

Rs ¼ 1:215� 105
Ks

bKm

ð4:3Þ

Thus, for Km/Ks�105 and b =100 (Fig. 2), Eq. (4.3) yields

Rs<<1, and the contribution of the slow process is negligible;

then Rs could be neglected in Eq. (4.1). In contrast, for Km/

Ks=10
5 and b =1 (low micelle concentration, see Section 5),

Eq. (4.3) yields Rs�1, and the contribution of the slow process

becomes considerable.

Eq. (4.1) represents a diffusion equation with a linear

reaction (source) term. Similar equation was first used in the

theory of adsorption from micellar solutions by Rillaerts and

Joos [41], and subsequently applied by many other authors

[9,15,17,19,30,42,43]. The novel information in our Eq. (4.1)

is that the coefficient before n1 in the reaction term is obtained

in explicit form. One sees that this coefficient is related to the

micellar concentration and mean aggregation number, b and

meq; to the width of the micellar peak, w, and to the

dimensionless rate constants of the fast and slow micellar

processes, Km and Ks.

From a kinetic viewpoint, every chemical reaction, irre-

spective of its order, yields a linear reaction term in the case of

small deviations from equilibrium, when the respective term

can be linearized. This approximation is known as pseudo-first-

order-reaction (PFOR) model, which is widely used in

chemical kinetics; see e.g., [44]. Mathematically, Eq. (4.1) is

a linear differential equation for n1. The Laplace transform of

n1 can be easily found, but it is a nontrivial task to find the

original n1 in explicit analytical form. As we are interested in

dynamic surface tension and adsorption, see Eq. (3.10), we will

use the exact solution for n1,0(s) obtained in [19] in a closed

form:

n1;0 sð Þ¼ sF � 1

sF
exp � sF � 1

2
s

� �
þ 2

p

Z V

0

exp � 1

sF
þ s̃s2

� �
s

� �
s̃s2

s̃s2 þ 1=sFð Þ2 þ s̃s2
ds̃s ð4:4Þ

To derive Eq. (4.4), the initial condition, Eq. (3.12), and the

boundary condition for n1(fYV)=0 have been used. Eq. (4.4)
is applicable only for the regime AB; s̃ is an integration

variable; the characteristic relaxation time, sF, and the

parameter, sF, are defined by the expressions:

1

1þ Rsð ÞsF
u

bKm

meqS
,

1

hm
� 1

2hr
; sFu 1þ 4

sF

� �1=2

ð4:5Þ

To obtain the relationship between sF and the two fast

micellar relaxation times, hm and hr, we used Eq. (4.45) in [1].

At sufficiently high micelle concentrations, we have hm<<hr

and Rs<<1; then sF�hm.
For short times, s<<1, Eq. (4.4) has a simple asymptotics,

which coincides with the respective asymptotics for diffusion-

controlled adsorption, see [19] and [45]:

n1;0 ¼ 1� 2
s
p

	 
1=2
þ s þ > ð short� time asymptoticsÞ

ð4:6Þ

Eq. (4.6) implies that the time limiting factor at short times

is the diffusion of surfactant monomers; see the definition of s
in Eq. (3.1).

The long-time (for sYV) asymptotics of Eq. (4.4) is [19]:

n1;0¼
sF � 1

sF
exp � sF�1

2
s

� �
þ > ðlong� time asymptoticsÞ

ð4:7Þ

where the higher order terms are neglected. In particular, for 4/

sF<<1, we have (sF�1)/2 �1/sF. Then, Eq. (4.7) reduces to:

n1;0 ,
2

sF
exp � s

sF

� �
þ > for

4

sF
<< 1

� �
ð4:8Þ

Thus, in contrast with the short-time limit, Eq. (4.6), the

long-time limit, Eqs. (4.7) and (4.8), is affected by the presence

of micelles through sF, which is related to the characteristic

times of the fast micellar process, hm and hr, see Eq. (4.5).

Moreover, Eqs. (4.7) and (4.8) predict exponential decay of the

perturbation n1,0(s), instead of the much slower, inverse-

square-root decay for concentrations below the CMC [45].

Such an exponential decay has been experimentally detected

for micellar solutions of Triton X-100 by means of the

inclined-plate method, see [14] and [19]. From the fits of

experimental data, one can determine sF and then from the

slope of the plot 1 /sF vs. b, one could obtain the rate constant

of the fast process, Km; see Eq. (4.5) and [19].

It is important to note that the simplified model, based on

Eq. (4.1), and its solution, Eq. (4.4), is valid only during the

stage AB (Fig. 2). After the point B (for s >sB), where the

fast micellar process attains equilibrium, the dependence

n1,0(s) could not be dependent on the kinetic parameter sF.
It turns out that for s > sB, the exponential decay is

transformed into inverse-square-root decay; see Section 4.3.

In other words, Eqs. (4.4), (4.7) and (4.8) could be applied

only for s <sB.
Analyzing the Laplace transforms of Eqs. (3.5) and (3.6),

along with Eq. (3.8), and comparing the different time-scales



Fig. 3. Comparison of the approximate analytical solution, Eq. (4.4), the dashed

lines, with the exact numerical solution of the system in Section 3.1, the solid

lines. The values of Km and Km/Ks are denoted in the figure; the other

parameters are given by Eq. (3.14).
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with the numerical results for sB, we arrived at the following

semi-empirical expression:

sB ¼
2r2

eq

Km

 !1=2

¼ 2h1=2r ð4:9Þ

See Eq. (4.45) in [1] for hr. The above expression is related

to the factor Km/(2r
2
eq) that appears before um in Eqs. (3.5) and

(3.6).

In Fig. 3, the integral asymptotic solution, Eq. (4.4), the

dashed curves, is checked against the exact solution of the

general system of equations in Section 3.1 (the full curves).

