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The liquid interface around an adsorbed colloidal particle can be undulated because of roughness or
heterogeneity of the particle surface, or due to the fact that the particle has non-spherical (e.g. ellipsoidal or
polyhedral) shape. In such case, the meniscus around the particle can be expanded in Fourier series, which is
equivalent to a superposition of capillary multipoles, viz. capillary charges, dipoles, quadrupoles, etc. The
capillary multipoles attract a growing interest because their interactions have been found to influence the
self-assembly of particles at liquid interfaces, as well as the interfacial rheology and the properties of
particle-stabilized emulsions and foams. As a rule, the interfacial deformation in the middle between two
adsorbed colloidal particles is small. This fact is utilized for derivation of accurate asymptotic expressions for
calculating the capillary forces by integration in the midplane, where the Young–Laplace equation can be
linearized and the superposition approximation can be applied. Thus, we derived a general integral
expression for the capillary force, which was further applied to obtain convenient asymptotic formulas for
the force and energy of interaction between capillary multipoles of arbitrary orders. The new analytical
expressions have a wider range of validity in comparison with the previously published ones. They are
applicable not only for interparticle distances that are much smaller than the capillary length, but also for
distances that are comparable or greater than the capillary length.

© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

The attachment of a solid particle to the boundary between two
fluid phases can be accompanied by deformation of the liquid
interface near the particle. The overlapping of deformations around

two adsorbed particles gives rise to capillary interaction between
them. In most cases, this interaction is attractive and engenders
particle aggregation and ordering. The lateral capillary forces play an
essential role in many physicochemical processes and the two-
dimensional structures produced under their action have found
numerous applications; see e.g. Refs. [1–8].

There are several different physical reasons for distortion of the
liquid interface by an adsorbed particle. First, gravity-induced
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interfacial deformations (and capillary forces) appear due to the
particle weight and the buoyancy force, which push the particle
downwards or upwards depending on its relative density [9–13].
Second, the wettability of the particle surface by the liquid phase
determines the position of the three-phase contact line on the particle
surface thus creatingmenisci around particles confined in thick [14–20]
and thin [21,22] liquid films. (In this context, the film is ‘thin’ if its
thickness ismuch smaller than the particle diameter.) Third, the electric
field of charged particles induces deformations in the liquid interface
and electrodipping force [23–30].

For typical densities of colloidal particles, the weight of µm-sized
and sub-µm-sized adsorbed particles is insufficient to deform the fluid
interface and to bring about gravity-induced capillary interaction
between the particles [11]. In this case, interfacial deformations can
appear if the contact line at the particle surface has undulated or
irregular shape. This may happen if the particle surface is rough,
angular or heterogeneous. In such cases, the contact line sticks to
edges or to boundaries between domains on the heterogeneous
surface. The undulated contact line induces undulations in the
surrounding fluid interface [31–34]. The theory predicts that an
undulation of amplitude 50 nm in the contact line around a spherical
particle leads to a long-range interaction energy that can exceed
104 kT in magnitude (k — Boltzmann constant; T — temperature)
[32,33], which is a striking result. Such small deformations are difficult
for detection, but their presence might be inferred from studies on the
interaction between μm-sized particles in adsorption monolayers
[35–37] and from the rheological behavior of particulate monolayers
[38,39]. A numerical technique to calculate the free energy associated
with the adsorption of a colloidal particle of complex shape at a liquid
interface was recently proposed [40].

Let us consider two adsorbed spherical particles with undulated
contact lines, which induce undulations in the surrounding liquid
interface. The left- and right-hand-side particles will be denoted as
“particle A” and “particle B”, respectively (Fig. 1). The interfacial shape
around each particle in isolation, z=ζY(x,y), Y=A, B, obeys the
linearized Young–Laplace equation [34]:

1
ρY

∂
∂ρY

ρY
∂ζY
∂ρY

� �
+

1
ρ2Y

∂2ζY
∂ϕ2

Y

= q2ζY Y = A;Bð Þ ð1:1Þ

where small meniscus slope is presumed; (ρA,ϕA) and (ρB,ϕB) are
polar coordinates associated, respectively, with the left- and right-
hand-side particle (Fig. 1); q is the inverse capillary length:

q2≡Δρg
γ

: ð1:2Þ

Δρ is the difference between the mass densities of the lower and
upper fluid phases; γ is the tension of the interface between them; g is

the acceleration due to gravity. The solution of Eq. (1.1) can be
expressed as a Fourier multipole expansion [33,34]:

ζY = ∑
∞

m=0
ζY;m; Y = A;B ð1:3Þ

ζY;m = hY ;m
Km qρYð Þ
Km qrYð Þ cos m ϕY−ϕY ;m

� �h i
ð1:4Þ

where Km is the modified Bessel function of second kind and orderm;
hY,m and ϕY,m are the amplitude and phase shift for the m-th mode of
undulation of the particle contact line; rY is the radius of its vertical
projection on the xy-plane (Fig. 1). The terms with m=0, 1, 2, 3,…,
respectively, play the role of capillary “charges”, “dipoles”, “quadru-
poles”, “hexapoles”, etc. [3,32–34]. For a freely floating particle, the
dipolar term with m=1 disappears because it is annihilated by a
spontaneous rotation of the particle around a horizontal axis (unless
the particle is fixed to a holder) [32]. For such a particle, the “capillary
charge” term (with m=0) accounts for the interfacial distortion due
to gravity, which is negligible for particles of micrometer and sub-
micrometer size. Therefore, for small freely floating particles the
leading term in interfacial deformation is the quadrupolar one, with
m=2 [32,33].

As an illustration, in Fig. 2 we present contour-plot diagrams
calculated from Eq. (1.4) that represent the meniscus shape around a
capillary hexapole (m=3, Fig. 2a) and a capillary octupole (m=4,
Fig. 2b). In these diagrams, the horizontal distances are scaled with rY.
The vertical distance, ζY, scaled with the amplitude of the undulations
at the contact line, hY,m, is presented by colors in analogy with the
geographic isoline maps.

Undulated contact lines are formed even on smooth surfaces if the
shape of the particle is not spherical. Loudet et al. [41–43],
investigated experimentally and theoretically the capillary forces
between adsorbed ellipsoidal particles and found that they behave as
capillary quadrupoles. These authors noted that from a purely
geometrical viewpoint, the condition of a constant contact angle
cannot be met for anisotropic particles if the interface remains flat,
which explains the reason for the quadrupolar interfacial deforma-
tion. Lateral capillary forces between ellipsoidal and anisotropic
particles have been investigated also by van Nierop et al. [44], Lehle et
al. [45], and Stebe et al. [46,47].

The theoretical investigations of interactions between capillary
quadrupoles and hexapoles indicate that this interaction is non-
monotonic: attractive at long distances, but repulsive at short
distances [33,34]. Expressions for the rheological properties (surface
dilatational and shear elasticity and yield stress) of Langmuir
monolayers from angular particles have been derived [31,33,34].
Mesoscale capillary multipoles have been experimentally realized by
Bowden et al. [48–50] by appropriate hydrophobization or hydro-
philization of the sides of small floating plates. Interactions between
capillary quadrupoles have been observed between floating particles,
which have the shape of curved disks [51] ellipsoids [41–43] and
other anisotropic particles [46,47]. For multipoles, the sign and
magnitude of the capillary force depend on the particle mutual
orientation (on the angles ϕA,m and ϕB,m). For that reason, particles–
quadrupoles (m=2) will tend to assemble in a square lattice [51],
whereas particles–hexapoles (m=3) will preferably form a hexago-
nal lattice, with or without voids [49,50]. Another possibility is the
particles to form simple linear (chain) aggregates [3,32,51] or
capillary arrows [43]. Quadrupolar interfacial deformation and the
corresponding force can be produced also by the electric field of
particles with anisotropic distribution of electric charges on their
surfaces [52,53].

