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a b s t r a c t

The electric field of charged particles, which are adsorbed at a liquid interface, induces interfacial defor-
mations (capillary menisci). The overlap of such deformations gives rise to electrocapillary force of inter-
action between the particles. Our goal is to quantify this interaction on the basis of a force approach,
which is different from the approaches (mostly based on energy calculations) used by other authors.
The fact that the electric field of adsorbed particles has a dipolar asymptotics (due to the image-charge
effect) is utilized to derive an analytical expression for the meniscus profile. The comparison of the cal-
culated profile with experimental data indicates that the results based on the dipolar approximation
agree excellently with the data, except some small deviations near the contact line. The effect of the inter-
facial deformation on the electrostatic pressure is also taken into account. The two-particle electro-
capillary problem is solved in bipolar coordinates without using the superposition approximation. It
turns out that for uniform distribution of the surface charges, the electrocapillary attraction is weaker
than the electrostatic repulsion at interparticle distances at which the dipolar approximation is applica-
ble, so that the net force is repulsive. This result is in agreement with the conclusions of other authors
obtained by using different theoretical approaches and with available experimental data. The analytical
expressions for the electrocapillary and electrodipping forces derived in the present article provide a sim-
ple and convenient way for estimation of these forces.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The electric field of charged particles that are adsorbed at a li-
quid interface induces interfacial deformations, which lead to lat-
eral capillary interactions [1]. Lateral capillary forces have been
investigated during the last 15 years in relation to their importance
for creation of two-dimensional structures of colloids (including
protein molecules and nanoparticles) with various applications
[2–14]. Comprehensive reviews can be found in Refs. [15–23].

In the case of charged particles, the electric field acts simulta-
neously on the particles and on the surrounding liquid interface.
For this reason, the capillary meniscus around a given adsorbed
particle decays / 1=r4 (rather than logarithmically) with the in-
crease of the radial distance r to the particle [24]. (For noncharged
particles, the meniscus has logarithmic asymptotics, which is re-
lated to the asymptotic behavior of the modified Bessel function
K0(x) at small x; see e.g. Refs. [16,18].) The existence of electrodip-
ping force, FED, that pushes a charged particle toward the phase of
greater dielectric constant was experimentally proven with parti-
cles at air/water and oil/water interfaces, and theory for the calcu-
lation of this force was developed [25,26]. The meniscus shape

around individual charged particles was experimentally deter-
mined and the results were compared with the theoretical predic-
tions [27].

The two-particle problem was addressed by Foret and Würger
[28], who concluded that the force of direct electric repulsion be-
tween two like-charged particles and the force of electrocapillary
attraction between them have similar asymptotic behavior at large
distances: jFERj / jFEC j / 1=L4, where L is the interparticle distance
[29]; see Fig. 1. It was still unclear whether the attraction, FEC , can
prevail over the repulsion, FER [29]. Oettel et al. [30] confirmed that
the meniscus shape cannot have logarithmic shape unless the par-
ticles experience the action of some additional external force.
These authors independently established that the asymptotics of
the electrocapillary force is FEC / 1=L4 [31], and arrived at the con-
clusion that at asymptotically large separations the capillary
attraction does not overcome the direct electrostatic repulsion be-
tween the colloidal particles [32]. This conclusion was confirmed
in experiments with micrometer-sized polystyrene particles using
laser tweezers [33].

Attraction between like-charged particles of radii 200—300 lm
floating at an oil/water interface was experimentally detected on
the background of the gravity-induced lateral capillary force [34].
This attraction was interpreted as a hybrid capillary interaction
between a gravity-induced capillary charge and a capillary
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quadrupole induced by anisotropically distributed surface charges
on the particle/oil interface [35].

A particle with uniformly distributed surface charges, which is
adsorbed at a water/nonpolar-fluid interface, creates electric field
that has asymptotically dipolar character. The force of electrostatic
repulsion between two such particles – parallel dipoles is [36–41]:

FER ¼
3p2

d

2enL4 ðL� rc;j�1Þ; ð1:1Þ

where L is the center-to-center distance between the two particles;
rc is the radius of their contact lines; en is the dielectric constant of
the nonpolar fluid (air, oil); pd is an effective dipole moment. The
factor 2 in the denominator of Eq. (1.1) accounts for the fact that
the dipolar field occupies only the upper half-space (the nonpolar
fluid), whereas the electric field in the aqueous phase is screened
by the ions in water. The electric charges that create the electric
field can be located at the particle/water interface [22,29,36–38]
and/or on the particle/nonpolar-fluid interface [9,10,25–27,34,
35,39–43]. Eq. (1.1) is applicable in both cases, as follows.

If the charges are located at the particle/nonpolar-fluid interface,
then the effective dipole moment pd is given by the expression
[26]:

pd ¼ 4prpnDR3 sin3 a: ð1:2Þ

Here, R is the particle radius, a is a central angle ðsina ¼ rc=RÞ, and
rpn is the electric charge density at the particle/nonpolar-fluid
interface; D ¼ Dða; epnÞ is a known dimensionless function, which
can be calculated by means of Table 1 and Eq. (D.1) in Ref. [26];
epn � ep=en is the ratio of the dielectric constants of the particle
and nonpolar fluid.

If charges are located at the particle/water interface, then the
effective dipole moment pd can be estimated from the expression
[22,33,37,38]:

pd ¼
2enq
ewj

; ð1:3Þ

where ew is the dielectric constant of water; q is the total surface
charge, and j is the Debye screening parameter.

Here, our goal is to directly calculate the force of electrocapillary
interaction between two like-charged particles located at a water/
nonpolar-fluid interface. The approach used in Ref. [35] is further
developed and applied to the case of isotropic charge distribution
on the particle surface. The interaction force is calculated by inte-
grating the interfacial tension along the particle contact line and
the pressure tensor over the particle surface. The effect of the menis-
cus shape on the electric field is taken into account by means of a
four-step iteration procedure (Section 2). The meniscus profile
around a pair of adsorbed particles is determined by solving the

Young–Laplace equation in bipolar coordinates, without using the
capillary superposition approximation (Section 3). The total interac-
tion force is obtained in the form of a series in powers of rc=L, and the
contributions of the direct electric repulsion and electrocapillary
attraction are compared (Section 4).

It should be noted that at short distances between small parti-
cles of radius comparable to the Debye length, j�1, the direct elec-
tric repulsion includes a screened coulomb term besides the dipole
term [37,38,44]. In the present study we consider particles of size
much greater than j�1, for which the dipole term is predominant;
see e.g. the experimental system in Ref. [33] and that in Section 3.2
below.

2. Basic equations

Let us consider two electrically charged particles, like those in
Fig. 1, which are located at the boundary between water and a non-
polar fluid (air or oil). The charged particles create electric field,
which gives rise to mechanical stresses described by the Maxwell
pressure tensor [45]:

Pw ¼ pw þ
ew

8p
ruw � ruw

� �
U� ew

4p
ruwruw; ð2:1Þ

Pn ¼ ðpn þ
en

8prun � runÞU�
en

4prunrun; ð2:2Þ

where the subscripts ‘‘w” and ‘‘n” denote quantities related, respec-
tively, to the water and nonpolar-fluid phases; U is the spatial unit
tensor; pw and pn are the scalar (hydrostatic) pressures in the
respective phases, whereas uw and un are the electrostatic poten-
tials in these phases.