One sees that for the lower values of Km (1 and 10) there is an

excellent agreement between the two types of curves. On the

other hand, for Km=1000 the agreement is not so good. In such

cases, the exact numerical solution (Section 3.1) should be

used. On the other hand, in Fig. 3 the exact and asymptotic

curves merge for small s. Hence, the short-time asymptotics,

Eq. (4.6), has a greater range of validity with respect to the

values of the rate constants Km and Ks.

4.2. Equilibrated fast micellar process: region BCDE

As mentioned above, for s >sB we have nr,0�0 and

n1,0=nm,0, and consequently, the reaction flux of the fast

micellar process is Jm,0=0, see Eq. (3.8) and Fig. 2. In other

words, micelles and monomers are equilibrated with respect to

the fast process along the whole region BCDE (Fig. 2). From

the viewpoint of the theoretical description, nr,0 �0 means that

in the general system of equations we could skip Eq. (3.6).

Furthermore, n1,0=nm,0 implies that Eqs. (3.3) and (3.5) could

be combined into a single mass balance equation. To eliminate

the terms with um, we multiply Eq. (3.5) by br2
eq/(meqS) and

sum the result with Eq. (3.3):

B

Bs
n1 þ

br2
eq

meqS
nm

 !
¼ B

2

Bf2
n1 þ

br2
eq

meqS
Bmnm

 !
� meq

Ks

S
us

ð4:10Þ
The boundary condition for Eq. (4.10) requires a special

derivation. For this goal, let us consider a small cylinder of

height, L, and bases parallel to the interface. Integrating Eq.

(4.10) for 0�f�L, along with the boundary conditions fln1 /

flf =fln1 /fls and flnm /f =0 at f =0 (see Eq. (3.11)), yields:Z L

0

B

Bs
n1 þ

br2
eq

meqS
nm

 !
þ meq

Ks

S
us

" #
df

¼ B

Bf
n1 þ

br2
eq

meqS
Bmnm

 !����
f¼L

� Bn1
Bs

����
f¼0

ð4:11Þ

Next, in Eq. (4.11) we make the transition LY0 and use the

relationship nm�n1, which is fulfilled in the region BCDE

(Fig. 2). Thus, we obtain the boundary condition in the form:

Bn1
Bs

¼ 1þ
br2

eq

meqS
Bm

 !
Bn1
Bf

at f ¼ 0 and s > sB ð4:12Þ

Furthermore, using again the relationships nr,0=0 and

n1,0=nm,0, along with Eq. (3.9), we bring the mass-transport

Eqs. (4.10) and (3.4) into the form:

1þ
br2

eq

meqS

 !
Bn1
Bs

¼ 1þ
br2

eq

meqS
Bm

 !
B
2n1
Bf2

�
m2

eqKs

S
n1�ncð Þ

ð4:13Þ

Bnc
Bs

¼ Bm

B
2nc
Bf2

þ meqKs

b
n1 � ncð Þ ð4:14Þ

Thus, we replace the general system, Eqs. (3.3)–(3.6) and

the boundary condition Eq. (3.11), with a simplified boundary

problem consisting of Eqs. (4.12)–(4.14). In [9], the model

based on the latter simplified system is called ‘‘diffusion

affected by the slow relaxation process’’; see Eqs. (3.15a) and

(3.15b) in [9]. Note, however, that the correct boundary

condition for the simplified system is Eq. (4.12), rather than

fln1 /flf =fln1 /fls, which has been used in [9]. Joos et al.

[11,12], were the first who derived the correct boundary

condition for the case of monodisperse micelles, which is

analogous to Eq. (4.12). Finally, we recall that the simplified

model, based on Eqs. (4.12)–(4.14), is applicable only for

s >sB (equilibrated fast micellar process).

4.3. Relaxation regime BC

The relaxation regime BC (Fig. 2), that occurs at sB<s<sC,
is a sub-domain of the greater region BCDE considered in the

previous subsection. Here, sC can be identified with the

characteristic time of the slow micellar relaxation process:

sCuhc ,
br2

eq

m3
eqKs

ð4:15Þ

At the last step we have used Eq. (4.43) in [1] for b >>1 and

m2
eq>>r2

eq. For s <sC, the slow micellar process has not yet

been activated. For this reason, in the region BC we have

nc <<1, and the reaction flux due to the slow process gives a
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negligible contribution in the mass balance of surfactant. Then,

we could skip Eq. (4.14) and neglect the last term in Eq. (4.13),

which acquires the form:

1þ
br2

eq

meqS

 !
Bn1
Bs

¼ 1þ
br2

eq

meqS
Bm

 !
B
2n1
Bf2

ð4:16Þ

Eq. (4.16) has to be solved in combination with the

boundary condition, Eq. (4.12). This mathematical problem is

analogous to the known kinetic problem for diffusion-limited

adsorption below the CMC [45]. In view of the initial

condition, Eq. (3.12), the solution of this problem reads:

n1;0 sð Þ ¼ exp s=sBCð Þerfc s=sBCð Þ1=2
	 


ð4:17Þ

where erfc(x) is the complementary error function [46], and

1

sBC
¼ 1þ

br2
eq

meqS

 !
1þ

br2
eq

meqS
Bm

 !
ð4:18Þ

Because in the region BC we have s /sBC>sB /sBC>>1, we
have to use only the asymptotic form of Eq. (4.17), viz.

n1;0 sð Þ, sBC
ps

	 
1=2
sB < s < sCð Þ ð4:19Þ

In other words, in the region BC the relaxation process is

described as diffusion controlled, with an inverse-square-root

dependence of time, Eq (4.19). Note that the characteristic

time, sBC, Eq. (4.18), depends on the diffusion coefficients

and the equilibrium parameters, but it is independent of the

rate constants of the fast and slow micellar processes, Km

and Ks.

In the case of diffusion-controlled adsorption below the

CMC, the characteristic relaxation time is tr=ha
2 /D, where D

is diffusivity. In analogy with the latter relationship, for the

micellar solution one could define an apparent surfactant

diffusivity for the region BC: DBCKha
2 / tBC=SDo /sBC, where

tBC is the dimensional time, corresponding to sBC; see Eq.