The effect of the interactions between capillary multipoles has
been invoked to explain the properties of particulate monolayers
at liquid interfaces [35–37,54–61], including powder particles [56],

Fig. 1. Polar coordinates (ρA,ϕA) and (ρB,ϕB) in the xy-plane connected with the
particles A and B. The projections of the contact lines on the particle surfaces are
presented by two solid circles of radii rA and rB. The dashed circle Cδ, with outer unit
normal nδ, is an auxiliary contour of radius rδ used for the derivation of the expression
for the capillary force (see the text).
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capillary retention of colloids in porous media [57] and ordering of
nanowire-like objects [62]. These strong anisotropic capillary
interactions lead to jamming of particle monolayers [63], and
increasing of the elasticity and viscosity of adsorption layers,
emulsions and foams [38,39,64–67]. In particular, Madivala et al.
[66,67] experimentally established that monolayers of ellipsoids
exhibit a substantial surface shear modulus even at low surface
coverage and can be used to create more elastic monolayers
compared to aggregate networks of spheres of the same size and
surface properties. The experimental magnitude of the shear
modulus, 10–100 mN/m, is in agreement with the theoretical
predictions [33,34]. Another interesting experimental finding is
that Pickering emulsions with adsorbed ellipsoidal particles become
stable when the particle aspect ratio becomes greater than a certain
critical value [67]. One possible explanation of this result can be
related to the increase of interparticle capillary attraction with
the rise of aspect ratio, which would help for the formation of

dense adsorption layers that protect the emulsion drops against
coalescence.

Using the asymptotic behavior of the modified Bessel function
Km(x) at x≪1 [68,69]

Km xð Þ≈ m−1ð Þ!
2

2
x

� �m

x≪1;m = 1;2;…ð Þ ð1:5Þ

we can simplify Eq. (1.4) [32,33]:

ζY = hY;m
rY
ρY

� �m

cos m ϕY−ϕY ;m

� �h i
ð1:6Þ

(Y=A, B; m=1, 2, …), where the assumptions qrY≪1 and qρY≪1
have been used. Under the same simplifying assumptions, it was
established that the energy of interaction between the particles A and
B, that behave as capillary multipoles of orders m and n, respectively,
is given by the expression [34]:

ΔW≈−2π m + n−1ð Þ!
m−1ð Þ! n−1ð Þ!γhA;mhB;n

rmA r
n
B

Lm + n cos mϕA;m−nϕB;n

� �
for qL≪1

ð1:7Þ

where L is the distance between the particles (Fig. 1). One can check
that Eq. (1.7) is identical to the respective result in Ref. [34], having in
mind that the phase-shift angles in Ref. [34] are defined as π−ϕY,m,
where ϕY,m is the phase-shift angle in the present article. (Our present
definition leads to the disappearance of the factor (−1)m+n from the
expressions for the energy and force of interaction.) Note that
Eq. (1.7) can be obtained by integrating the expression for the
respective capillary force; see Eq. (3.28) below. Eq. (1.7) shows that
ΔW∝1/Lm+n, i.e. at larger distance L the interaction energy ΔW
decays faster for multipoles of greater net order m+n.

Eq. (1.7) shows explicitly the dependence of the energy of capillary
interaction on the particle mutual orientation through the multiplier
cos(mϕA,m−nϕB,n). The energetically most favorable state is that for
which the cosine is equal to +1, whereas the most disadvantageous
state is that for which the cosine equals−1. Fig. 3 shows contour-plot
diagrams of the meniscus shapes for the most advantageous
(ϕA,2=ϕB,2) and disadvantageous (ϕA,2−ϕB,2=π/2) orientations for
two capillary quadrupoles. In the calculations (see Appendix A for
details), we have used the analytical solution of the problem in bipolar
coordinates in Ref. [34], which allows one to exactly satisfy the
boundary conditions at the contact lines on the surfaces of the two
particles. This asymptotic solution is applicable for calculating the
meniscus shape in the vicinity of small particles, where qρY≪1.

Eq. (1.7) is applicable for relatively short distances (qL≪1)
between small particles (qrY≪1). However, Eq. (1.7) is at the limit of
its applicability or inapplicable for mesoscale particles of diameter
≥500 μm like those studied in Refs. [48–50]. Moreover, the attraction
between small particles leads to the formation of two-dimensional
aggregates [70–73]. Although the gravitational deformation in the
liquid interface might be negligible for an isolated particle, it can
become significant for an aggregate, and then the use of expressions in
terms of the Km-functions is obligatory.

Our goal in the present article is to obtain a generalized form of
Eq. (1.7), which is valid for both short and long distances between
capillary multipoles of various ordersm,n=0, 1, 2, 3,…. For this goal,
we have to work in terms of the functions Km(qρY), see Eq. (1.4). The
results will contain as special cases the short-range asymptotics like
Eqs. (1.5)–(1.7). In Section 2, we derive general integral expressions
for the lateral capillary forces. In Section 3, this approach is applied to
obtain analytical formulas for calculating the forces between two
capillary multipoles of arbitrary order.

Fig. 2. Contour-plot diagram of the meniscus shape z=ζY(x,y) (a) around a capillary
hexapole (m=3) and (b) around a capillary octupole (m=4), calculated from Eq. (1.4).
The x and y coordinates are scaled with rY, whereas the vertical coordinate ζY is scaled
with the amplitude of the undulations at the contact line, hY,m; see the text for the
notations.
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2. General expressions for the lateral capillary force

2.1. Calculation of the capillary force by integration over the midplane

Our first goal is to derive a general expression for the lateral capillary
force between two particles, which will be further applied to quantify
the interaction between floating particles that behave as capillary
multipoles of different orders. For this goal, let us consider two spherical
particles separated at a center-to-center distance L. The liquid interface
is assumed to be planar in the absence of adsorbed particles. The xy-
plane of the coordinate system is chosen to coincide with the non-
disturbed liquid interface. The x-axis passes through the vertical axes
of the two particles, and the yz-plane is located in the middle between
the two particles. The lower and upper fluid phases are denoted,
respectively, as “phase I” and “phase II” (Fig. 4). Each separate particle

creates deformation in the surrounding liquid interface. The meniscus
shape around the particles is given by the equation z=ζ(x,y).

At hydrostatic equilibrium, the divergence of the pressure tensor
in each of the two neighboring fluid phases is equal to zero [74]:

∇⋅PI = 0 and ∇⋅PII = 0 ð2:1Þ

where ▽ denotes the del operator; PI and PII are the pressure tensors
in the phases “I” and “II”. (Note that by definition, the pressure tensor
is P=−T̂, where T̂ is the stress tensor.) In addition, at equilibrium
the shape of the liquid interface obeys the Laplace equation of
capillarity:

2Hγ = ns⋅ PII−PIð Þ⋅ns at z = ζ ð2:2Þ

Fig. 3. Contour-plot diagram of themeniscus shape z=ζ(x,y) around two similar capillary quadrupoles (m=n=2)with rY= rA= rB, separated at a center-to-center distance L=3rY;
see Appendix A for the procedure of calculations. (a) The most advantageous (ϕA,2=ϕB,2) and (b) the most disadvantageous (ϕA,2−ϕB,2=π/2) mutual orientation of the two
quadrupoles with respect to their interaction energy; see Eq. (1.7). The scaling of x, y and ζ is the same as in Fig. 2.
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where H is the mean curvature of the liquid surface z=ζ(x,y); ns is
the running unit normal to this surface directed toward phase II, and
γ is the interfacial tension.

Let us consider the right-hand-side particle shown in Fig. 4 (for the
left-hand-side particle the consideration is analogous). The force
acting on this particle can be expressed in the form [16]

F = F pð Þ + F γð Þ ð2:3Þ

F(p) is the integral of pressure tensor over the particle surface and F(γ)

is the integral of the interfacial tension, considered as a vector, over
the contact line on particle surface, C:

F pð Þ = −∫
SI

dSnI⋅PI−∫
SII

dSnII⋅PII ; F γð Þ = ∫
C

dlmγ ð2:4Þ

where SI and SII are the portions of the particle surface that contact
with phases I and II, respectively; nI and nII are outer unit normal
fields with respect to the particle (Fig. 4); dl is the scalar linear
element of the contact line C; m is the outward pointing unit normal
field having the direction of the surface tension at the contact line, i.e.
normal to C and tangential to the liquid interface.