At equilibrium, the shape of the liquid interface obeys the
Young–Laplace equation [46]:

2Hc ¼ ns � ðPn � PwÞ � ns at z ¼ f; ð2:3Þ

where H is the mean curvature of the liquid surface z ¼ fðx; yÞ; ns is
its running unit normal directed toward the nonpolar-fluid phase; c
is the respective interfacial tension. The substitution of Eqs. (2.1)
and (2.2) into the right-hand-side of Eq. (2.3), yields:

2Hc ¼ pn þ
en

8p
½ðns �runÞ

2 � ðns � runÞ
2� � pw

� ew

8p
½ðns �ruwÞ

2 � ðns � ruwÞ
2� at z ¼ f; ð2:4Þ

where we have used the vectorial identity A2B2 ¼ ðA� BÞ2 þ ðA � BÞ2

with A ¼ ns and B ¼ ru.
The force acting on an adsorbed particle is [47]:

F ¼ FðpÞ þ FðcÞ; ð2:5Þ

where the FðpÞ represents the integral of pressure tensor over the
particle surface, S, and FðcÞ is the integral of the interfacial tension
(considered as a vector) over the contact line C:

FðpÞ ¼ �
Z

Sw

dS � Pw �
Z

Sn

dS � Pn; FðcÞ ¼
Z

C
dlmc: ð2:6Þ

Here and hereafter, c is the interfacial tension of the liquid interface
(oil/water or air/water); see Fig. 1; Sw and Sn are the portions of the
particle surface that contact with the water and nonpolar-fluid
phases, respectively; dS is a vectorial surface element; dl is the sca-
lar linear element of the contact line C; m is the outward pointing
unit normal field having the direction of the surface tension at the
contact line, i.e. normal to C and tangential to the liquid interface.

Here, we will consider particle sizes and interparticle distances
that are much greater than the Debye screening length in the aque-
ous phase. The dielectric constant of water, ew, is supposed to be
much greater than those of the particle, ep, and of the nonpolar
fluid, en: i.e. ew � ep; en. For this reason, the electric field created

Fig. 1. Sketch of two like-charged particles attached to an oil–water interface. FED is
the electrodipping force, due to the image-charge effect, that pushes the particles
into water and deforms the fluid interface around them; FER is the direct electric
repulsion between the particles; FEC is the electrocapillary attraction, related to
deformations in the fluid interface created by the electric field; wc is the meniscus
slope angle at the contact line of radius rc ; c is the interfacial tension.
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by charges, located at the particle/nonpolar-fluid interface, practi-
cally does not penetrate into the water phase; see, for example,
the known problems for the image-charge effect [45,48] and for
a hydrophobic particle near an oil–water interface [49]. Experi-
mentally, the non-penetration of the field into water is manifested
as independence of the configuration of the adsorbed particles on
the electrolyte concentration in the aqueous phase [25,27,41].
Moreover, charges on the particle/water interface can also create
a long-range electric field that penetrates in the nonpolar fluid
trough the particle [36–38], whereas their electric field is sup-
pressed in the aqueous phase by the Debye screening. Thus, in first
approximation, the role of the aqueous phase is to keep the electric
potential constant at the particle/water and water/nonpolar-fluid
interfaces. In such a case, we can set uw � 0, and

un ¼ 0 at z ¼ fðx; yÞ: ð2:7Þ

In other words, the interface z ¼ fðx; yÞ is equipotential. Then,
the vector run is directed along the normal ns. Setting uw ¼ 0
and ns �run ¼ 0 in Eq. (2.4), and using the assumption for small
meniscus slope, we obtain:

@2f
@x2 þ

@2f
@y2 ¼ �

en

8pc
@un

@z

� �2

at z ¼ f: ð2:8Þ

We have used the assumption for small meniscus slope,
f2

x þ f2
y � 1, which is fulfilled for sub-millimeter particles, as well

as the fact that the liquid interface is flat far from the particles,
and hence pn ¼ pw. In this paper, we neglect the effect of the grav-
itational hydrostatic pressure. For sub-millimeter particles, the ef-
fects of the electric and gravitational on the meniscus shape have
been found to be additive [27].

Eq. (2.8), along with the boundary condition, Eq. (2.7), allows us
to calculate the deformation of the liquid interface created by the
particles and their electric field, as well as the interparticle force.
For this goal, we will apply the following iteration procedure:

(1) In zero-order approximation, the electrostatic potential of
two particles-dipoles, u0(r), is calculated assuming that
the liquid interface is flat and equipotential, i.e. u0jz¼0 ¼ 0;
see Eqs. (3.1) and (3.2) below.

(2) Next, substituting un ¼ u0 in the right-hand-side of Eq.
(2.8), we find the meniscus shape, z ¼ fðx; yÞ, in first approx-
imation. After that, we determine FðcÞ, i.e. the surface tension
contribution to the interaction force.

(3) To find the next correction term, we will seek un in the form:

un ¼ u0ðrÞ þu1ðrÞ; ð2:9Þ

where u1 accounts for the effect of the interfacial deformation on
the electrostatic potential un. Expanding in series the boundary
condition, Eq. (2.7), we obtain 0 ¼ unðx; y; fðx; yÞÞ ¼ unðx; y; 0Þþ
ð@un=@zÞz¼0fþ � � � In view of Eq. (2.9), having in mind that
u0jz¼0 ¼ 0 we obtain:

u1 ¼ �
@u0

@z
f at z ¼ 0: ð2:10Þ

Thus, u1 is solution of the equation r2u1 ¼ 0 (no ions in the
nonpolar fluid), which satisfies the boundary condition, Eq. (2.10).

(4) With un ¼ u0ðrÞ þu1ðrÞ, we calculate the Maxwell pressure
tensor, P, and then by using Eq. (2.6) we determine FðpÞ and
the total interaction force, Fx ¼ FðcÞx þ FðpÞx .

The next step in the iteration procedure is to substitute
un ¼ u0ðrÞ þu1ðrÞ in the right-hand-side of Eq. (2.8) and to deter-
mine the next correction in the meniscus profile f(x,y). However, it
turns out that the resulting correction term is of the order of the
neglected terms in Eq. (2.8) for small meniscus slope, f2

x þ f2
y � 1,

and hence this correction term is negligible in the framework of
the used level of accuracy. For this reason, we will stop the itera-
tions after completing the fourth step.