(3.1). Thus, the multiplication of Eq. (4.18) by SDo yields:

DBC ¼ SDo 1þ
br2

eq

meqS

 !
1þ

br2
eq

meqS
Bm

 !
ð4:20Þ

If we set meqS /r
2
eq �1, Eq. (4.20) reduces to the semi-

empirical expression for the effective diffusivity in a micellar

solution, obtained by Joos et al. [11,12]. Indeed, for typical

parameter values, meq=60, req=8, and S =1.1, we really get

meqS /req
2 �1.

Experimentally, an inverse-square-root dependence of time,

Eq. (4.19), has been observed in a number of studies on

kinetics of adsorption from micellar surfactant solutions. Such

dependence has been established for the nonionic surfactant

Brij 58 by means of the dynamic drop-volume method [10,11],

and by means of the stripe method [12]. Analogous results

have been obtained for the surfactant Triton X-100 by means of

the maximum-bubble-pressure method [13]. In particular, a

good agreement between experiment and theory (Eq. (4.20)

with meqS /r
2
eq �1) was reported in [12]. Our analysis indicates
that the adsorption kinetics detected in these experiments

corresponds to the kinetic regime BC (Fig. 2).

4.4. Relaxation regime DE

The theoretical analysis of the relaxation regime DE is

analogous to that of BC. (The intermediate region CD is

considered in Section 4.5 below.) After the point D, i.e., for

s >sD, we have nc,0=nm,0=n1,0, and nr,0�0 (Fig. 2). The

substitution of the latter relationships into Eqs. (3.8) and (3.9)

leads to the conclusion that the reaction fluxes of both the fast

and slow micellar processes are equal to zero: um=us=0 for

s >sD. In other words, the micelles are completely equilibrated

with the monomers. In such a case, Eqs. (3.3)–(3.5) can be

combined into a single mass balance equation for the

surfactant. For this goal, we multiply Eq. (3.4) by meqb /S,

and sum it with Eq. (4.10). The result reads:

B

Bs
n1 þ

br2
eq

meqS
nm þ meqb

S
nc

 !

¼ B
2

Bf2
n1 þ

br2
eq

meqS
Bmnm þ meqb

S
Bmnc

 !
ð4:21Þ

Following the derivation of Eq. (4.12), we integrate Eq.

(4.21) to deduce the boundary condition

Bn1
Bs

¼ 1þBm

r2
eq þ m2

eq

meqS
b

 !
Bn1
Bf

at f¼ 0 and s > 0 ð4:22Þ

Furthermore, in Eq. (4.21) we substitute nc,0=nm,0=n1,0,
and obtain the combined mass balance equation for the

surfactant in the kinetic region DE:

1þ b
r2
eq þ m2

eq

meqS

 !
Bn1
Bs

¼ 1þ b
r2
eq þ m2

eq

meqS
Bm

 !
B
2n1
Bf2

ð4:23Þ

Eq. (4.23) has to be solved in combination with the

boundary condition, Eq. (4.22). Again, this mathematical

problem is similar to the known kinetic problem for diffu-

sion-limited adsorption below the CMC [45]. In the same way,

as in Section 4.3, we derive analogues of Eqs. (4.18) (4.19) and

(4.21):

1

sDE
u 1þ b

r2
eq þ m2

eq

meqS

 !
1þ b

r2
eq þ m2

eq

meqS
Bm

 !
ð4:24Þ

n1;0 sð Þ, sDE
ps

	 
1=2
s > sDð Þ ð4:25Þ

DDE ¼ SDo 1þ b
r2
eq þ m2

eq

meqS

 !
1þ b

r2
eq þ m2

eq

meqS
Bm

 !

ð4:26Þ

Thus, in the region DE the relaxation process is described as

diffusion controlled, with an inverse-square-root dependence of
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time, Eq. (4.25). Note that the characteristic time, sDE, depends
on the diffusion coefficients and the equilibrium parameters,

but it is independent of the rate constants of the fast and slow

micellar processes, Km and Ks; see Eq. (4.24).

For micellar systems we typically have S�1, Do�D1, and

m2
eq>>r2

eq. Then, Eq. (4.26) reduces to:

DDE ,D1 1þ bmeq

� �
1þ bmeqBm

� �
ð4:27Þ

An expression analogous to Eq. (4.27) has been derived by

Lucassen [2] for a model assuming monodisperse micelles of

aggregation number meq. He found a good agreement of this

model with experimental data for adsorption of the nonionic

surfactants C12E6 and C14E6 at a liquid interface that is

subjected to small sinusoidal compression and expansion

[2,3].

Because m2
eq>>r2

eq, the dependence DDE(b), predicted by

Eq. (4.26) is much stronger than the dependence DBC(b),
predicted by Eq. (4.20). Of course, the same is true for the

dependencies sDE(b) and sBC(b), given by Eqs. (4.24) and

(4.18). The latter fact enables one to easily distinguish

between the regimes BC and DE (both of them corresponding

to inverse-square-root time dependence), when interpreting a

set of experimental data for the dependence of the apparent

diffusivity (or relaxation time) on b. For example, Joos et al.

[10–12] established a considerable disagreement between

their experimental data and the Lucassen’s Eq. (4.27). The

reason is that the data by Joos et al. correspond to the regime

BC, while the Lucassen’s Eq. (4.27) is derived for the regime

DE (the two regimes have not been distinguished at that

time).