To calculate F(γ), we will use the fact that the Laplace equation,
Eq. (2.2), is the normal projection (along ns) of a more general
equation; see e.g. Ref. [1]:

∇s⋅ γUsð Þ = ns⋅ PII−PIð Þ at z = ζ ð2:5Þ

where ▽s and Us are the del operator and the unit tensor of the
surface z=ζ(x,y). Following the approach proposed in Ref. [75], we
consider a rectangle EFMN situated in the xy-plane as shown in
Fig. 5. Next, we integrate Eq. (2.5) over the surface SEFMN, which
represents the vertical projection of the rectangle EFMN on the
interface z=ζ(x,y):

∫
SEFMN

dSns⋅ PII−PIð Þ = ∫
SEFMN

dS∇s⋅ γUsð Þ = ∫
CEFMN

dlmγ−F γð Þ ð2:6Þ

where the contour CEFMN is the periphery of SEFMN and we have used
the two-dimensional divergence theorem [1,76]. Using the fact that
the meniscus z=ζ(x,y) decays at infinity, we assume that the points

E, F, M and N are located far from the particle, and then the x-
projection of Eq. (2.6) acquires the form:

F γð Þ
x ≡ex⋅F

γð Þ = ∫
CEF∪CMN

dl ex⋅mð Þγ− ∫
SEFMN

dSns⋅ PII−PIð Þ⋅ex ð2:7Þ

Next, we consider a right prism built on the rectangle EFMN with
lower and upper bases situated deeply inside the phases I and II. In
view of Eq. (2.1), we have:

0 = ∫
V I

dV∇⋅PI = ∮
∂V I

dS⋅PI ð2:8Þ

where VI is the portion of the aforementioned vertical prism that is
located in the phase I, and ∂VI is the surface of VI; dS is the respective
outward pointing vectorial surface element. In view of the symmetry of
the system, the x-projection of Eq. (2.8) can be presented in the form:

0 = ex⋅ ∫
SEFMN

dSns⋅PI + ∫
S Ið Þ
EF

dS⋅PI + ∫
S Ið Þ
MN

dS⋅PI−∫
SI

dSnI⋅PI

2
64

3
75 ð2:9Þ

Here, SEF
(I)

and SMN
(I)

are the portionsof thevertical planespassing through
the segments EF andMN, which are in contact with the phase I; SI is the
same in Eq. (2.4). In a similar way, we derive a counterpart of Eq. (2.9)
for the phase II:

0 = ex⋅ − ∫
SEFMN

dSns⋅PII + ∫
S IIð Þ
EF

dS⋅PII + ∫
S IIð Þ
MN

dS⋅PII−∫
SII

dSnII⋅PII

2
64

3
75 ð2:10Þ

In view of Eq. (2.4), we sum Eqs. (2.9) and (2.10):

F pð Þ
x ≡ex⋅F

pð Þ = ex⋅ ∫
SEFMN

dS⋅ PII−PIð Þ−∫
SEF

dS⋅P− ∫
SMN

dS⋅P

2
4

3
5 ð2:11Þ

where SEF=SEF
(I)∪SEF

(II) and SMN=SMN
(I) ∪SMN

(II) are stripes of vertical planes
that are based on the segments EF and MN;

P≡PI for zbζ; and P≡PII for z N ζ ð2:12Þ

Next, we sum up Eqs. (2.7) and (2.11); the integrals over SEFMN cancel
each other, and we obtain the following expression for the total force
acting on the right-hand side particle (see Fig. 4):

Fx≡F
γð Þ
x + F pð Þ

x = ∫
CEF∪CMN

dl ex⋅mð Þγ− ∫
SEF∪SMN

dS⋅P⋅ex ð2:13Þ

Let us denote the first and the second integral in the right-hand side of
Eq. (2.13) by Fx(C) and Fx

(S), respectively. Because the segments EF andMN

Fig. 5. Integration domains for calculating the interaction force between two particles
(details in the text). The projections of the contact lines on the particle surfaces are
presented by two circles, but they could be arbitrary closed contours. The force of
interaction between the two particles is directed along the x-axis.

Fig. 4. Sketch of a particle that is attached to the interface between phases “I” and “II”.
The vertical yz-plane represents the midplane between two particles (like those in
Fig. 1). The horizontal xy-plane coincides with the unperturbed liquid interface far from
the particles. The x-axis is directed as in Fig. 1.; nI, nII and ns are unit vector fields normal
to the interfaces particle/phase I; particle/phase II, and to the liquid interface,
respectively.
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are perpendicular to the x-axis, and the points E, F, M and N (by
definition) are located far away from the particle, we have:

F Cð Þ
x ≡ ∫

CEF∪CMN

dl ex⋅mð Þγ = γ ∫
∞

−∞
dy 1− 1 + ζ2y

� �
= 1 + ζ2x
� �h i1=2� �j

x=0

ð2:14Þ

where ζx≡∂ζ/∂x, ζy≡∂ζ/∂y and γ=const. Likewise, we obtain:

F Sð Þ
x ≡− ∫

SEF∪SMN

dS⋅P⋅ex = ∫
∞

−∞
∫
∞

−∞
dydzex⋅ P j x=0−P jx→∞ð Þ⋅ex: ð2:15Þ

Having in mind the definition of P by Eq. (2.12), we can represent the
above expression in the form:

F Sð Þ
x = ∫

∞

−∞
dy ∫

ζ

−∞
dz ex⋅PI;0⋅ex− ∫

0

−∞
dzex⋅PI;∞⋅ex

" #

+ ∫
∞

−∞
dy ∫

∞

ζ

dzex⋅PII;0⋅ex−∫
∞

0

dzex⋅PII;∞⋅ex

" #
ð2:16Þ

where the subscripts “0” and “∞” denote the values of the respective
quantity at x=0 and at x→∞, respectively.

In view of Eqs. (2.13)–(2.15), the total interaction force, Fx, can be
expressed in two alternative forms:

Fx≡F
pð Þ
x + F γð Þ

x = F Sð Þ
x + F Cð Þ

x ð2:17Þ

Fx
(p) and Fx

(γ) are integrals over the particle surface and the contact line
on the particle surface, whereas Fx

(S) and Fx
(C) are related to integrals

over the surface and line on the midplane x=0; see Fig. 4. In other
words, there are two equivalent approaches for calculation of Fx: (i) by
integration over the particle surface [16] and (ii) by integration over
the midplane [75]. Depending on the specific problem, we could use
that approach, which is more convenient. In general, Fx(p)≠Fx

(S) and
Fx
(γ)≠Fx

(C), the difference between them being due to the integral over
SEFMN in Eqs. (2.7) and (2.11).

It should be noted that the calculation of the force acting on the
right-hand side particle by integration over the midplane is
equivalent to an imaginary “freezing” of the right half-space and
calculating the net force acting on the midplane from the side of the
left half-space. Furthermore, Eqs. (2.1) and (2.7), together with the
respective three- and two-dimensional divergence theorems lead
to the conclusion that the net force acting on the midplane is equal to
the force exerted on the right-hand-side particle; see Eq. (2.17). Thus,
the problem for calculating Fx can be reduced to the calculation of the
meniscus shape, z=ζ(x,y), and of the pressure tensor, P, only in the
midplane x=0; see Eqs. (2.13)–(2.15). This is a very important result
because in the middle between the particles the meniscus slope is
small, even if it is not small close to the particles. This fact allows us to
considerably simplify the problem because of the following two
reasons. Firstly, for small meniscus slope the square root in Eq. (2.14)
can be expanded in series:

F Cð Þ
x =

γ
2

∫
∞

−∞
dy ζ2x−ζ2y
� �j

x=0
: ð2:18Þ

Secondly, in the region of small slope the Laplace equation of
capillarity can be linearized. Hence, in this region the meniscus
shape can be expressed as a superposition of the menisci created by
the two particles in isolation:

ζ x; yð Þ = ζA x; yð Þ + ζB x; yð Þ in the midplane x = 0ð Þ ð2:19Þ

where ζA is the meniscus created by the left-hand-side particle if the
other particle wasmissing, and ζB is themeniscus created by the right-

hand-side particle if the other particle was missing. Eq. (2.19)
expresses a superposition approximation, which is applicable in all
cases when the meniscus slope is small in the middle between the
particles. (It is not necessary the slope to be small near the particles!)
This approximation considerably simplifies the problem. It is
worthwhile noting that a similar approximation was used by Verwey
and Overbeek [77] to derive their known expression for the
electrostatic disjoining pressure. For capillary forces, this approach
was first applied in Ref. [75].