3. Theoretical model

3.1. Meniscus shape

We consider two identical adsorbed particles, A and B, sepa-
rated at a center-to-center distance L, with circular contact lines
of radius rc on their surfaces (Fig. 2). As mentioned above, an ad-
sorbed charged particle creates electric field, which has asymptot-
ically dipolar character; see Eq. (1.1). For this reason, in zero-order
approximation we will assume that the electric field created by the
two particles in the nonpolar fluid is equivalent to the superposi-
tion of the fields of two dipoles:

u0 ¼ uA;0 þuB;0; ð3:1Þ

uA;0 ¼
pd

en

z

ðq2
A þ z2Þ3=2 ; uB;0 ¼

pd

en

z

ðq2
B þ z2Þ3=2 ; ð3:2Þ

where pd is the dipole moment, see Eqs. (1.2) and (1.3); qA and
qB are radial distances with respect to the centers of the particles A
and B (Fig. 3). The meniscus shape z ¼ fðx; yÞ will be deter-
mined as a solution of Eq. (2.8) substituting un ¼ u0 in first
approximation.

First, we will determine the profiles z ¼ fAðx; yÞ and z ¼ fBðx; yÞ
of the menisci around each of the two particles in isolation. For this
goal, in the right-hand-side of Eq. (2.8) we substitute un ¼ uY;0;

Y ¼ A; B, from Eq. (3.2), which leads to:

1
qY

d
dqY

qY
dfY

dqY

� �
¼ � p2

d

8pcenq6
Y

; Y ¼ A;B: ð3:3Þ

The first integral of Eq. (3.3) is:

dfY

dqY
¼ p2

d

32pcenq5
Y

; Y ¼ A;B: ð3:4Þ

Setting qY ¼ rc in Eq. (3.4), we determine the meniscus slope at
the contact line (Fig. 1):

d � tan wc ¼
p2

d

32pcenr5
c
: ð3:5Þ

Insofar as the meniscus slope is small, d is a small parameter.
This fact will be used below. Having in mind that the electrodip-
ping force, FED, acting on each particle is counterbalanced by the
vertical component of the surface-tension force, FED ¼ 2pcrc

sin wc (Fig. 1), from Eq. (3.5) we obtain:

FED ¼
p2

d

16enr4
c

ð3:6Þ

Fig. 2. Sketch of the meniscus profile, z ¼ fðx; yÞ, around two identical charged
particles, A and B, which are attached to the boundary between a water phase and a
nonpolar fluid (e.g. air or oil). The contact lines on the particle surfaces are
presented by two circles of radius rc . The distance between the plane of the contact
lines and the plane of the non-perturbed liquid interface far from the particles is
denoted by hc . The dipoles associated with each particle in accordance with Eq. (3.2)
are symbolically depicted.
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ðsin wc 	 tan wc at small meniscus slope). The integration of Eq. (3.4)
yields the following expression for the meniscus shape around an
isolated particle:

fY ¼
p2

d

128pcen

1
r4

c
� 1

q4
Y

� �
; Y ¼ A;B: ð3:7Þ

The boundary condition fY ðrcÞ ¼ 0 has been used; see Fig. 2. As
already mentioned, here we do not consider gravitational effects,
so that fY ðqYÞ is determined solely by the particle electric field.
We have assumed that the xy-plane coincides with the plane of
the particles’ contact line, which is located at a distance hc below
the plane of the non-disturbed liquid interface far from the parti-
cles (Fig. 2). Setting qY !1 in Eq. (3.7), we find:

hc ¼
p2

d

128pcenr4
c
: ð3:8Þ

3.2. Discussion on the validity of the model

As mentioned above, in our model we consider particles of finite
size, but their electric field is approximated with the field of di-
poles, see Eq. (3.2). In general, this approximation is expected to
become inaccurate close to the particle surface, where the electric
field may deviate from the field of a dipole.

The model predicts that fY depends linearly on 1=q4
Y ; see Eq.

(3.7). In Fig. 4, we plot experimental data for the meniscus profile
fY vs. 1=q4

Y . The data are from Ref. [27] and are obtained for a
hydrophobized glass sphere of radius R ¼ 240:6 lm located at
the boundary water/tetradecane at contact-line radius rc ¼ 236:1 lm.
For such a relatively large particle there is also gravitational defor-
mation of the meniscus. The latter is calculated from available
accurate theoretical expressions and subtracted from the total
deformation [27] to obtain the purely electrostatic deformation
fYðqYÞ, which is plotted in Fig. 4. As seen in the figure, the plot of
fY vs. ðrc=qYÞ

4 complies very well with a straight line except the
closest vicinity of the contact line (at 0:96 < rc=qY < 1), where
small deviations from the linear dependence are observed. This
result indicates that the used approximation for dipolar electric
field, Eq. (3.2), works very well and predicts the meniscus shape
except some small deviations near the particle contact line.

The experimental data in Fig. 4 show also that the meniscus
shape is insensitive to the concentration of electrolyte in the aque-
ous phase. This result implies that (in the investigated system) the
electric charges are located at the particle/oil interface, and conse-
quently, the effective dipole moment should be estimated from Eq.
(1.2). Using this equation, a value of the surface charge density
rpn ¼ 67:9 lC=m2 was determined in Ref. [27]. The latter value is
close to the value 80 lC=m2, which was obtained in Ref. [39] from
the data by Philipse and Vrij [50] for zeta potentials of silanized sil-
ica particles in toluene–ethanol mixtures.

In Section 3.3, we will consider the problem about the meniscus
shape around two interacting particles separated at a center-to-
center distance L. For simplicity, we will assume that the contact
lines remain horizontal, as depicted in Fig. 2, at all values of L. Here,
we will estimate the accuracy of this approximation.

Under the action of the electric field of the other particle, the
plane of the contact line of a given particle might be rotated at
an angle b with respect to the horizontal position. This will induce
an interfacial deformation that is equivalent to a capillary dipole
[6,7,17,51]. The interaction force between two capillary dipoles is
given by the following asymptotic expression [51]:

Fx 	 �4pchAhB
r2

c

L3 ; ð3:9Þ

where hA and hB are the amplitudes of the capillary dipoles. (The co-
sine that characterizes their mutual orientation is set equal to 1,
which corresponds to the energetically most favorable configura-
tion.) The amplitudes are proportional to the force moment, ME,
which is due to the electric field of the other particle: hA;hB / ME.
Further, we have ME / pdEx / 1=L4; see Fig. 2 and Eq. (3.2). Then,
the product of the two amplitudes is hAhB / 1=L8, and Eq. (3.9)
yields Fx / 1=L11. Because the leading term in Fx is / 1=L4, the effect
of the contact line inclination turns out to be of considerably higher
order and will be neglected in subsequent calculations.