4.5. Compound asymptotic expression for the region BCDE

In Appendix B, from Eqs. (4.13) and (4.14) we have derived

a compound asymptotic expression, which describes the

relaxation kinetics in the whole region BCDE:

n1;0 ¼
sDE
ps

	 
1=2
þ sBC

ps

	 
1=2
exp � s

sC

� �
s > sB; b >> 1ð Þ

ð4:28Þ

For large s, the exponential function is zero, and Eq. (4.28)

reduces to Eq. (4.25) (regime DE). For s/sC<<1, the

exponential function is equal to 1, and Eq. (4.28) reduces to

Eq. (4.19) (regime BC), because sBC>>sDE. Finally, for

intermediate values of s, we have an exponential transition

between the regimes BC and DE (Fig. 2):

n1;0,
sBC
ps

	 
1=2
exp � s

sC

� �
regimeCD; sC < s < sDð Þ

ð4:29Þ

Note that in regime CD the relaxation kinetics is influenced

by the rate constant of the slow micellar process, Ks, through

sC; see Eq. (4.15).

Eq. (4.28) allows one to determine the time moment sD, i.e.,
the position of the point D, which represents the boundary

between the regimes CD and DE (Fig. 2). Let us define sD as
the value of s, for which the two terms in the right-hand side of

Eq. (4.28) are equal. Thus, we obtain:

sDusCln
sBC
sDE

� �1=2

� 1

" #
, 2sCln

meq

req

� �
: ð4:30Þ

In Fig. 4 we compare the exact numerical solutions of the

general system in Section 3.1, and of the simplified system,

Eqs. (4.12)–(4.14). The three curves correspond to different

values of Km/Ks; the other parameters are given by Eq. (3.14).

The curves calculated by using the general and the simplified

systems of equations are in excellent agreement: they differ

only for s <sB (on the left of the point B in Fig. 4), where the

simplified system is not valid by presumption. For the same

parameter values, we calculated n1,0(s) by using the compound

asymptotic expression, Eq. (4.28). The results were practically

identical with those obtained by numerical solution of the

simplified system, Eqs. (4.12)–(4.14): the respective calculated

curves coincide in Fig. 4. This confirms that Eq. (4.28) holds

with high precision in the whole relaxation region BCDE.

The vertical dashed lines in Fig. 4 correspond to the time

moment sD, calculated by means of Eq. (4.30) for each of the

three curves in the figure. The respective three values, sD1, sD2,
and sD3, mark the positions of the boundary points, D1, D2, and

D3, for the three curves.

4.6. Discussion: ‘‘fast’’ and ‘‘slow’’ surfactants and experimen-

tal methods

We will call ‘‘fast’’ surfactant an amphiphilic component,

which adsorbs quickly at the interface. Likewise, a ‘‘fast’’

experimental method for dynamic surface tension measurement

is a method, which allows one to detect early stages of the

adsorption kinetics. Here the use of the terms ‘‘fast’’ and

‘‘slow’’ is relative: a method, which is ‘‘slow’’ for a given

surfactant, could be ‘‘fast’’ for another surfactant.
t



Fig. 5. Time dependence of the subsurface (at z =0) perturbations in monomer

concentration, n1,0, micelle concentration, nc ,0, mean aggregation number, nm ,0,

and polydispersity, nr ,0, for b =1; the other parameters are given by Eq. (3.14).

The curves are obtained by exact numerical solution of the system of equations

in Section 3.1. (a)Km/Ks=10
5; stages BC and CD are missing; (b) Km/Ks=10

6;

missing stage BC; (c) Km/Ks=10
7; missing stage BC. Analytical expressions

for the asymptotics of n1,0 are shown in (a) and (b). nr ,0, which is similar for (a),

(b) and (c), is shown only in (a). hm, hr and hc are the three characteristic

micellization times (Table 1).
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From this viewpoint, the initial stage of the adsorption

kinetics from micellar solutions, the region AB in Fig. 2, could

be registered for ‘‘slow’’ surfactants by ‘‘fast’’ methods. In

contrast, the region BC in Fig. 2 could be registered for ‘‘fast’’

surfactants by ‘‘slow’’ methods. The regions CD and DE in Fig.

2 are difficult for detection because n1,0(s) is very small in

these regions (n1,0<<1 for s >sC). In principle, the regions CD

and DE could be detected for fast surfactants by slow and very

sensitive methods. (In Section 5 we demonstrate that the

regime DE is easier for detection in the case of ‘‘rudimentary’’

kinetic diagram, which could be observed at lower micelle

concentrations, b, and greater values of the rate-constant, Km,

of the fast micellar process.)

At our best knowledge, until now the initial regime AB has

been observed only for the nonionic surfactant Triton X-100 by

means of the inclined plate method [14,19]. For the same

surfactant, the data by the maximum-bubble-pressure method

[13] correspond to the regime BC, although deviations from

diffusion-limited adsorption has been observed at the greater

frequencies (indications for the regime AB). Thus, it turns out

that the inclined-plate method is faster than the maximum-

bubble-pressure method. Of course, as mentioned above, the

use of the terms ‘‘fast’’ and ‘‘slow’’ is relative here.

Another point, which deserves discussion, is the applicability

of the assumption of small perturbation and, consequently, the

limits of the developed model. Below the CMC, the conven-

tional measurements of dynamic surface tension are often

incompatible with this approximation and one has to take into

account non-linear effects. However, for concentrations above

the CMC, the situation is quite different. The characteristic time

of the fast micellar process is so short that the micelles quickly

damp any perturbation in the surfactant adsorption. For this

reason, most of the experimental methods for interfacial

dynamics (except the fastest ones) produce data in the regime

of small deviations from equilibrium. This is confirmed by the

good agreement of the developed theory (assuming small

deviations) with experimental data obtained by various methods.

For example, in [19] we have demonstrated that data from the

inclined-plate method are in very good agreement with Eq. (4.7)

(regime AB). In addition, in a subsequent paper [47], which

could be considered as Part 3 of the present study, we

demonstrate that Eq. (4.20) complies very well with data for

the dynamic surface tension and adsorption produced by the strip

method [12] and the overflowing cylinder method [20,27,48]

(regime BC). The present theoretical approach could also find

applications for interpretation of experimental results obtained

bymeans of themaximum bubble pressure method [13], the fast-

formed drop method [39,40], methods with oscillating surface

area [2,3,49,50], etc.