2.2. Case of noncharged particles at a liquid interface

The general expressions derived in Section 2.1 can be applied to
systems where gravitational and/or electric fields are present.
Hereafter, we will consider the special case with gravitational field
alone, i.e. two noncharged particles floating on a horizontal liquid
interface. In such case, the pressure tensor is isotropic in the two
neighboring phases, I and II:

PI = p∞−ρIgzð ÞU and PII = p∞−ρIIgzð ÞU ð2:20Þ

where p∞ is the pressure at level z=0; U is the spatial unit tensor; ρI
and ρII are the mass densities of the respective phases. Substituting
Eq. (2.20) into Eq. (2.16), we obtain:

F Sð Þ
x = ∫

∞

−∞
dy∫

ζ

0

dz p∞−ρIgzð Þ− ∫
∞

−∞
dy∫

ζ

0

dz p∞−ρIIgzð Þ

= − ∫
∞

−∞
dy∫

ζ

0

dz ρI−ρIIð Þgz = −1
2
γq2 ∫

∞

−∞
dyζ2

ð2:21Þ

where q is the inverse capillary length in Eq. (1.2) with

Δρ = ρI−ρII: ð2:22Þ

Combining Eqs. (2.13), (2.18) and (2.21), we obtain [75]:

Fx = −γ
2

∫
∞

−∞
dy q2ζ2 +

∂ζ
∂y

� �2

− ∂ζ
∂x

� �2
" #j

x=0

ð2:23Þ

Because we are using the assumption for small meniscus slope in the
midplane, x=0, we can substitute the superposition approximation,
Eq. (2.19), into Eq. (2.23):

Fx = −γ ∫
∞

−∞
dy q2ζAζB +

∂ζA
∂y

∂ζB
∂y −∂ζA

∂x
∂ζB
∂x

� �j
x=0

ð2:24Þ

To derive Eq. (2.24), we have used the fact that the forces Fx(A) and Fx
(B)

acting on the isolated particles A and B, are equal to zero:

F Yð Þ
x = −γ

2
∫
∞

−∞
dy q2ζ2Y +

∂ζY
∂y

� �2

− ∂ζY
∂x

� �2
" #j

x=0

= 0; Y = A;B

ð2:25Þ

As known [1,10–12,78], the meniscus profiles around the separate
particles are described by the expressions:

ζA = −QAK0 qρAð Þ; ζB = −QBK0 qρBð Þ ð2:26Þ

where ρA and ρB are the distances from a given point in the xy-plane to
the centers of particles A and B (see Fig. 1); the coefficients QA and QB

are the so called ‘capillary charges’ [11,78]:

QY = rY sinψY ; sinψY≈ tanψY =
dζY
dr j r= rY

; Y = A;B ð2:27Þ
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rY is the radius of the contact lines on the surface of particle Y (Y=A,
B), see Fig. 1; ψY is themeniscus slope angle at the particle contact line.

In Ref. [75], numerical solution of the integral in Eq. (2.24), along
with Eq. (2.26), was carried out for two equal-sized particles, and it
was found that the numerical results for Fx exactly coincide with the
prediction of the known formula [1,10–12,78]:

Fx = −2πγQAQBqK1 qLð Þ ð2:28Þ

Here, Fx is the x-projection of the force acting on the right-hand side
particle. The equivalence of Eqs. (2.24) and (2.26) to the asymptotic
formula Eq. (2.28) has not yet been proven analytically. Below, wewill
prove that really Eq. (2.28) is an exact corollary of Eqs. (2.24) and
(2.26). For this goal, we have to first introduce the tensor of capillary
interaction (Section 2.3). The developed method will further help us
to derive analogous expressions for the interaction between two
capillary multipoles of arbitrary order.

2.3. Calculation of capillary force by integrating the tensor of capillary
interaction

In the case of small interfacial slope, themeniscus profiles ζA and ζB
obey the linearized Laplace equations of capillarity:

∂2ζY
∂x2

+
∂2ζY
∂y2

= q2ζY Y = A;Bð Þ: ð2:29Þ

It is convenient to introduce the notations:

x1≡x and x2≡y: ð2:30Þ

Next, let us define the symmetric two-dimensional tensor Tkn as
follows:

Tkn≡
∂ζA
∂xk

∂ζB
∂xn

+
∂ζA
∂xn

∂ζB
∂xk

− ∂ζA
∂xj

∂ζB
∂xj

+ q2ζAζB

 !
δkn ð2:31Þ

(k,n=1,2) where δkn is the two-dimensional Kronecker symbol and
summation is assumed over the repeated index j (the Einstein rule).
By using Eq. (2.29), we find that the divergence of the tensor Tkn is
equal to zero:

∂Tkn
∂xk

= 0; n = 1;2 ð2:32Þ

i.e. ∇⋅T=0, in tensorial notations. Further, we integrate Eq. (2.32)
over a domain S+, which represents the right half of the xy-plane
(corresponding to xN0), except a circle, Cδ, around the center of
particle B (Fig. 1), and use the Green theorem:

0 = −∫
Sþ

dS∇⋅T = ∫
∞

−∞
dyex⋅T jx=0 + ∫

Cδ

dlnδ⋅T ð2:33Þ

where nδ is the outer unit normal field of the contour Cδ. Taking the x-
projection of the latter equation, in view of Eq. (2.31) we derive:

∫
∞

−∞
dy q2ζAζB +

∂ζA
∂y

∂ζB
∂y −∂ζA

∂x
∂ζB
∂x

� �j
x=0

= ∫
Cδ

dlnδ⋅T⋅ex ð2:34Þ

Finally, in view of Eqs. (2.24) and (2.34) we obtain:

Fx = −γ∫
Cδ

dlnδ⋅T⋅ex ð2:35Þ

The covariant form of the tensor of capillary interaction defined by
Eq. (2.31) is:

T = ∇ζAð Þ∇ζB + ∇ζBð Þ∇ζA− ∇ζAð Þ⋅∇ζB + q2ζAζB
h i

U ð2:36Þ

In Section 3, Eqs. (2.35) and (2.36) will be used for calculating the
force of capillary interaction between various capillary multipoles,
including capillary charges (m=0); dipoles (m=1); quadrupoles
(m=2); hexapoles (m=3), etc.; see Eq. (1.4).

3. Forces of interaction between capillary multipoles

3.1. Integral expression for the capillary force

Here, we will use polar coordinates (ρA,ϕA) and (ρB,ϕB) associated,
respectively, with the left- and right-hand-side particle (Fig. 1):

x≡− L
2

+ ρA cosϕA and y≡ρA sinϕA ð3:1Þ

x≡ L
2
−ρB cosϕB and y≡ρB sinϕB: ð3:2Þ

Then, the expression for the force acting on the right-hand-side
particle, Eq. (2.35), can be represented in the form:

Fx = −γrδ ∫
2π

0

dϕBeρ⋅T⋅ex at ρB = rδ ð3:3Þ

where eρ is a radial unit vector; rδ is the radius of the contour Cδ (see
Fig. 1). The tensor Tkn in Eq. (2.31) contains the functions ζA and ζB,
and their derivatives. To carry out the integration in Eq. (3.3), we will
use the polar coordinates (ρB,ϕB) defined by Eq. (3.2). Differentiating
the two expressions in Eq. (3.2), we find:

∂ρB
∂x

� �
y
= − cosϕB and

∂ϕB

∂x

� �
y
=

sinϕB

ρB
ð3:4Þ

Further, with the help of Eq. (3.4) we obtain:

∂ζY
∂x = −∂ζY

∂ρB
cosϕB +

∂ζY
∂ϕB

sinϕB

ρB
; Y = A;B: ð3:5Þ

The substitution of the tensor T from Eq. (2.36) into Eq. (3.3), in view
of Eq. (3.5) yields:

Fx = γrδ∫
2π

0
½∂ζA∂ρB

∂ζB
∂ρB

cosϕB−
∂ζA
∂ϕB

∂ζB
∂ρB

+
∂ζA
∂ρB

∂ζB
∂ϕB

� �
sinϕB

rδ

− 1
r2δ

∂ζA
∂ϕB

∂ζB
∂ϕB

+ q2ζAζB

 !
cosϕB�dϕB atρB = rδ

ð3:6Þ

where the relationship eρ·ex=−cosϕB (see Fig. 1) has been used.