3.3. Meniscus around two particles and calculation of FðcÞx

To determine the meniscus profile, z ¼ fðx; yÞ, around two parti-
cles (Fig. 2), in the right-hand-side of Eq. (2.8) we substitute
un ¼ uA;0 þuB;0 from Eq. (3.2), which leads to:

@2f
@x2 þ

@2f
@y2 ¼ �

p2
d

8pcen

1
q6

A

þ 2
q3

Aq3
B

þ 1
q6

B

� �
: ð3:10Þ

One could check that a particular solution to the inhomoge-
neous Eq. (3.10) is given by the expression:

finh � �
p2

d

128pcen

1
q4

A

þ 1
q4

B

� �

þ p2
d

4pcenL2

1
qAqB

� 2
q2

A þ q2
B

qAqBL2

 !
; ð3:11Þ

where

q2
A ¼ ðxþ L=2Þ2 þ y2; q2

B ¼ ðx� L=2Þ2 þ y2 ð3:12Þ

(see Fig. 3). The general solution of Eq. (3.10) represents a sum of
finhðx; yÞ and the solution of the respective homogeneous equation,
fh (x,y):

Fig. 4. Plot of the electric interfacial deformation, fY vs. (rc=qY Þ
4 for experimental

data form Ref. [27] for a particle of radius R ¼ 240:6 lm located at a water/
tetradecane interface. The symbols are digitized points from the meniscus profile
taken from side-view photographs at various NaCl concentrations in water, which
are denoted in the figure. The solid line is a fit by cubic parabola. For
0 < rc=qY < 0:96, the data comply very well with the dashed straight line, whose
parameters are shown in the graph.

Fig. 3. Polar coordinates ðqA;/AÞ and ðqB;/BÞ in the xy-plane connected with two
identical particles, A and B. The contact lines on the particle surfaces are
circumferences of radius rc; L is the distance between their centers.
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f ¼ finh þ fh where
@2fh

@x2 þ
@2fh

@y2 ¼ 0: ð3:13Þ

Because f ¼ 0 at the particle contact lines (see Fig. 2 and the dis-
cussion in Section 3.2), we obtain the following boundary condi-
tion for fh:

fh ¼ �finh at qA ¼ rc and qB ¼ rc; ð3:14Þ

where finh is given by Eq. (3.11). Having determined f (x, y), we can
further calculate the x-projection of the interaction force FðcÞ acting
on the right-hand-side particle by using Eq. (2.6):

FðcÞx ¼ �crc

Z 2p

0
1þ @f

@qB

� �2
" #�1=2

cos /B d/B

	 crc

2

Z 2p

0

@f
@qB

� �2

cos /B d/B at qB ¼ rc: ð3:15Þ

The fact that the meniscus slope is small has been used; ðqB;/BÞ
are polar coordinates associated with the right-hand-side particle
(Fig. 3).

We found the function fh (x, y) in the form of a truncated Fourier
expansion by solving Eq. (3.13) in terms of bipolar coordinates
ðs;xÞ – see Appendix A for details:

fh ¼
p2

d

pcenr4
c

A0 þ
X5

k¼1

Ak
coshðksÞ
coshðkscÞ

cosðkxÞ þ O
r9

c

L9

� �" #
: ð3:16Þ

The coefficients A0; . . . ;A5 are given in Table 1. Next, f ¼ finh þ fh

is substituted in Eq. (3.15) and the integration is carried out. The
result is obtained in the form of a series expansion with respect
to the powers of rc/L (see Appendix A):

FðcÞx ¼
p4

d

2pce2
nr9

c
f ðcÞx ; ð3:17Þ

f ðcÞx ¼ 3k4

64
� k5

256
� 93k6

512
þ 91k7

256
þ k8

4096
þ Oðk9Þ; ð3:18Þ

where k � rc=L. The positive sign of the first term in the right-hand-
side of Eq. (3.18) means that at long interparticle distances, FðcÞx cor-
responds to repulsion. To determine the total interaction force, we
have to calculate also FðpÞx (see Section 4.1).

4. Calculation of FðpÞx and of the total force Fx

4.1. Calculation of FðpÞx

The force experienced by a dipole of moment p is F ¼ p � rE,
where E is the applied external electric field (the field of the con-
sidered dipole p being excluded) [48,52]. With p ¼ pdez and
E ¼ �rðuA;0 þu1Þ, we find the x-projection of the force FðpÞ acting
on the particle B:

FðpÞx ¼ �
pd

2
@

@z
@uA;0

@x
þ @u1

@x

� �
¼ 3p2

d

2enL4 �
pd

2
@2u1

@x@z

�����
x¼L=2;y¼z¼0

; ð4:1Þ

where we have substituted uA;0 from Eq. (3.2). In Eq. (4.1), the factor
1/2 appears because the electric field is present only in the upper

half-space (Fig. 1). To calculate FðpÞx , we have to first determine u1.
We recall that u1 originates from the interfacial deformation, and
satisfies the Laplace equation r2u1 ¼ 0 along with the boundary
condition, Eq. (2.10).

At a given boundary condition for u1 in the plane z = 0, we can
calculate u1 in the upper half-space (z > 0) by using the known
Green function for the Dirichlet boundary problem:

u1ðx; y; zÞ ¼
1

2p

Z 1

�1

Z 1

�1

zusð~x; ~yÞ
½ðx� ~xÞ2 þ ðy� ~yÞ2 þ z2�3=2 d~xd~y; ð4:2Þ

where ~x and ~y are integration variables. In view of Eq. (2.10), the
function us is defined as follows:

us ¼ �f
@u0

@z

����
z¼0
: ð4:3Þ

The definition of f is extended as f � 0 in the circles qA 6 rc and
qB 6 rc (Fig. 2), which gives us ¼ 0 in the same circles; see Eq. (4.3).
In Eqs. (4.2) and (4.3), u0 can be substituted from Eqs. (3.1) and
(3.2), and f(x,y) – from Eqs. (3.11), (3.13) and (3.16). As a result,
from Eqs. 4.1, 4.2 and 4.3 we obtain an expression for FðpÞx in the
form of series expansion (Appendix B):

FðpÞx ¼
3p2

d

2enL4 þ
p4

d

2pce2
nr9

c
f ðpÞx ; ð4:4Þ

f ðpÞx ¼ �27k4

320
þ k5

256
þ 213

512
k6 � 271

256
k7 þ 2099

4096
k8 þ oðk8Þ; ð4:5Þ

where k � rc=L. Combining Eqs. (3.17), (3.18) and (4.4), (4.5), we fi-
nally obtain an expression for the total interaction force, Fx, acting
on the right-hand-side particle B, in the form of a series expansion:

Fx ¼
3p2

d

2enL4 1� 2d
5
þ 5d

2
rc

L

� �2
� 15d

2
rc

L

� �3
þ 175d

32
rc

L

� �4
þ � � �

� �
:

ð4:6Þ

Here, d ¼ tan wc is the meniscus slope at the contact line given by
Eq. (3.5).