5. Stages of a rudimentary kinetic diagram

5.1. Merged or missing regimes BC and CD

In Fig. 5 we present numerical results for n1,0(s), nc,0(s),
nm,0(s), and nr,0(s) obtained by solving the general system of

equations in Section 3.1 by means of the numerical procedure
described in Appendix A. In contrast with Fig. 2, the curves in

Fig. 5 are calculated for a low micelle concentration, b =1; i.e.,

the total surfactant concentration is 2�CMC, see Eq. (2.8).

The perturbation nr,0(s), which is similar for Fig. 5a, b and c, is

shown only in Fig. 5a. As mentioned above, n1,0 expresses not

only the perturbation in the subsurface monomer concentration,

but also the perturbations in the surface tension and adsorption,

see Eq. (3.10).



Fig. 7. Comparison of the solution of the simplified boundary problem, Eqs.

(4.12)– (4.14), the dashed lines, against the exact numerical solution of the

general system in Section 3.1, the solid lines. The perturbation in the subsurface

concentration of monomers, n1,0, is plotted vs. time for b =1 and Km=1000.

Each of the three curves corresponds to a fixed value of Ks /Km denoted in the

figure; the other parameters are given by Eq. (3.14).
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The most important difference between the relaxation curves

in Figs. 5 and 2, is that the intermediate regimes BC and CD in

Fig. 5 are merged or missing. Indeed, the point B has been

defined as the point where nm,0 and n1,0 merge, while the point

D marks the merging of nc,0 and n1,0. In Fig. 5a, the points B

and D coincide, which means that the whole region BCD is

missing in this kinetic diagram. In Fig. 5b and c, the points B

and D are distinct, but there is no region BC in which

n1,0”s�1 / 2; see Section 4.3 above. Hence, the point C cannot

be defined as the boundary between regimes of inverse-square-

root and exponential relaxation; see Fig. 2c. It turns out that the

whole region BCD in Fig. 5b and c can be described by an

integral expression, Eq. (5.6). Such kinetic diagrams (Fig. 5), in

which the intermediate stages BC and CD are merging or

missing, will be termed rudimentary kinetic diagrams.

On the other hand, the initial and final stages, AB and DE,

are always present in the kinetic diagrams, both ‘‘regular’’ (Fig.

2) and ‘‘rudimentary’’ (Fig. 5). The analytical expressions for

n1,0(s) at these stages are the same as given in Sections 4.1 and

4.4, irrespective of whether the diagram is regular or

rudimentary. In particular, the short-time asymptotics, n1,0=

1�2(s /p)1 / 2+ . . . , given by Eq. (4.6), is valid in all cases.

In general, Fig. 5 illustrates that the increase of the ratio Km/

Ks may lead to a transition from rudimentary to regular kinetic

diagram. Another parameter, whose variation may induce such

transition, is the rate constant of the fast micellar process, Km. In

Fig. 6 we show six relaxation curves, n1,0(s), each of them

corresponding to different Km. The curves 1 and 2 exhibit

rudimentary relaxation pattern; the curve 3 is transitional, while

the curves 4, 5 and 6 have regular relaxation pattern. The

boundaries of the separate stages are denoted by A, B4, C4 and

D4 for the curve 4 (Fig. 6). The point D is well distinct for each

curve and is denoted by D1,. . ., D6. Thus, the curves in Fig. 6

indicate that the increase of Km (at fixed other parameters) may

induce a transition from regular to rudimentary kinetic diagrams.
Fig. 6. Plot of the perturbation in the subsurface monomer concentration, n1,0,

vs. time for b =100 and Ks /Km=10
7. Each of the six curves corresponds to a

fixed value of Km denoted in the figure; the other parameters are given by Eq.

(3.14). The curves are obtained by exact numerical solution of the general

system of equations in Section 3.1. For curves 1 and 2 the relaxation pattern is

rudimentary (the stages BC and CD are missing or merging). For curves 4, 5

and 6 the relaxation pattern is regular, with separate stages AB, BC, CD, and

DE. The curve 3 is transitional between regular and rudimentary relaxation.
In addition, the family of curves in Fig. 6 exhibits three

asymptotes, representing straight lines of slope �1 /2, and

corresponding to diffusion-limited adsorption. The upper

asymptote corresponds to micelle free solution; the intermedi-

ate asymptote corresponds to the regime BC, and the lower

asymptote corresponds to the regime DE.

5.2. Description of the region BCD for rudimentary diagrams

The whole relaxation curve, ABCDE in Figs. 2 and 5, can

be described by solving numerically the general system of

equations in Section 3.1. Alternatively one could describe the

whole region BCDE by numerically solving the simpler system

of Eqs. (4.13) and (4.14), along with the boundary condition,

Eq. (4.12). In Fig. 7, the continuous lines n1,0(s) are computed

from the general equations in Section 3.1, while the dashed

lines are calculated by solving numerically Eqs. (4.12)–(4.14).

The dashed and continuous curves practically coincide for

curves 2 and 3, for which Km/Ks=10
6 and 107 (corresponding

to Fig. 5b and c). In contrast, for Km/Ks=10
5, that is curve 1 in

Fig. 7, such excellent agreement is missing. The reason is that

for curve 1 we have a broad region with nm,0(s)<<n1,0(s)
(region AB in Fig. 5a), while the simplified system of Eqs.

(4.12)–(4.14) is based on the assumption that nm,0(s) �n1,0(s).
Note also that in the case of rudimentary kinetic diagrams, Eq.

(4.30) cannot be used to determine the positions of the point D

on the diagram.

Analytical expression for the region BCD of a rudimentary

kinetic diagram (Fig. 5b and c) can be derived in the following

way. We have nc,0<<n1,0 everywhere in the region BCD,

except the vicinity of the point D (see Fig. 5b and c).