3.2. Interaction of a capillary charge with capillary multipoles

First, let us assume that particle B is a capillary charge. Then, only
the term with m=0 remains in the Fourier expansion for ζB in
Eq. (1.3). In such a case, we have ζB=ζB(ρB); all terms containing the
derivative ∂ζB/∂ϕB disappear, and Eq. (3.6) reduces to

Fx = γrδ ∫
2π

0

∂ζA
∂ρB

cosϕB−
∂ζA
∂ϕB

sinϕB

ρB

� �∂ζB
∂ρB

−q2ζAζB cosϕB

� 	
dϕB at ρB = rδ:

ð3:7Þ

Eq. (3.7) is a special case of Eq. (2.35). The way of derivation of
Eq. (2.35) implies that Fx must be the same independently of the

97K.D. Danov, P.A. Kralchevsky / Advances in Colloid and Interface Science 154 (2010) 91–103



Author's personal copy

choice of rδ. Here, we will use the transition rδ→0, which is possible
because the Fourier expansion of the meniscus profile, Eqs. (1.3)–
(1.4), defines the functions ζA(ρA,ϕA) and ζB(ρB,ϕB) in the whole xy-
plane. As demonstrated below, the pole of ζA at ρA=0 and the pole of
ζB at ρB=0 do not represent an obstacle for the derivation of
expressions for the capillary forces; see e.g. Eq. (3.9). The limiting
transition rδ→0 is equivalent to themethod of residues applied in Ref.
[34]. The present method is simpler because it avoids using
mathematical analysis in terms of functions of complex variables.

Thus, in Eq. (3.7) we apply the limiting transition rδ→0, and use
Eq. (3.5) and the fact that ζB=−QBK0(qρB):

Fx = −2πγ
∂ζA
∂x rδ

∂ζB
∂ρB

� �� 	j
ρB = rδ→0

ð3:8Þ

In view of Eq. (2.26), we derive:

rδ
∂ζB
∂ρB

� �j
ρB = rδ→0

= −QB rδ
∂K0 qρBð Þ

∂ρB

� 	j
ρB = rδ→0

= QB ð3:9Þ

where we have used the mathematical relations [68,69,79]:

dK0 xð Þ
dx

= −K1 xð Þ and K1 xð Þ≈1
x

for x→0: ð3:10Þ

The substitution of Eq (3.9) in Eq. (3.8) yields:

Fx = −2πγQB
∂ζA
∂x

� �j
rδ→0

ð3:11Þ

From Eq. (3.1) we derive:

ρ2
A =

L
2

+ x
� �2

+ y2 and tanϕA =
2y

L + 2x
ð3:12Þ

∂ρA
∂x =

x + L = 2
ρA

and
∂ϕA

∂x = − y cos2ϕA

x + L=2ð Þ2 : ð3:13Þ

For rδ→0, we have x→L/2, y→0, ρA→L and ϕA→0. Hence,

∂ρA
∂x j rδ→0

= 1 and
∂ϕA

∂x j rδ→0
= 0: ð3:14Þ

Assuming that the particle A is a capillary charge, i.e. ζA=−QAK0

(qρA), with the help of Eqs. (3.10) and (3.14) we derive:

∂ζA
∂x

� �j
rδ→0

=
∂

∂ρA
−QAK0 qρAð Þ½ �j

rδ→0

= qQAK1 qLð Þ: ð3:15Þ

The substitution of Eq. (3.15) into Eq. (3.11) gives exactly the known
asymptotic formula for the capillary force, Eq. (2.28). This result
proves that Eq. (2.28) can be analytically deduced from Eq. (2.24). We
recall that Eq. (3.3) is equivalent to Eq. (2.24).The comparison of
Eq. (1.4) for m=0 with Eq. (2.26) yields:

QY≡−
hY;0

K0 qrYð Þ ; Y = A;B: ð3:16Þ

Substituting Eq. (3.16) into Eq. (2.28), we obtain:

Fx = −πγqhA;0hB;0
K1 qLð Þ + K−1 qLð Þ
K0 qrAð ÞK0 qrBð Þ charge� chargeð Þ ð3:17Þ

where we have used the identity K1(qL)=K−1(qL) [68,69,79]. The
latter presentation of the force between two capillary charges (m=0)

is useful, because it allows generalization for capillary multipoles of
arbitrary order; see Eqs. (3.20) and (3.27) below.

Furthermore, if the particle A is a capillary multipole of order m,
while the particle B is a capillary charge (m=0), as before, from
Eqs. (1.4), (3.11) and (3.14), we derive:

∂ζA
∂x

� �j
rδ→0

=
∂
∂x hA;m

Km qρAð Þ
Km qrAð Þ cos m ϕA−ϕA;m

� �h i� �j
ρB = rδ→0

= −
qhA;m

2
Km + 1 qLð Þ + Km−1 qLð Þ

Km qrAð Þ cos mϕA;m

� �
ð3:18Þ

where we have used Eq. (3.14) and the relation [68,69,80]:

dKm

dx
= −1

2
Km + 1 xð Þ + Km−1 xð Þ
 �

: ð3:19Þ

Substituting Eq. (3.18) into Eq. (3.11), we obtain the expression for
the force of interaction between a capillary charge and a capillary
multipole of order m:

Fx = −πγqhA;mhB;0
Km + 1 qLð Þ + Km−1 qLð Þ

Km qrAð ÞK0 qrBð Þ cos mϕA;m

� �
charge�multipoleð Þ

ð3:20Þ

(m=0, 1, 2, …) where Eq. (3.16) has been used for Y=B. Eq. (3.20)
gives accurately the dependence Fx(L) for all L-values, for which the
meniscus slope in the middle between the two particles is small, i.e.
((∂ζ /∂x)2+(∂ζ /∂y)2)x=0≪1, so that the Young–Laplace equation
can be linearized at the midplane. Substitutingm=0 in Eq. (3.20), we
obtain Eq. (3.17), as it should be expected. Furthermore, integrating
Eq. (3.20) with respect to L and using Eq. (3.19), we obtain an
expression for the interaction energy:

ΔW = 2πγhA;mQB
Km qLð Þ
Km qrAð Þ cos mϕA;m

� �
charge�multipoleð Þ ð3:21Þ

(m=0, 1, 2, …) where Eq. (3.16) has been used again for Y=B.
In the asymptotic case qL≪1 (and qrA≪1), using Eq. (1.5) we can

simplify Eq. (3.20):

Fx≈2mπγhA;mQB
rmA

Lm + 1 cos mϕA;m

� �
charge�multipole for qL≪1ð Þ

ð3:22Þ

which is valid form≥1. Integrating Eq. (3.22)we obtain the respective
asymptotic expression for the energy of capillary interaction:

ΔW≈2πγhA;mQB
rmA
Lm

cos mϕA;m

� �
charge�multipole for qL≪1ð Þ

ð3:23Þ

(m=1, 2, …). Eq. (3.23) is the correct asymptotics of ΔW(L). In our
previous paper, Ref. [34] (see Table 2 therein), the factor 2π in the
right-hand side of Eq. (3.23) was given (by mistake) as π/2.