4.2. Summary and discussion

The first term in the brackets in Eq. (4.6) corresponds to the
force of direct electric repulsion, FER, between two charged parti-
cles adsorbed at a planar liquid interface ðd ¼ 0Þ; see Eq. (1.1).
Hence, the sum of all other terms in Eq. (4.6) (those / d) gives
the electrocapillary force:

FEC ¼ �
3p2

dd

2enL4

2
5
� 5

2
rc

L

� �2
þ 15

2
rc

L

� �3
� 175

32
rc

L

� �4
þ � � �

� �
: ð4:7Þ

Note that a term / rc=L is missing in the brackets in Eq. (4.7),
and hence the higher-order terms represent small corrections to
the leading term 2/5. Despite the fact that the leading term in f ðcÞx

is positive (repulsive), see Eq. (3.18), the electrocapillary force FEC

is negative (attractive) thanks to the contribution from the leading
term in f ðpÞx ; see Eq. (4.5). In view of Eq. (1.1), taking the leading
term in Eq. (4.7) we obtain:

jFEC j
jFERj

	 2
5

tan wc for
rc

L

� �2
� 1; ð4:8Þ

where the relation d ¼ tan wc has been used. Because we are work-
ing at small meniscus slope, we have tan wc < 1, which means that
jFEC j < jFERj. In other words, the total force, Fx ¼ FER þ FEC is positive
(repulsive); see Eq. (4.6). Thus, in the region where the asymptotic
expansion, Eq. (4.6) is applicable, the electrostatic repulsion be-
tween the two like-charged particles prevails over the capillary
attraction. Note, however, that in other cases (anisotropic surface
charge distribution) the capillary attraction may prevail [35]. In

Table 1
Expressions for the coefficients A0 ; . . . ;A5 in Eq. (3.16); k � rc=L.

A0 ¼ 1
128þ k3

4 þ k4

128� 3k5

16 þ k6

16� 127
256 k7 þ 31

128 k8

A1 ¼ 3
4 k4 � 1

32 k5 � 19
32 k6 � 5

32 k7 � 299
256 k8

A2 ¼ 7
16 k5 þ 1

64 k6 þ 29
64 k7 þ 1

32 k8

A3 ¼ 11
32 k6 þ 337

512 k8

A4 ¼ 75
256 k7; A5 ¼ 133

512 k8
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Fig. 5a, the dependencies of jFEC j and FER on the interparticle dis-
tance L are compared at wc ¼ 15
. In view of Eq. (4.8), at other wc

values the relative magnitude of FER varies / tan wc . One sees that
jFEC j is of the order of 10% of FER (Fig. 5a).

Having in mind that the electrodipping force is given by the
expression FED ¼ 2pcrc sin wc , and that sin wc 	 tan wc at small
meniscus slopes, we obtain an asymptotic relation between
FER; FEC and FED:

jFEC j
jFERj

	 jFEDj
5pcrc

for
rc

L

� �2
� 1: ð4:9Þ

Using Eqs. (1.1), (2.5) and (4.4), we can express the electro-
capillary force, FEC , in the form:

FEC ¼ FðcÞx þ Fðp;dÞx : ð4:10Þ

where FðcÞx is a contribution from the integral of surface tension c
along the particle contact line (Fig. 1), and by definition

Fðp;dÞx � FðpÞx � FER ð4:11Þ

i.e. Fðp;dÞx is equal to the integral of the pressure tensor over the par-
ticle surface minus the force of direct electrostatic repulsion, FER. In
view of Eqs. (3.5) and (4.4), Fðp;dÞx / d ¼ tan wc , and hence Fðp;dÞx would
be equal to zero in the absence of interfacial deformation ðd ¼ 0Þ.

The forces FðcÞx ; Fðp;dÞx and FEC are compared in Fig. 5b. One sees that
FðcÞx is positive (repulsive), Fðp;dÞx is negative (attractive), and their
sum, FEC , is attractive because the effect of pressure, Fðp;dÞx , is pre-
dominant in Eq. (4.10). In this respect, the situation is different from
the case of gravity-induced capillary force, where the pressure con-
tribution is negligible for sub-millimeter particles, whereas the sur-
face tension integral, FðcÞx , corresponds to attraction [4,16]. This
difference originates from the fact that the presence of gravitational
and electric fields lead to the appearance of different terms (with
different functional dependences) in the Young–Laplace equation
(see e.g. Eq. (3.10)), which results in different meniscus shapes.

4.3. The total force as interaction between effective dipoles

Let us consider the left-hand-side particle in isolation (i.e. at
L!1Þ. In this case un;0 ¼ uA;0, the meniscus profile fA is given
by Eq. (3.7), and then Eq. (4.3) acquires the form:

us ¼ �
p3

d

128pce2
n

1
r4

c
� 1

q4
A

� �
1
q3

A

for qA > rc; ð4:12Þ

us ¼ 0 for qA 6 rc: ð4:13Þ

Substituting Eqs. (4.12) and (4.13) into Eq. (4.2), we obtain the
following expression for the correction term in the electrostatic
potential:

uA;1 �
L
2
;0; z

� �
¼ � pdr5

c d
4en

Z 1

rc

1
r4

c
� 1

q4
A

� �
1
q2

A

zdqA

ðq2
A þ z2Þ3=2 : ð4:14Þ

In Eq. (4.12), c has been eliminated using the definition of d, Eq.
(3.5). Eq. (4.14) is written at the axis of revolution of particle A, and
correspondingly, we have set x = �L/2 and y = 0 in Eq. (4.2). The
integral in the right-hand-side of Eq. (4.14) can be solved
analytically:

uA;1 �
L
2
;0; z

� �
¼ � pdd

enðz2 þ r2
c Þ

1=2

� 1
5z
þ 3r2

c

5z3 �
2r4

c

5z5 �
4r6

c

5z7 �
rc

2z3 �
4r5

c

5z7

� �
ðz2 þ r2

c Þ
1=2

� �
:

ð4:15Þ

By using series expansion at small z, one can check that
uA;1ð�L=2;0; zÞ ! 0 at z! 0. i.e. the divergent terms in Eq. (4.15)
at z! 0 cancel each other. In the other limit, z!1, the series
expansion of Eq. (4.15) reads:

uA;1 �
L
2
;0; z

� �
¼ pdd

en
� 1

5z2 þ
rc

2z3 þ � � �
� �

: ð4:16Þ

Combining Eqs. (2.9), (3.2) and (4.16), we obtain the following
series for the electrostatic potential at the axis of revolution:

uA �
L
2
;0; z

� �
¼ pd

enz2 1� d
5
þ rcd

2z
þ � � �

� �
¼

~pd

enz2 1þ O
rcd
2z

� �� �
;

ð4:17Þ

where

~pd � pd 1� d
5

� �
: ð4:18Þ

The above result implies that the electric field far from the par-
ticle (for z� rcd=2) behaves as a dipole with an effective dipole
moment ~pd , which is smaller than the original dipole moment pd

(at flat liquid interface). This is due to the formation of meniscus
around the particle, which is taken into the account by the
correction term u1 in Eq. (4.2). In terms of the effective dipole
moment ~pd , Eq. (4.6) acquires the form:

Fig. 5. (a) Plots of the dimensionless electrostatic repulsion, eF ER , and electro-
capillary attraction, jeF EC j, vs. the dimensionless interparticle distance L=rc , calcu-
lated from Eqs. (1.1) and (4.7). (b) Plots of eF EC ; eF ðcÞx and eF ðp;dÞx vs. L=rc , calculated by
using Eqs. (3.5), (3.17), (3.18), (4.4), (4.5) and (4.11). The meniscus slope angle at the
contact line is wc ¼ 15
 . The tilde means that the respective force is scaled with
3p2

d=ð2enr4
c Þ.
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Fx ¼
3~p2

d

2enL4 1þ O
r2

c d

L2

� �� �
: ð4:19Þ

Because we are working at small meniscus slope, d2 � 1, terms
of the order of d2 (and higher-order terms) have been neglected
everywhere in this article. Eq. (4.19) shows that the force of inter-
action between two charged particles at a water/nonpolar-fluid
interface can be considered as interaction between two electric di-
poles of effective dipole moment ~pd . The capillary effect influences
the interaction through the term d=5 in Eq. (4.18). This term dimin-
ishes the effective dipole moment of the particle and the net repul-
sion between two similar particles, which is equivalent to the
effect of the electrocapillary attraction; see Eq. (4.7).