Consequently, for this region we can neglect nc in Eq. (4.13):

1þ
br2

eq

meqS

 !
Bn1
Bs

¼ 1þ
br2

eq

meqS
Bm

 !
B
2n1
Bf2

�
m2

eqKs

S
n1

ð5:1Þ
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The boundary condition for Eq. (5.1) is given by Eq. (4.12).

The resulting problem is equivalent to the known pseudo-first-

order-reaction (PFOR) approximation. Let us formally intro-

duce new dimensionless variables:

f̂fu 1þ
r2
eqb

meqS

 !
f; ŝsus=sBC ð5:2Þ

where sBC is defined by Eq. (4.18). Then, Eqs. (5.1) and (4.12)

acquire the form:

Bn1
Bŝs

¼ B
2n1
Bf̂f2

� 1

sS
n1 ð5:3Þ

Bn1
Bŝs

¼ Bn1
Bf̂f

at f̂f ¼ 0 and ŝs > 0 ð5:4Þ

where the characteristic time sS is defined as:

sSu 1þ
br2

eq

meqS

 !2

1þ
br2

eq

meqS
Bm

 !
S

m2
eqKs

ð5:5Þ

Eq. (5.3), along with Eq. (5.4), has a general integral

solution, which is analogous to Eq. (4.4):

n1;0 ŝsð Þ ¼ sB � 1

sB
exp � sB � 1

2
ŝs

� �
þ 2

p

Z V

0

exp � 1

ss
þ s2

� �
ŝs

� �

� s2

s2 þ 1=sSð Þ2 þ s2
ds ð5:6Þ

where

sBu 1þ 4

sS

� �1=2

ð5:7Þ

The asymptotics of Eq. (5.6) for large ŝ is [19]:

n1;0¼
sB � 1

sB
exp � sB � 1

2
ŝs

� �
þ > for exp � ŝs=sSð Þ << 1ð Þ

ð5:8Þ

In particular, for 4 /sS<<1, we have (sB�1) / 2 �1 /sS. Then,
Eq. (5.8) reduces to:

n1;0 ,
2

sS
exp � ŝs

sS

� �
þ > for

4

sS
<< 1

� �
ð5:9Þ

Thus, the region BCD contains a sub-domain with

exponential decrease of n1,0(s) (see Fig. 5b and c). In this

sub-domain, n1,0 decreases much faster than the slower square

root decay in the region DE. For smaller values of ŝ (closer to
the point B), the asymptotic formula, Eq. (5.8), could become

inapplicable, and then one should use the more general Eq.

(5.6).

6. Summary and conclusions

In this paper, the set of equations obtained in [1] is applied

for theoretical modeling of surfactant adsorption from micellar

solutions after a small initial perturbation of the interface. The
proposed model gives a general picture of the interfacial

relaxation kinetics, including the variation of the adsorption

and interfacial tension; see Section 3 and Fig. 2. The derived

general system of kinetic equations (Section 3.1) describes all

stages of the relaxation process at both high and low micelle

concentrations; for both ‘‘fast’’ and ‘‘slow’’ surfactants and

experimental methods; for arbitrary values of all parameters of

the micellar system.

The following kinetic regimes (stages) have been identified

(Fig. 2): AB–exponential asymptotics governed by the fast

micellization process (Section 4.1); BC–inverse-square-root

asymptotics: equilibrated fast process but negligible slow

process, and diffusion limited kinetics (Section 4.3); CD–

exponential asymptotics governed by the slow micellization

process (Section 4.5), and DE–inverse-square-root asympto-

tics: both the fast and slow micellization processes are

equilibrated and the kinetics is diffusion-limited (Section 4.4).

Regime AB can be detected by fast methods; for example,

Triton X-100 by the inclined plate method [14,19]. Regime BC

can be detected by slower methods; for example, Triton X- 100

by the maximum-bubble pressure method [13]. Regimes CD

and DE are difficult for detection because the decaying

perturbation, n1,0(s), has become very small for these regimes

(Fig. 2); in principle, regimes CD and DE could be detected for

fast surfactants by slow and sensitive methods.

Rudimentary kinetic pattern is observed at low micelle

concentration (b �1, Fig. 5) and/or at sufficiently great values

of Km, the rate constant of the fast micellization process (Fig.

6). Merging or missing of the kinetic regimes BC and CD

characterizes such rudimentary diagrams (Section 5).

From the viewpoint of applications, the developed theoret-

ical model could help the experimentalists to identify the

kinetic regime for each specific surfactant solution detected by

a given experimental method. The model provides theoretical

expressions for data processing in each separate regime. The

characteristic relaxation times of the various regimes, such as

sF, sC, sBC, sDE and sS, turn out to be the same, irrespective of

the used experimental method. In other words, Eqs. (4.5) (4.15)

(4.18) (4.24) and (5.5) have a general validity. On the other

hand, the derived equations for the time dependence of surface

tension, n1,0(s), in different regimes are specific to the type of

the used method, in our case, relaxation of a quiescent interface

after an initial perturbation. The application of the present

theoretical approach to other classes of dynamic methods (with

stationary and non-stationary interfacial dilatation, and with

oscillating surface area) will be subjects of subsequent studies.
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Appendix A. Procedure for solving the general system in

Section 3

The linear system of Eqs. (3.3)–(3.6), with boundary

condition (3.11), is solved numerically as follows. First
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Laplace transform, L, is applied; the respective Laplace images

are:

