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15.1 INTRODUCTION 

The attachment of a particle to the boundary between two fluid phases is usually accompanied 

by interfacial deformation near the particle (meniscus formation). The overlap of such two 

deformations gives rise to lateral capillary interaction between the particles.1–10 As a rule, the 

lateral capillary force between similar particles is attractive and brings about particle 

aggregation and ordering, and plays an important role in the production of various two-

dimensional structures,9–12 which is the main reason for the growing interest in this area 

during the last decade. The obtained structures have found numerous applications for 

producing photonic crystals;13,14 photo- and electro-luminescent semiconductor materials;15,16 

nanostructured surfaces for photoelectrochemical and photocatalytic processes;17,18 optical 

elements, such as diffraction gratings and interference filters;19,20 micropatterning by non-

densely packed interfacial colloidal crystals;21,22 paint coatings of new optical properties;23,24 

samples for electron microscopy of viruses and proteins;25,26 sensors in analytical 

chemistry;27,28 miniaturized immunosensors and immunoassays;29,30 nano-lithography and 

micro-contact printing;31–33 production of structured porous (including nanoporous) materials 

by using colloid crystal templates;34–36 and so on. 

So far, four different physical reasons for the appearance of interfacial deformations 

(menisci) have been identified. First, for floating “heavy” particles of size greater than ca. 

10 μm, the particle weight (together with the Archimedes force) gives rise to an interfacial 

deformation and lateral capillary attraction (flotation force);1,3,6,8,9,37 (see Section 15.2.1.) 

 Second, menisci appear also around colloids that are partially immersed in a liquid 

film (film on a substrate or a free film) because of the different wettability of the particles by 

the two neighboring fluid phases.4,5,7–10,38 The respective capillary attraction (immersion 

force) was found to produce two-dimensional aggregation and ordering of micrometer- and 

submicrometer-sized particles,11,12,39–42 and even of viruses and proteins.9,25,26 Similar forces 

are operative between inclusions in phospholipid membranes;9,43–45 (see Sections 15.2.4–

15.2.6). 

 Third, interfacial deformations can be produced by an undulated contact line on the 

particle surface due, for example, to surface roughness9,46 or to non-spherical particle shape 

(ellipsoids, polyhedrons, etc.). 47–53 Mathematically, the shape of the undulated contact line 

could be expanded in Fourier series, and depending on the leading terms in this expansion, we 
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deal with interactions between capillary “dipoles”, “quadrupoles”, “hexapoles”, and other 

capillary “multipoles”;10,54–56 (see Sections 15.2.2 and 15.4). 

 Fourth, interfacial deformations can be produced by electric charges at the particle 

surface. Like-charged particles electrostatically repel each other. They are expected to also 

experience capillary attraction due to the overlapping of the menisci formed around them. The 

balance of the latter two forces would lead to the appearance of an energy minimum, 

corresponding to the equilibrium position of the particle in a two-dimensional colloid 

lattice.57 The electrodipping force and the electric-field-induced deformation of the liquid 

interface around a charged particle of radius about 250 μm have been experimentally 

observed and theoretically investigated.58–60 Experiments show that the motion of two such 

particles toward each other on a liquid interface indicates the presence of an additional 

attractive force;61 (see Section 15.2.3, 15.5 and 15.6). 

 Most of the experimentally observed electric effects with particles at oil/water and 

air/water interfaces are due to the presence of electric charges at the boundary 

particle/nonpolar fluid (oil, air).58–70 Because of the absence (or very low concentration) of 

ions in the nonpolar fluid, the electric interaction between two particles across the nonpolar 

phase are not screened. Consequently, the electric repulsion between like-charged particles 

has a long-range Coulombic character and may lead to the formation of two-dimensional 

colloid-crystal lattices of relatively large interparticle spacing.22,62–70 This type of interactions 

is important also for the properties of particle-stabilized (Pickering) emulsions.65,68,71 

 Theoretical description of the electric force and of the meniscus shape around a single 

charged particle has been published.58–60 Different results were reported on the two-particle 

problem, which had been a subject of debates in the literature.72–80 One of the difficulties 

related to this problem is that the particle electric field affects the meniscus shape not only 

through the normal force exerted on each particle, but also through the electric pressure 