The forces between colloidal spheres (of diameter 3:1 lm) at a
decane-water interface, in the presence of low concentrations of
NaCl and the ionic surfactant sodium dodecyl sulfate (SDS) in the
aqueous subphase, have been studied using laser tweezers [33].
The experimental data indicate interparticle repulsion Fx / 1=L4,
in agreement with Eq. (4.19). The increase of both NaCl and SDS
concentrations leads to decrease of the magnitude of the measured
Fx. This effect can be explained with a partial screening of surface
charges at the particle/water interface with the rise of the ionic
strength of the aqueous solution. As a result, the electric field of
these charges, which penetrates through the dielectric particles
in the nonpolar fluid, becomes weaker, i.e. the effective dipole mo-
ment ~pd decreases. It should be noted that the increase of the ionic
strength leads to diminishing of the Debye screening length, j�1,
which makes our theory applicable to sub-micrometer particles.
As already mentioned, for very small particles, for which the parti-
cle radius is comparable with j�1, the screened coulomb repulsion
becomes significant at short interparticle separations, in addition
to the dipole repulsion [37,38,44].

The final conclusion from our detailed analysis is that the direct
electrostatic repulsion dominates over the capillary attraction
when the surface charge is uniformly distributed; no matter
whether the surface charge is on the polar-liquid or nonpolar-fluid
side of the particle.

Electric-field-induced attraction that prevails over the electro-
static repulsion was established (both experimentally and theoret-
ically) in the case of not-too-small floating particles, for which the
interfacial deformation due to gravity is not negligible [34,35]. If
the surface charge is anisotropically distributed (this may happen
at low surface charge density), the electric field produces a sad-
dle-shaped deformation in the liquid interface near the particle,
which is equivalent to a ‘‘capillary quadrupole”. The interaction
of the latter with the axisymmetric gravitational deformation
around the other particle (which is equivalent to a ‘‘capillary
charge”) gives rise to a capillary force that decays / 1=L3, i.e.
slower than FER / 1=L4. In such a case, we are dealing with a hybrid
interaction between a gravity-induced ‘‘capillary charge” and an
electric-field-induced capillary quadrupole [35]. This effect cannot
explain the effective attraction registered in Ref. [1], where the
particles are rather small, and the gravity-induced interfacial
deformation is negligible. Recent reviews on the forces between
capillary multipoles can be found in Refs. [23,53].

5. Concluding remarks

Charged particles adsorbed at a liquid interface experience the
action of several forces (Fig. 1). First, the electrodipping force is
pushing each separate particle toward the fluid phase of greater
dielectric constant, usually – the water phase. Second, like-charged
particles experience a direct electric repulsion. In addition, the par-
ticle electric field gives an electrostatic contribution to pressure,
which leads to the appearance of an electric-field induced defor-
mation (capillary meniscus) in the liquid interface around each

particle. The overlap of such deformations produces an electro-
capillary force of interaction between the particles. Our goal in
the present article is to quantify this interaction on the basis of a
force approach, which is different from the approaches (mostly
based on energy calculations) used by other authors. The fact that
the electric field of adsorbed particles behaves asymptotically as a
field of a dipole is utilized to derive analytical expressions for the
meniscus profile; see Eqs. (3.11), (3.13), (3.16) and Table 1. The
comparison of the calculated profile with experimental data indi-
cates that the result based on the dipolar approximation agrees
excellently with the data, except some small deviations near the
contact line (Fig. 4). The effect of the interfacial deformation on
the electrostatic pressure is also taken into account; see Eqs.
(2.10) and (4.2). The two-particle electrocapillary problem is
solved in bipolar coordinates without using the superposition
approximation (Appendices A and B). The derived expression for
the electrocapillary attraction shows that it is weaker that the elec-
trostatic repulsion at all interparticle distances at which the dipo-
lar approximation is applicable; see Eqs. (4.6), (4.7) and (4.8). This
result is in agreement with the conclusions of other authors ob-
tained by using different theoretical approaches [29,32] and with
available experimental data [33]. The analytical expressions for
the electrodipping and electrocapillary forces derived in the pres-
ent article provide a simple and convenient way for estimation of
the magnitude of these forces.
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Appendix A. Surface–tension contribution to the interaction
force, FðcÞx

The meniscus profile z ¼ fðx; yÞ, which satisfies Eq. (3.10), can be
presented in the form f ¼ finh þ fh, where finh is a particular solu-
tion to the inhomogeneous equation given by Eq. (3.11), and fh is
the solution of the homogeneous Eq. (3.13). Our goal is to find fh

and then to calculate FðcÞx by carrying out the integration in Eq.
(3.15). For this goal, it is convenient to introduce bipolar coordi-
nates ðs;xÞ in the xy-plane:

x � a
u

sinhs; y � a
u

sin x; ðA:1Þ

u � cosh s� cos x: ðA:2Þ

Here, u is a metric coefficient and a is a parameter, which is to be
determined from the boundary conditions; see Eq. (A.3). The coor-
dinate lines s ¼ const: and x ¼ const: are two families of mutually
orthogonal circumferences (see Fig. 6). We determine a in such a
way that the contact lines of the two particles to correspond to
the coordinate circumferences s ¼ sc and s ¼ �sc:

a
rc
¼ sinhsc ¼

L2

4
� r2

c

 !1=2

; cosh sc ¼
L

2rc
; and

sc ¼ ln
Lþ 2a

2rc

� �
: ðA:3Þ

See also Fig. 3. In bipolar coordinates, Eq. (3.13) acquires the
form:

@2fh

@s2 þ
@2fh

@x2 ¼ 0: ðA:4Þ
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Because of the symmetry of the considered problem, at the mid-
plane x = 0 we have:

@fh;0

@s
¼ 0 at s ¼ 0: ðA:5Þ

At the contact line qB ¼ rc of the right-hand-side particle, we
should have fh ¼ �finh. In view of Eq. (3.11), we obtain the follow-
ing boundary condition:

fhjqB¼rc
¼ p2

d

128pcen

1
q4

A

þ 1
r4

c

� �

� p2
d

4pcenL2

1
qArc

� 2
q2

A þ r2
c

qArcL2

 !
; ðA:6Þ

In addition, at qB ¼ rc the distance qA can be expressed as a
function of x:

qAjqB¼rc
¼ 1� 3ðrc=LÞ2 � 2ðrc=LÞ3 cos x

1� 2ðrc=LÞ cos x

" #1=2

L: ðA:7Þ

Next, we expand Eqs. (A.6) and (A.7) in series for rc=L� 1, and
after that the result is expanded in Fourier series in terms of x. The
final result reads:

fhjqB¼rc
¼ p2

d

pcenr4
c

X5

k¼0

Ak cosðkxÞ þ O
r9

c

L9

� �" #
; ðA:8Þ

where the dimensionless coefficients A0; . . . ;A5 are given in Table 1.
The solution of Eq. (A.4), along with the boundary conditions, Eqs.
(A.5) and (A.8), is:

fh;0 ¼
p2

A

pcenr4
c

A0 þ
X5

k¼1

Ak
coshðksÞ
coshðkscÞ

cosðkxÞ þ O
r9

c

L9

� �" #
: ðA:9Þ

Using the identity

cos /B ¼
1� cosh sc cos x
cosh sc � cos x

; ðA:10Þ

we bring Eq. (3.15) in the form:

FðcÞx ¼
c

2rc
1� 4r2

c

L2

� ��1=2 Z 2p

0

@f
@s

� �2 2rc

L
� cos x

� �
dx at s ¼ sc:

ðA:11Þ

It is convenient to introduce the dimensionless variable ~f as
follows:

~f ¼ pcenr4
c

p2
d

f: ðA:12Þ

In view of Eq. (3.17) and (A.12), Eq. (A.11) acquires the form:

f ðcÞx � 1
p

1� 4r2
c

L2

� ��1=2 Z 2p

0

@~f
@s

 !2
2rc

L
� cos x

� �
dx at s ¼ sc:

ðA:13Þ

Having in mind that f ¼ finh þ fh, with the help of Eqs. (3.11),
(A.9), (A.12) and (A.13), we obtain an asymptotic expression for
the dimensionless meniscus profile:

~f ¼ � 1
128

cosh s� cos x
coshðsþ 2scÞ � cos x

� �2

� 1
128

cosh s� cos x
coshðs� 2scÞ � cos x

� �2

� sinh2sc

16cosh4sc

� cosh sþ cos x
f½coshðsþ 2scÞ � cos x�½coshðs� 2scÞ � cos x�g1=2

þ A0 þ
X5

k¼1

Ak
coshðksÞ
coshðkscÞ

cosðkxÞ þ O
r9

c

L9

� �
: ðA:14Þ

Differentiating Eq. (A.14) with respect to s , we derive:

@~f
@s

�����
s¼sc

¼ � 1
32

sinh sc

cosh sc � cos x
� 1

64

� ðcosh sc � cos xÞ sinh sc

½coshð3scÞ � cos x�2
þ 1

64

� ðcosh sc � cos xÞ2 sinhð3scÞ
½coshð3scÞ � cos x�3

� sinh3sc

8cosh2sc

� coshð2scÞ � sin2 x� cosh sc cos x
½coshð3scÞ � cos x�3=2ðcosh sc � cos xÞ3=2

þ
X5

k¼1

kAk
sinhðkscÞ
coshðkscÞ

cosðkxÞ þ O
r9

c

L9

� �
: ðA:15Þ

Further, we expand Eq. (A.15) in series for rc=L� 1. The result
reads:

@~f
@s

�����
s¼sc

¼
X8

k¼0

Bk cosðkxÞ þ O
r9

c

L9

� �
; ðA:16Þ

where the dimensionless coefficients, B0; . . . ;B8, are expressed as
power series of the small parameter k � rc=L neglecting terms of or-
der higher than k8:

B0 ¼ �
1

32
� k3

4
þ 9k5

16
þ k6

16
þ 75k7

256
þ 9k8

32
;

B1 ¼ �
k

16
� k3

16
þ k4

4
� 3k5

16
� 67

32
k6 � 5

8
k7 � 237

256
k8;

B2 ¼ �
k2

16
� k4

8
þ k5

16
� k6

4
þ 33

64
k7 � 3

4
k8;

B3 ¼ �
k3

16
� 3k5

16
þ k6

32
� 9k7

16
þ 105

512
k8;

B4 ¼ �
k4

16
� k6

4
þ 5k7

256
� 7

8
k8;

B5 ¼ �
k5

16
� 5k7

16
þ 7k8

512
;

B6 ¼ �
1

16
k6 � 3

8
k8;

B7 ¼ �
k7

16
; B8 ¼ �

k8

16
:

Fig. 6. Bipolar coordinates ðs;xÞ in the xy-plane. The s ¼ const: and x ¼ const:
coordinate lines represent two families of mutually orthogonal circumferences. The
contact lines on the particle surfaces correspond to s ¼ �sc .
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Substituting Eq. (A.16) in the right-hand-side of Eq. (A.13), we
obtain Eq. (3.17) in the main text.

Appendix B. Pressure contribution to the interaction force, FðpÞx

Substituting Eq. (4.2), into the right-hand-side of Eq. (4.1) we
obtain:

FðpÞx ¼
3p2

d

2enL4 þ
3pd

4p

Z 1

�1

Z 1

�1

L� 2x
2q5

B

usðx; yÞdxdy: ðB:1Þ

Furthermore, substituting us from Eq. (4.3) and using Eqs. (3.1),
(3.2), and (A.12), we derive Eq. (4.4), where the dimensionless force
coefficient f ðpÞx is defined as follows:

f ðpÞx � 3r5
c

4p

Z 1

�1

Z 1

�1

1
q3

A

þ 1
q3

B

� �
2x� L

q5
B

~fdxdy: ðB:2Þ

The integral in Eq. (B.2) is taken over the region qA P rc and
qB P rc; see Eq. (3.12) for the definitions of qA and qB. The menis-
cus shape is symmetric with respect to the plane x ¼ 0, and
consequentlyZ 0