ñn1uL n1½ 
; ñncuL nc½ 
; ñnmuL nm½ 
; ñnruL nr½ 
 ðA:1Þ

Below, the parameter of the Laplace transform will be

denoted by q. The Laplace images of the diffusion Eqs. (3.3)–

(3.6), written in a matrix form, are:

d2ñni

df2
¼ aijñnj i; j ¼ 1; c;m; rð Þ ðA:2Þ

where the coefficients aij are:

a11 ¼ qþ meq � wreq

� �2Ks

S
þ bKm

meqS
;

a1c ¼ � meq meq � wreq

� � Ks

S
ðA:3Þ

a1m ¼ wreq meq � wreq

� � Ks

S
� bKm

meqS
;

a1r ¼ � w2 � 1
� �

meq � wreq

� � Ks

S
þ bKm

r2
eqmeqS

ðA:4Þ

ac1 ¼ � meq � wreq

� � Ks

bBm

; acc ¼
q

Bm

þ meqKs

bBm

ðA:5Þ

acm ¼ � wreq

Ks

bBm

; acr ¼ w2 � 1
� � Ks

bBm

ðA:6Þ

am1 ¼ meq � wreq

� � Ks

Bm

wmeq

breq

� Km

Bmr2
eq

;

amc ¼ � meq

Ks

Bm

wmeq

breq

ðA:7Þ

amm ¼ q

Bm

þ wreq

Ks

Bm

wmeq

breq

þ Km

Bmr2
eq

;

amr ¼ � w2 � 1
� � Ks

Bm

wmeq

breq

� Km

Bmr4
eq

ðA:8Þ

ar1 ¼ � w2 � 1
� �

meq � wreq

� � Ks

Bm

meq

2b
þ Km

2Bmr2
eq

;

arc ¼ meq w2 � 1
� � Ks

Bm

meq

2b
ðA:9Þ

arm ¼ � wreq w2 � 1
� � Ks

Bm

meq

2b
� Km

2Bmr2
eq

ðA:10Þ

arr ¼ q

Bm

þ w2 � 1
� �2 Ks

Bm

meq

2b
þ

Km 1þ 4r2
eq

	 

2Bmr4

eq

ðA:11Þ

To find the solution of the linear system of Eq. (A.2), all

eigenvalues of this system have to be calculated. For that

reason, the solution is assumed proportional to exp(�kf). The
latter expression is substituted into Eq. (A.2) and the
characteristic equation det(aij�k2dij)=0 is obtained, where

dij is the Kronecker delta. For calculation of the four complex

eigenvalues, kk
2, and the components of the eigenvectors, fik

(k =1,c,m,r), we used the QZ algorithm, described in [51,52].

The complex value of kk is chosen in such a way that

Re(kk)>0. Thus, the solution of the system (A.2) can be

presented in the form:

ñini ¼
X

k¼1;c;m;r

fikXkexp � kkfð Þ i ¼ 1; c;m; rð Þ ðA:12Þ

where the unknown constants, Xk, are determined from the

boundary conditions. With the help of the Laplace transform,

Eq. (A.1), the boundary conditions (3.11) are represented in the

form:

qñn1 �
dñn1

df
¼ 1;

dñnc

df
¼ dñnm

df
¼ ñnr

df
¼ 0 at f ¼ 0ð Þ ðA:13Þ

where the initial condition, Eq. (3.12), has been also used.

After substitution of Eq. (A.12) into the boundary conditions,

Eq. (A.13), one obtains the following linear system of equation

for Xk:X
k¼1;c;m;r

qd1i þ kkð ÞfikXk ¼ d1i i ¼ 1; c;m; rð Þ ðA:14Þ

The linear complex system of Eqs. (A.14) is solved using

the LU factorization method; see [53]. We are interested in the

values of the perturbations at the interface (f =0), where Eq.

(A.12) acquires the form:

ñni;0 ¼
X

k¼1;c;m;r

fikXk i ¼ 1; c;m; rð Þ ðA:15Þ

The inverse Laplace transformation of Eq. (A.15) is

performed by numerical inversion, using a Fourier series

approximation; see [54,55].

Appendix B. Solution of the diffusion problem in Section 4

To find the exact solution of the boundary problem (4.12)–

(4.14), we will use Laplace transform with respect to time; see

Eq. (A.1). The Laplace images of Eqs. (4.13) and (4.14) are:

1þ
br2

eq

meqS

 !
qñn1 ¼ 1þ

br2
eq

meqS
Bm

 !
d2ñn1

df2
�

m2
eqKs

S
ñn1 � ñnc

� �
ðB:1Þ

qñnc ¼ Bm

d2ñnc

df2
þ meqKs

b
ñn1 � ñnc

� �
ðB:2Þ

( q is the Laplace parameter). The initial conditions are given by

Eqs. (3.12) and (3.13), while the boundary conditions are Eq.

(4.12) and flnc /flf=0 at f =0. Their Laplace transforms are:

qñn1 � 1 ¼ 1þ
br2

eq

meqS
Bm

 !
dñn1

df
at f ¼ 0 and s > 0 ðB:3Þ
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dñnc

df
¼ 0 at f ¼ 0 and s > 0 ðB:4Þ

Let k1 and k2 be the characteristic values of the system of

differential Eqs. (B.1) and (B.2), chosen in such a way that

k1>0 and k2>0. Then the Laplace transforms of n1 and nc are

obtained in the form:

ñnc ¼
ñnc;0

k2 � k1
k2 exp � k1fð Þ � k1 exp � k2fð Þ½ 
 ðB:5Þ

ñn1 ¼
ñnc;0

k2 � k1ð Þ qþ meqKs

� �
=b þ Bmk1k2Þ

� qþ meqKs

� �
=b � Bmk21

� �

k2 exp

� � k1fð Þ � qþ meqKs=b � Bmk22
� �

k1exp � k2fð Þ
:
ðB:6Þ

Here, ñc,0 and ñ1,0 are the values of nc and n1 at f =0. Note
that Eqs. (B.5) and (B.6) satisfy the diffusion Eqs. (B.1) and

(B.2), and the boundary condition (B.4). The substitution of

Eq. (B.6) into the second boundary condition, Eq. (B.3), yields

an expression for ) ñ1,0( q):