3.3. Interactions between capillary multipoles of arbitrary order

Here, we consider the case where the particle A is a capillary
multipole of orderm, whereas the particle B is a capillary multipole of
order n (m, n=1, 2, …); see also Fig. 1. Because we will use the
limiting transition ρB=rδ→0 in Eq. (3.6), we can work, from the very
beginning, with the expression for ζB in its form for small ρB:

ζB x; yð Þ≈ hB;n
Kn qrBð Þ

2n−1 n−1ð Þ!
qρBð Þn cos n ϕB−ϕB;n

� �h i
for n≥1 ð3:24Þ
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see Eqs. (1.4) and (1.5). Substituting Eq. (3.24) into Eq (3.6), after
some mathematical transformations we obtain:

Fx = −
2n−1γhB;n
qnKn qrBð Þ ∫

2π

0

n!
rnδ

∂ζA
∂ρB

+
n+1
rδ

ζA

� 	j
ρB = rδ

cos n + 1ð ÞϕB−nϕB;n

h i
dϕB:

ð3:25Þ

Next, in Eq. (3.25) we substitute the expression for ζA from Eq. (1.4),
and after some transformations using the transition ρB=rδ→0 we
derive (see Appendix B):

Fx = −
2nγhA;mhB;n

qnKm qrAð ÞKn qrBð Þ∫
2π

0

∂n+1

∂ρn + 1
B

Km qρAð Þ cos m ϕA−ϕA;m

� �h in oj
ρB =0

× cos n + 1ð ÞϕB−nϕB;n

h i
dϕB ð3:26Þ

From Eq. (3.26), after some calculations described in Appendix C, we
derive the general expression for the force of interaction between two
capillary multipoles of orders m and n:

Fx = −
πγqhA;mhB;n

2Km qrAð ÞKn qrBð Þ ½Km + n + 1 qLð Þ cos mϕA;m−nϕB;n

� �

+ Km−n−1 qLð Þ cos mϕA;m + nϕB;n

� �� ð3:27Þ

(m, n=1, 2, 3,…). Eq. (3.27) gives accurately the dependence Fx(L) for
all L-values, for which the meniscus slope in the middle between the
two particles is small, i.e. (ζx′2+ζy′2)x=0≪1, so that the Young–
Laplace equation can be linearized at the midplane. In the case of
small particles, qL≪1, with the help of Eq. (1.5) we obtain the
asymptotic form of Eq. (3.27):

Fx≈−2π
m + nð Þ!

m−1ð Þ! n−1ð Þ!γhA;mhB;n
rmA r

n
B

Lm + n + 1 cos mϕA;m−nϕB;n

� �
for qL≪1:

ð3:28Þ

Integrating Eq. (3.28) with respect to L, we obtain the energy of
capillary interaction between m- and n-multipoles given by Eq. (1.7).

Eq. (3.27) is more general than Eq. (3.28), because the latter
represents a special case for qL≪1. The capillary interaction energy,
ΔW, obtained by integration of the general Eq. (3.27), is:

ΔW = −
πγhA;mhB;n

2Km qrAð ÞKn qrBð Þ ½Gm + n + 1 qLð Þ cos mϕA;m−nϕB;n

� �

+ Gm−n−1 qLð Þ cos mϕA;m + nϕB;n

� �� ð3:29Þ

where m, n=1, 2, …, and

Gj qLð Þ≡∫
∞

qL

Kj ξð Þdξ; j = 0;� 1;� 2;… ð3:30Þ

where ξ is an integration variable. For qL≪1, Eq. (3.29) reduces to
Eq. (1.7). For calculation of the functions Gj(x) in Eq. (3.29), one can
use the following procedure.

Because K− j(x)=Kj(x), Eq. (3.30) implies that G− j(x)=Gj(x).
Hence, the problem reduces to calculation of Gj(x) for nonnegative
integer values of j. For j=0 and 1 we have:

G0 xð Þ = π
2

1−xK0 xð ÞL−1 xð Þ−xK1 xð ÞL0 xð Þ½ � ð3:31Þ

G1 xð Þ = K0 xð Þ ð3:32Þ

where Ln(x),n=0,±1,±2,…, is themodified Struve function [79,82,83].
The modified Struve and Bessel functions L−1(x), L0(x), K0(x), K1(x), …,
can be quickly and accurately calculated by using computational software

programs, such as ‘Mathematica’ developed by Wolfram Research
(Illinois, USA). Further, we have:

G2 xð Þ = 2K1 xð Þ−G0 qLð Þ ð3:33Þ

and so on. In general, the following recurrence formula holds (Appendix
C):

Gj xð Þ = 2Kj−1 xð Þ−Gj−2 xð Þ; j = 2; 3;… ð3:35Þ

Note that for small values of x, Eq. (3.35) predicts that Gj(x)≈2Kj−1(x).
Additional information can be found at the end of Appendix C.

It should be noted that Eqs. (3.27) and (3.29) have asymptotic
character. At L/(2rc)b1.5, they predict a stronger attraction than the
real one as indicated by their comparison with the exact solution of
the problem in bipolar coordinates at short distances; see Fig. 6 in Ref.
[33] and Fig. 7 in Ref. [34]. This inaccuracy originates from the fact that
the superposition approximation for the meniscus shape in the
middle between the two particles, Eq. (2.19), becomes less accurate at
short interparticle distances. Note however that Eqs. (3.27) and (3.29)
are very accurate for L/(2rc)N1.5, and their accuracy increases with
the rise of interparticle separation. They represent compact expres-
sions, which are much easier for applications than the solutions in
terms of bipolar coordinates in Refs. [33,34].

It should be also noted that Eq. (3.28), and its integrated form,
Eq. (1.7), exactly coincidewith the respective result in Ref. [34] obtained
by solving the problem in bipolar coordinates without using any
superposition approximation. This result confirms the validity of the
special version of the superposition approximation, Eq. (2.19), which
has been applied here only in the midplane between the two particles.

4. Summary and concluding remarks

The liquid interface around an adsorbed colloidal particle can be
undulated because of roughness or heterogeneity of the particle surface,
or due to the fact that the particle has a non-spherical (e.g. ellipsoidal or
polyhedral) shape. In such case, themeniscus around the particle can be
expanded in Fourier series, which is equivalent to a linear combination
of capillary multipoles, namely, capillary charges, dipoles, quadrupoles,
etc.; see Eqs. (1.3) and (1.4). The capillary multipoles attract a growing
interest because their interactionshave been found to influence the self-
assembly of particles at liquid interfaces, as well as the interfacial
rheology and the properties of particle-stabilized foams and emulsions.
As a rule, the interfacial deformations in the middle between two
adsorbed particles are small. This fact can be used for derivation of
accurate asymptotic expressions for calculating the capillary forces by
integration in the midplane, where the Young–Laplace equation can be
linearized and the superposition approximation can be applied. We
utilized this approach to derive a general integral expression for the
capillary force; see Eqs. (2.13)–(2.15). It is applicable to the cases when
gravitational and electric fields (e.g. due to charged particles) are
present in the system. In the special case of gravity field alone, the
derived integral expression reduces to a formula obtained in Ref. [75];
see Eq. (2.23).

It is a nontrivial task to obtain convenient analytical formulas for
the capillary forces from the derived integral expression. We
developed a new theoretical approach based on the tensor of capillary
interactions; see Eqs. (2.31) and (2.36). It has been applied by us to
derive explicit asymptotic expressions for the force between a
capillary charge and a capillary multipole, Eqs. (3.20) and (3.21),
and between two capillary multipoles of arbitrary order, Eqs. (3.27)
and (3.29). The obtained expressions are more general that the
previously published ones [34], the validity of the latter being limited
to sufficiently small interparticle distances, qL≪1. Note also that in
Ref. [34] we used the energy approach, i.e. ΔW was calculated, and
then the force Fx was obtained by differentiation. In contrast, in the
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present article we are using the force approach, which is based on the
calculation of Fx, and then we obtain the interaction energy, ΔW, by
integration. Of course, if correctly applied, the two approaches yield
identical results.
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Appendix A. Calculation of the meniscus shape

The meniscus shape around the particles z=ζ(x,y) obeys Eq. (1.1),
where the right-hand side can be neglected for q(x2+y2)1/2≪1.
Explicit expression for ζ(x,y) is obtained in Ref. [34] in terms of the
bipolar coordinates, τ and ω, in the xy-plane:

x =
a sinhτ

coshτ− cosω
; y =

a sinω
coshτ− cosω

ðA:1Þ

where a is a parameter related to the radii of the two contact lines, rA
and rB, and the interparticle distance L through the equation [33,34]:

a =
1
2L

L2− rA + rBð Þ2
h i1=2

L2− rA−rBð Þ2
h i1=2

: ðA:2Þ

The projections of the two contact lines on the xy-plane correspond to
τ=−τA and τ=τB defined as