�1

1
q3

A

þ 1
q3

B

� �
2x� L

q5
B

~fdx ¼ �
Z 1

0

1
q3

A

þ 1
q3

B

� �
2xþ L

q5
A

~fdx: ðB:3Þ

Using Eq. (B.3), we rearrange Eq. (B.2) into a symmetric form:

f ðpÞx ¼ �3r5
c

4p

Z 1

�1
dy

�
Z 1

0
dx

Lþ 2x
q8

A

þ L� 2x
q8

B

þ Lð4y2 � 4x2 þ L2Þ
2q5

Aq5
B

" #
~f: ðB:4Þ

Let us consider the function

w � Lþ 2x
24q6

A

þ L� 2x
24q6

B

þ 2q2
A þ 2q2

B � L2

3L5qAqB

16þ LðLþ 2xÞ
q2

A

þ LðL� 2xÞ
q2

B

� �
: ðB:5Þ

Differentiating w(x,y), we obtain:

r2w ¼ Lþ 2x
q8

A

þ L� 2x
q8

B

þ Lð4y2 � 4x2 þ L2Þ
2q5

Aq5
B

; ðB:6Þ

where r2 is the Laplace operator in the xy-plane. The combination
of Eqs. (B.4) and (B.6) yields:

f ðpÞx ¼ �3r5
c

4p

Z 1

�1
dy
Z 1

0
dx~fr2w: ðB:7Þ

With the help of the two-dimensional divergence theorem, we
derive:Z 1

�1
dy
Z 1

0
dxð~fr2w�wr2~fÞ ¼

Z 1

�1
dy
Z 1

0
dx½r � ð~frwÞ �r � ðwr~fÞ�

¼ �
Z 1

�1

~f
@w
@x
�w

@~f
@x

 !�����
x¼0

dy

� rc

Z 2p

0

~f
@w
@qB
�w

@~f
@qB

 !�����
qB¼rc

d/B:

ðB:8Þ

The symmetry of the functions ~fðx; yÞ and w(x,y) implies that the
integral along the y-axis is zero. Then, because ~fjqB¼rc

¼ 0, Eq. (B.8)
reduces to:

Z 1

�1
dy
Z 1

0
dx~fr2w ¼

Z 1

�1
dy
Z 1

0
dxwr2~fþ rc

�
Z 2p

0
w

@~f
@qB

 !�����
qB¼rc

d/B: ðB:9Þ

With the help of Eq. (B.9), we represent Eq. (B.7) in the form:

f ðpÞx ¼ I1 þ I2; ðB:10Þ

I1 � �
3r6

c

4p

Z 2p

0
w

@~f
@qB

 !�����
qB¼rc

d/B; ðB:11Þ

I2 � �
3r5

c

4p

Z 1

�1
dy
Z 1

0
dxwr2~f: ðB:12Þ

To calculate I1, is convenient to introduce bipolar coordinates
(see Appendix A):

I1 ¼
3

4p

Z 2p

0
r5

c w
@~f
@s

 !�����
s¼sc

dx: ðB:13Þ

Expanding Eq. (B.5) in series for small values of rc=L, we obtain:

r5
c wjs¼sc

¼
X9

k¼0

Uk cosðkxÞ þ O
r9

c

L9

� �
; ðB:14Þ

where the dimensionless coefficients, U0; . . . ;U9, are expressed as
power series of the small parameter k � rc=L neglecting terms of or-
der higher than k8:

U0 ¼
k

12
þ k3

12
þ 17

3
k4 þ k5

4
� 83

24
k6 þ 4

3
k7 � 1933

192
k8;

U1 ¼ �
k

12
þ k2

12
� 2

3
k3 þ k4

6
þ 227

12
k5 � 1027

96
k7 � 5

3
k8;

U2 ¼ �
k

12
� 5

3
k4 þ k5

12
þ 23

2
k6 þ 2

3
k7 þ 6235

384
k8;

U3 ¼ �
k2

12
� k4

12
� 9

4
k5 � k6

12
þ 499

64
k7 � k8

12
;

U4 ¼ �
k3

12
� k5

6
� 65

24
k6 � k7

3
þ 757

192
k8;

U5 ¼ �
k4

12
� k6

4
� 595

192
k7 � 2

3
k8;

U6 ¼ �
k5

12
� k7

3
� 441

128
k8; U7 ¼ �

k6

12
� 5k8

12
;

U8 ¼ �
1

12
k7; U9 ¼ �

1
12

k8:

Substituting Eqs. (A.16) and (B.14) into Eq. (B.13), we drive:

I1 ¼ �
9k4

32
� 111

256
k6 � 577

256
k7 � 327

2048
k8 þ Oðk9Þ: ðB:15Þ

To calculate the integral I2, we present Eq. (3.10) in dimension-
less form using Eq. (A.12):

r2~f ¼ � r4
c

8q6
A

� r4
c

8q6
B

� r4
c

4q3
Aq3

B

: ðB:16Þ

Substituting Eq. (B.16) in Eq. (B.12), we obtain:

I2 ¼
3r9

c

32p

Z 1

�1
dy
Z 1

0
dx

1
q3

A

þ 1
q3

B

� �2

w: ðB:17Þ

One can check that the integrand in Eq. (B.17) can be ex-
pressed as a Laplace operator acting on a scalar function w1, as
follows:

1
q3

A

þ 1
q3

B

� �2

w ¼ r2w1; ðB:18Þ
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w1 �
3

2L9 ln2 qA

qB

� �

þ 1
8

q4
A

q4
B

�q4
B

q4
A

� �
þ q2

A

q2
B

�q2
B

q2
A

� �
L4

8q2
Aq2

B

�1

 !
� qA

qB
�qB

qA

� �3 L2

4qAqB

" #
1
L9

� ln
qA

qB

� �
þ g6

480
þ 167g4

13440
� g3

84
� 1

192

� �
1

Lq4
Aq4

B

þ � g7

192
�121g5

2688
þ g4

28
�1061g3

13440
þ13g2

420
þ g1

16

� �
1

L3q3
Aq3

B

þ g8

192
þ57g6

896
� g5

42
þ1289g4

6720
�113g3

105
�3271g2

13440
�19g1

70
þ65

24

� �
1

L5q2
Aq2

B

þ � g9

384
�107g7

2688
�251g5

1680
þ76g4

35
þ107g3

168
þ24g2

7
þ5401g1

960
� 88

150

� �
1

L7qAqB

þ g10

1920
þ 25g8

2688
þ 491g6

13440
�152g5

175
�713g4

1680
�88g3

105
þ15149g2

2240
þ128g1

15

� �
1
L9 ;

ðB:19Þ

where gk is defined by the expression

gk �
qA

qB

� �k

þ qB

qA

� �k

ðk ¼ 1;2; . . .Þ:

Substituting Eq. (B.18) into Eq. (B.17) and applying the diver-
gence theorem, we get:

I2 ¼ �
3r9

c

32p

Z 1

�1

@w1

@x
jx¼0 dy� 3r10

c

32p

Z 2p

0

@w1

@qB
jqB¼rc

d/B: ðB:20Þ

The symmetry of the function w1(x,y) implies that the integral
along the y-axis is zero, and then Eq. (B.20) reduces to:

I2 ¼ �
3r10

c

32p

Z 2p

0
�@w1

@qB

����
qB¼rc

d/B: ðB:21Þ

Substituting w1 from Eq. (B.19) in Eq. (B.21) and expanding the
obtained result in series for small k � rc=L, we obtain:

I2 ¼
63k4

320
þ k5

256
þ 435

512
k6 þ 153

128
k7 þ 2753

4096
k8 þ oðk8Þ: ðB:22Þ

Finally, substituting Eqs. (B.15) and (B.22) into Eq. (B.10) we de-
rive Eq. (4.5), which expresses the force coefficient f ðpÞx .
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