ñn1;0 ¼ qþ Bmk1k2 k1 þ k2ð Þ
qþ meqKs=b þ Bmk1k2

1þ
r2
eqb

meqS
Bm

 !" #�1

ðB:7Þ

Next, we have to determine k1(q) and k2(q). The

characteristic equation for the system of Eqs. (B.1) and (B.2)

represents a biquadratic equation: ak4�bk2+c =0, where

a ¼ 1þ
r2
eqb

meqS
Bm

 !
Bm ðB:8aÞ

b qð Þ ¼ qþ meqKs

b

þ 1þ
2r2

eqb

meqS

 !
qþ m2

eq þ r2
eq

	 
 Ks

S

" #
Bm ðB:8bÞ

c qð Þ ¼ 1þ
r2
eqb

meqS

 !
qþ meq

Ks

b
þ m2

eq þ r2
eq

	 
 Ks

S

" #
q

ðB:8cÞ

With the help of the Viète’s formulas we obtain:

k21 þ k22 ¼ b=a ðB:9Þ

k1k2 ¼ c=að Þ1=2 ðB:10Þ

and then we can determine

k1 þ k2 ¼ k21 þ k22 þ 2k1k2
� �1=2 ðB:11Þ

The substitution of Eqs. (B.10) and (B.11) into Eq. (B.7),

along with Eqs. (B.8a) (B.8b) (B.8c) and (B.9), gives the

explicit dependence ñ1,0( q). We performed the inverse Laplace
transformation of Eq. (B.7) by means of numerical inverse

Laplace transform using a Fourier series approximation; see

[54,55].

In the case of high surfactant concentrations, a simple

asymptotic expression for n1,0(s) can be derived. For this goal,

we first simplify Eqs. (B.1) and (B.2) for br2
eq / (meqS)>>1:

qñn1 ¼ Bm

d2ñn1

df2
�

m3
eqKs

r2
eqb

ñn1 � ñnc

� �
ðB:12Þ

qñnc ¼ Bm

d2ñnc

df2
þ meqKs

b
ñn1 � ñnc

� �
ðB:13Þ

The elimination of the last term in Eqs. (B.12) and (B.13)

yields:

q ñn1 þ
m2

eq

r2
eq

ñnc

 !
¼ Bm

d2

df2
ñn1 þ

m2
eq

r2
eq

ñnc

 !
ðB:14Þ

The exact solution of Eq. (B.14) is:

ñn1 þ
m2

eq

r2
eq

ñnc ¼ Y1exp � q

Bm

� �1=2

f

" #
ðB:15Þ

where Y1 is a constant of integration. Note that in the left-hand

side of Eq. (B.15) we have a multiplier meq
2 /req

2 >>1.

Nevertheless, in the region BC we have ñ1>>ñc, and the term

ñ1 could prevail in the left-hand side of Eq. (B.15). On the

other hand, in the region DE we have ñ1�ñc, and then the

second term in the left-hand side of Eq. (B.15) becomes larger.

At the next step, we subtract equation (B.13) from equation

(B.12):

q ñn1 � ñnc

� �
¼ Bm

d2

df2
ñn1 � ñnc

� �
� 1

sC
ñn1 � ñnc

� �
ðB:16Þ

where

1

sC
u

m2
eq

r2
eq

þ 1

 !
meqKs

b
ðB:17Þ

The solution of Eq. (B.16) is:

ñn1 � ñnc ¼ Y2exp � qþ 1=sC
Bm

� �1=2

f

" #
ðB:18Þ

where Y2 is a constant of integration. In the region BC, where

ñ1>>ñc, the first term in the left-hand side of Eq. (B.18)

prevails, while in the region DE we have ñ1�ñc.
Next, we eliminate ñ1 between Eqs. (B.15) and (B.18) and

substitute the result for ñc into the boundary condition, Eq.

(B.4); thus we find a relationship between Y1 and Y2:

Y2 ¼ Y1
q

qþ 1=sC

� �1=2

ðB:19Þ

From Eqs. B.15), (B.18) and (B.19, we derive:

ñn1¼
Y1

1þ m
exp � q

Bm

� �1=2

f

" #
þ q

u

	 
1=2
m exp � u

Bm

� �1=2

f

" #( )

ðB:20Þ
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where u =q +1 /sC and m =m2
eq /r

2
eq. Using the relationship

ñ1|f=0= ñ1,0, we further determine Y1 in Eq. (B.20):

ñn1 ¼ ñn1;0 1þ q

u

	 
1=2
m

� ��1

exp � q

Bm

� �1=2

f

" #
þ q

u

	 
1=2(

� m exp � u

Bm

� �1=2

f

" #)
ðB:21Þ

For large surfactant concentrations, Eq. (B.3) reduces to

qñn1 � 1 ¼
br2

eq

meqS
Bm

dñn1

df
at f ¼ 0 and s > 0 ðB:22Þ

Substituting the solution (B.21) into the boundary condition

(B.22), we get:

qñn1;0 � 1 ¼ �
br2

eq

meqS
Bmqð Þ1=2 1þ q

u

	 
1=2
m

� ��1

1þ mð Þñn1;0

ðB:23Þ

For m>>1, the latter equation reduces to:

qþ meqb
S

Bmqð Þ1=2 1þ
m2

eq

r2
eq

 !
q

qþ 1=sC

� �1=2
" #�1

8<
:

9=
;ñn1;0¼1

ðB:24Þ

Because the long-time limit, s >>1, corresponds to q <<1, from
Eq. (B.24) we obtain the following asymptotic expression:

ñn1;0 ¼
sDE
q

� �1=2

þ sBC
qþ 1=sC

� �1=2

ðB:25Þ

where

1

sBC
,

r2
eqb

meqS

 !2

Bm;
1

sDE
,

meqb
S

� �2

Bm ðB:26Þ

is the asymptotic form of Eqs. (4.18) and (4.24) for b >>1.

Finally, the inverse Laplace transform of Eq. (B.26) yields Eq.

(4.28); see e.g., [46].
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