τA = arccosh
L2 + r2A−r2B

2LrA

 !
ðA:3Þ

τB = arccosh
L2 + r2B−r2A

2LrB

 !
ðA:4Þ

arccosh ξ≡ ln ξ + ξ2−1
� �1=2� 	

: ðA:5Þ

To calculate the meniscus shape z=ζ(x,y), for given x and y we first
calculate:

dA = x + að Þ2 + y2
h i1=2

;dB = x−að Þ2 + y2
h i1=2 ðA:6Þ

τ = ln
dA
dB

� �
;ω = arccos

d2A + d2B−4a2

2dAdB

 !
ðA:7Þ

where ω≥0 for y≥0, and ωb0 for yb0. Next, the meniscus profile is
calculated from the following series [34]:

ζ = hA;m −1ð Þm ∑
∞

k=1
A k;m;τAð Þ cos kω + mϕA;m

� � sinh k τB−τð Þ½ �
sinh k τA + τBð Þ½ �

+ hB;m −1ð Þn ∑
∞

k=1
A k;n;τBð Þ cos kω + nϕB;n

� � sinh k τA−τð Þ½ �
sinh k τA + τBð Þ½ �

+ hA;m
τB−τ

τA + τB
exp −mτAð Þ cos mϕA;m

� �

+ hB;n
τ + τA
τA + τB

exp −nτBð Þ cos nϕB;n

� �
ðA:8Þ

where the coefficients are

A k; j;τYð Þ = 1
j−1ð Þ!

dj−1

dtj−1 tk−1 1−βtð Þj
h ij

t=β
ðA:9Þ

β = exp −τYð Þ Y = A;Bð Þ: ðA:10Þ

The first two sums in the right-hand side of Eq. (A.8) correspond to
Eq. (3.20) in Ref. [34]. (The phase-shift angles in Ref. [34] are defined
as π−ϕY,m, where ϕY,m is the phase-shift angle in the present article.)
The last two terms in Eq. (A.8), which do not depend on ω, have been
omitted in Ref. [34], because they do not contribute to the interaction
energy ΔW. However, they are important for the calculation of the
meniscus shape z=ζ(x,y).

Appendix B. Derivation of an integral formula for the
capillary forces

First, we represent Eq. (3.6) in the following equivalent form:

Fx = γrδ ∫
2π

0
½∂ζA∂ρB

∂ζB
∂ρB

cosϕB−
∂ζB
∂ϕB

sinϕB

rδ

� �
−q2ζAζB cosϕB

−∂ζA
∂ϕB

∂ζB
∂ρB

sinϕB

rδ
+

∂ζB
∂ϕB

cosϕB

r2δ

 !�dϕB at ρB = rδ:

ðB:1Þ

Integrating by parts the last term in Eq. (B.1), we derive:

Fx = γrδ ∫
2π

0
½∂ζA∂ρB

∂ζB
∂ρB

cosϕB−
∂ζB
∂ϕB

sinϕB

rδ

� �
−q2ζAζB cosϕB

+ ζA
∂

∂ϕB

∂ζB
∂ρB

sinϕB

rδ
+

∂ζB
∂ϕB

cosϕB

r2δ

 !�dϕB at ρB = rδ:

ðB:2Þ

Using Eq. (1.1) for Y=B, we bring Eq. (B.2) to the form:

Fx = γrδ ∫
2π

0
½∂ζA∂ρB

∂ζB
∂ρB

cosϕB−
∂ζB
∂ϕB

sinϕB

rδ

� �

+ ζA
∂2ζB

∂ρB∂ϕB

sinϕB

rδ
−∂ζB
∂ϕB

sinϕB

r2δ
−∂2ζB

∂ρ2B
cosϕB

 !�dϕB at ρB = rδ:

ðB:3Þ

Substituting ζB from Eq. (3.24) in the right-hand side of Eq. (B.3), after
some transformations we derive:

Fx = −
2n−1γhB;n
qnKn qrBð Þ ∫

2π

0

n!
rnδ

∂ζA
∂ρB

+
n + 1ð Þ!
rn + 1
δ

ζA

" #j
ρB = rδ

cos n + 1ð ÞϕB−nϕB;n

h i
dϕB:

ðB:4Þ

Further, we substitute the expression for ζA from Eq. (1.4) in the
integrand of Eq. (B.4):

Fx = −
2n−1γhA;mhB;n

qnKm qrAð ÞKn qrBð Þ Z ðB:5Þ

where

Z≡ ∫
2π

0

n!
rnδ

∂U
∂ρB

+
n + 1ð Þ!
rn + 1
δ

U

" #j
ρB = rδ

cos n + 1ð ÞϕB−nϕB;n

h i
dϕB ðB:6Þ

U ρA;ϕAð Þ≡Km qρAð Þ cos m ϕA−ϕA;m

� �h i
: ðB:7Þ

Next, we use a series expansion:

U ρA;ϕAð Þ jρB = rδ
= U ρA;ϕAð Þ jρB =0 + ∑

∞

k=1

∂kU
∂ρkB j ρB =0

rkδ
k!

: ðB:8Þ
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In view of Eq. (B.8), we obtain:

n!
rnδ

∂U
∂ρB

+
n + 1ð Þ!
rn + 1
δ

U

" #j
ρB = rδ

=
n!
rnδ

∂U
∂ρB

+
n + 1ð Þ!
rn + 1
δ

U

" #j
ρB =0

+
n!
rnδ

∑
∞

k=1

∂k + 1U
∂ρk + 1

B
j
ρB =0

rkδ
k!

+
n + 1ð Þ!
rn + 1
δ

∑
∞

k=1

∂kU
∂ρkB j ρB =0

rkδ
k!

: ðB:9Þ

In Appendix C, it is proven that the derivative ∂kU /∂ρBk at ρB=0 can be
expanded in a finite Fourier series in terms of cos(jϕB) and sin(jϕB),
where the maximum value of j is equal to the order of the derivative,
that is j≤k. Therefore, in view of Eqs. (B.6) and (B.9) we have:

Z = ∫
2π

0

n!
rnδ

∑
∞

k=n

∂k + 1U
∂ρk + 1

B
j
ρB =0

rkδ
k!

+
n + 1ð Þ!
rn + 1
δ

∑
∞

k=n + 1

∂kU
∂ρk

B
j
ρB =0

rkδ
k!

2
4

3
5

cos n + 1ð ÞϕB−nϕB;n

h i
dϕB: ðB:10Þ

Taking the limit of Eq. (B.10) for rδ→0, we obtain:

Z = ∫
2π

0

n!
rnδ

∂n + 1U
∂ρn + 1

B
j
ρB =0

rnδ
n!

+
n + 1ð Þ!
rn + 1
δ

∂n + 1U
∂ρn + 1

B
j
ρB =0

rn + 1
δ

n + 1ð Þ!

2
4

3
5

cos n + 1ð ÞϕB−nϕB;n

h i
dϕB

and finally

Z = 2 ∫
2π

0

∂n + 1U
∂ρn + 1

B
j
ρB =0

cos n + 1ð ÞϕB−nϕB;n

h i
dϕB: ðB:11Þ

Combining Eqs. (B.5), Eq. (B.7) and (B.11), we obtain Eq. (3.26) in
Section 3.3.

Appendix C. Obtaining an explicit expression for the
capillary forces

Our goal here is to solve the integral in Eq. (3.26) and to derive the
final formula for the multipole–multipole interaction, Eq. (3.27). For
this goal, we will utilize the orthogonality of the sines and cosines
[81]:

∫
2π

0

sin mϕð Þ sin nϕð Þdϕ = ∫
2π

0

cos mϕð Þ cos nϕð Þdϕ = πδmn; n≠0 ðC:1Þ

∫
2π

0

sin mϕð Þ cos nϕð Þdϕ = 0 ðC:2Þ

(m,n=0, 1, 2, …). The integrand in Eq. (3.26) contains cos[(n+1)ϕB]
as amultiplier, whichmeans that only the (n+1)-mode of the Fourier
expansion of the derivative in Eq. (3.26) will give a contribution to the
capillary force, Fx. To find this mode, we will first prove that

2k

qk
∂k

∂ρkB
Km qρAð Þ cos m ϕA−ϕA;m

� �h in oj
ρB = rδ→0

= ∑
k−1

j=0
aj;k cos jϕBð Þ + bj;k sin jϕBð Þ
h i

+ Km + k qLð Þ cos mϕA;m−kϕB

� �

+ Km−k qLð Þ cos mϕA;m + kϕB

� �

ðC:3Þ

where aj,k and bj,k are coefficients independent of ϕB. In view of
Eq. (3.26), we will use Eq. (C.3) for k=n+1. Having in mind
Eqs. (C.1) and (C.2), we conclude that only the highest-order Fourier

mode in Eq. (C.3) will give contribution to the integral in Eq. (3.26).
For this reason, the explicit form of the coefficients aj,k and bj,k (that
multiply modes of lower order) is not important.

Using the method of mathematical induction we will prove that

Hk≡
2k

qk
∂k

∂ρkB
Km qρAð Þ cos m ϕA−ϕA;m

� �h in o

= ∑
k−1

j=0
Aj;k cos jϕBð Þ + Bj;k sin jϕBð Þ
h i

+
Lk

ρkA
fKm + k qρAð Þ cos m ϕA−ϕA;m

� �
+ kϕB

h i

+ Km−k qρAð Þ cos m ϕA−ϕA;m

� �
−kϕB

h ig
ðC:4Þ

where Aj,k and Bj,k are coefficients, which may depend on ρA, ρB, and
ϕA. First we check whether Eq. (C.4) is fulfilled for k=1. For this goal,
from Eqs. (3.1) and (3.2) we obtain the following connections
between the two sets of polar coordinates:

ρA = L2 + ρ2B−2LρB cosϕB

� �1=2
; ϕA = arctan

ρB sinϕB

L−ρB cosϕB

� �
: ðC:5Þ

The differentiation of Eq. (C.5) yields:

∂ρA
∂ρB

=
ρB
ρA

− L cosϕB

ρA
;
∂ϕA

∂ρB
=

L sinϕB

ρ2A
: ðC:6Þ

With the help of Eq. (C.6), we obtain:

H1≡
2
q

∂
∂ρB

Km qρAð Þ cos m ϕA−ϕA;m

� �h in o

= 2K ′m qρAð Þ ρB
ρA

− L cosϕB

ρA

� �
cos m ϕA−ϕA;m

� �h i

−2m
qρA

Km qρAð Þ L sinϕB

ρA
sin m ϕA−ϕA;m

� �h i
:

ðC:7Þ

Using Eq. (3.19) and the formula [68,69,80]

2m
ξ

Km ξð Þ = Km + 1 ξð Þ−Km−1 ξð Þ ðC:8Þ

we represent Eq. (C.7) in the form

H1 = 2K ′m qρAð ÞρB
ρA

cos m ϕA−ϕA;m

� �h i

+ Km + 1 qρAð Þ + Km−1 qρAð Þ
 � L cosϕB

ρA
cos m ϕA−ϕA;m

� �h i

− Km + 1 qρAð Þ−Km−1 qρAð Þ
 � L sinϕB

ρA
sin m ϕA−ϕA;m

� �h i
:

ðC:9Þ

The final form of Eq. (C.9) is

H1 = 2K ′m qρAð Þ ρB
ρA

cos m ϕA−ϕA;m

� �h i

+
L
ρA
fKm + 1 qρAð Þ cos m ϕA−ϕA;m

� �
+ ϕB

h i

+ Km−1 qρAð Þ cos m ϕA−ϕA;m

� �
−ϕB

h ig:

ðC:10Þ

Denoting the first term in the right-hand side of Eq. (C.10) by A0,1, we
arrive at the conclusion that Eq. (C.4) is satisfied for k=1.
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Next, we will show that if Eq. (C.4) is valid for a given value of k,
then it holds also for k+1. We multiply Eq. (C.4) by 2/q and take
derivative with respect to ρB from the obtained result:

Hk + 1≡
2k + 1

qk + 1

∂k + 1

∂ρk + 1
B

Km qρAð Þ cos m ϕA−ϕA;m

� �h in o

=
2
q

∂
∂ρB

∑
k−1

j=0
Aj;k cos jϕBð Þ + Bj;k sin jϕBð Þ
h i

+
2
q

∂
∂ρB

Lk

ρkA
Km + k qρAð Þ cos m ϕA−ϕA;m

� �
+ kϕB

h i( )

+
2
q

∂
∂ρB

Lk

ρkA
Km−k qρAð Þ cos m ϕA−ϕA;m

� �
−kϕB

h i( )
: ðC:11Þ

Using Eq. (C.6), after some transformations we represent Eq. (C.1) in
the form:

Hk + 1 = ∑
k

j=0
Cj;k cos jϕBð Þ + Dj;k sin jϕBð Þ
h i

+
m + k
qρA

Km + k qρAð Þ−K′m + k qρAð Þ
� 	

Lk + 1

ρk + 1
A

cos m ϕA−ϕA;m

� �
+ k + 1ð ÞϕB

h i

− m−k
qρA

Km−k qρAð Þ + K′m−k qρAð Þ
� 	

Lk + 1

ρk + 1
A

cos m ϕA−ϕA;m

� �
− k + 1ð ÞϕB

h i

ðC:12Þ

where Cj,k and Dj,k are coefficients, which may depend on ρA, ρB, and
ϕA. Using again Eqs. (3.19) and (C.8), we bring Eq. (C.12) in the form:

Hk + 1 = ∑
k

j=0
Cj;k cos jϕBð Þ + Dj;k sin jϕBð Þ
h i

+ Km + k + 1 qρAð Þ L
k + 1

ρk + 1
A

cos m ϕA−ϕA;m

� �
+ k + 1ð ÞϕB

h i

+ Km− k + 1ð Þ qρAð Þ L
k + 1

ρk + 1
A

cos m ϕA−ϕA;m

� �
− k + 1ð ÞϕB

h i
:

ðC:13Þ

Eq. (C.13) is equivalent to Eq. (C.4) for k+1, which proves the validity
of Eq. (C.4) for all k≥1.

Furthermore, in Eq. (C.4) we carry out the limiting transition
ρB=rδ→0, which leads to ρA→L and ϕA→0; see Eq. (C.5). In the
same limit, the coefficient functions Cj,k and Dj,k tend to numbers that
are independent ofϕB, whichwill be denoted as follows: Cj,k→aj,k, and
Dj,k→bj,k. Then, the limiting form of Eq. (C.4) for ρB=rδ→0 coincides
exactly with Eq. (C.3) and thus proves its validity.

In Eq. (C.3), we set k=n+1, substitute the result in Eq. (3.26), and
use the orthogonality relations (C.1) and (C.2):

Fx = −
qγhA;mhB;n

2Km qrAð ÞKn qrBð Þ∫
2π

0

dϕB

× fKm + n + 1 qLð Þ cos n + 1ð ÞϕB−mϕA;m�
h i

cos n + 1ð ÞϕB−nϕB;n

h i

+ Km−n−1 qLð Þ cos n + 1ð ÞϕB + mϕA;m

h i
cos n + 1ð ÞϕB−nϕB;n

h ig
ðC:14Þ

With the help of the known formula 2cos α cos β=cos(α+β)+cos
(α−β), we finally arrive at Eq. (3.27).

For calculation of the functions Gj(x) in Eq. (3.29) for jN1, we
integrate Eq. (3.19):

Kj−1 xð Þ = 1
2

∫
∞

x
Kj ξð Þdξ + ∫

∞

x
Kj−2 ξð Þdξ

" #
ðC:15Þ

Using the definition in Eq. (3.30), we obtain the following recurrence
formula:

Gj xð Þ = 2Kj−1 xð Þ−Gj−2 xð Þ; j = 2;3; … ðC:16Þ

Knowing G0(x) and G1(x) from Eqs. (3.31) and (3.32), we can further
calculate the values of Gj(x) for j≥2. The modified Struve functions
L−1(x) and L0(x) that enter Eq. (3.32), can be accurately calculated by
using computational software programs like ‘Mathematica’, or from
the series expansions [79,83]:

L0 xð Þ = 2
π

x +
x3

1232 +
x5

123252 +
x7

12325272 + …

 !
ðC:17Þ

L−1 xð Þ =
d
dx

L0 xð Þ = 2
π

1 +
z2

123
+

z4

12325
+

z6

1232527
+ …

 !
:

ðC:18Þ
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