(described by the Maxwell stress tensor), which is acting over the liquid interface around the 

particles. The predictions of the available theoretical models depend on the form of the 

postulated expression for the free energy of the system and on the type of the used truncated 

asymptotic expansions or other perturbation procedures. Different approaches have lead to the 

conclusion that the electric-field-induced capillary force is attractive, but it has been unclear 

whether it could prevail over the direct electric repulsion between like-charged particles. In 
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the meantime, the number of experimental indications for the action of attractive forces 

between particles at liquid interfaces keeps increasing.61,66,67,81–84 

 In the present chapter, we first give a brief review on the different kinds of lateral 

capillary forces (Section 15.2). Next, we present a general theoretical approach, which can be 

applied for theoretical description of all kinds of lateral capillary forces (Section 15.3). This 

approach is further applied to quantify the force and energy of interaction between capillary 

multipoles of various order; the derived expressions (Section 15.4) are more general than 

previously published ones.54–56 Then (Section 15.5), we address the issue about the electric-

field-induced capillary force. We consider the case of charges, which are located on the 

particle/nonpolar-fluid interface and uniformly distributed over it. Asymptotic expression for 

the interaction force is derived in the form of power expansion, which predicts that in the 

considered case the total force is repulsive, that is, the electric repulsion between like-charged 

particles is stronger than the electric-field-induced capillary attraction. Finally (Section 15.6), 

we consider the case of anisotropic distribution of charges on the particle/nonpolar-fluid 

interface. The anisotropy of surface charges engenders a deformation in the liquid interface, 

which is equivalent to a “capillary quadrupole”. The interplay of this quadrupolar deformation 

with the gravity-induced “capillary charge” of the particles, gives a quantitative explanation 

of the long-range attraction between floating particles, which was experimentally established 

in Ref. 61. The latter case gives an example for a system, in which the capillary attraction 

prevails over the electric repulsion. 

 

15.2 LATERAL CAPILLARY FORCES BETWEEN PARTICLES ATTACHED TO AN INTERFACE 

As mentioned above, when a colloidal particle is attached to a liquid interface, the latter 

usually deforms in the vicinity of the particle. The overlap of the interfacial deformations 

(menisci) engendered by two particles gives rise to lateral capillary force between them 

(Figure 15.1). The range of these capillary forces is usually much longer than the range of the 

van der Waals and double-layer surface forces.1–10 As mentioned above, lateral capillary 

forces play an important role for the production of two-dimensional (2D) arrays of colloidal 

particles, protein globules, viruses, and so on.9–12,25,26 Depending on the physical origin of the 
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interfacial deformation created by the particles, we can distinguish several kinds of lateral 

capillary forces, which are illustrated in Figure 15.1 and considered separately below. 

 

 

 

 

 

 

 

 

FIGURE 15.1 Kinds of lateral capillary forces between particles attached to liquid interfaces. 
(a) Flotation capillary force between two floating particles that deform the liquid interface 
because of their weight. (b) Force between “capillary multipoles” due to the overlap of 
interfacial deformations engendered by undulated contact line on the particle surface. 
(c) Electric-field-induced capillary force between two charged particles. (d) Immersion 
capillary force between particles captive in a liquid film: the interfacial deformation is due to 
the wettability of particle surface. (e) Capillary force in the case of finite menisci: when the 
particle diameter is much greater than the film thickness, the meniscus around each particle 
and the range of action of the capillary force is finite. (f) Inclusions (e.g., integral membrane 
proteins) in a lipid bilayer (membrane): the thickness of the inclusion can be greater (or 
smaller) than the thickness, h, of the non-disturbed lipid bilayer; the overlap of the 
deformations around the inclusions leads to an attraction between them. 
 

15.2.1 Flotation Capillary Forces 

First, the interfacial deformation around two floating particles can be due to gravitational 

effects, that is, the particle weight minus the buoyancy force (Figure 15.1a). In this case, we 

are dealing with a gravity-induced lateral capillary force,1,3,6 which was called for the sake of 

brevity as flotation force.7 To produce a significant interfacial deformation, the particle 

weight should be large enough. The flotation capillary force is essential for particle diameters 

greater than 5–10 μm depending on the particle and liquid-phase mass densities.6 The 

meniscus shape around an isolated particle of rotational symmetry is described by the 

expressions:85,86 

2/1
0 )/(),()( γρζ gqqrQKr Δ≡= .   (15.1) 
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Here, the function z = ζ(r) describes the meniscus profile; r and z are cylindrical coordinates; 

the assumption for small meniscus slope, (dz/dr)2 << 1, has been used; K0 is the modified 

Bessel function of the second kind and zero order;87–89 q is the inverse capillary length; γ is 

the liquid/fluid interfacial tension; Δρ is the difference between the densities of the lower 

liquid and the upper fluid; g is the acceleration due to gravity; the multiplier Q is given by the 

expressions: 

( )
c

d/dtansin,sin cccc rrrrQ ==≈±= ζψψψ .  (15.2) 

Here, rc is the radius of the three-phase contact line on the particle surface, and ψc is the 

meniscus-slope angle at this contact line; the assumption for small meniscus slope (which is 

always fulfilled for small particles, rc << q−1) has been used again. The sign (plus or minus) in 

the definition of Q depends on whether the meniscus around the particle is convex or 

concave, and on the specific choice of the coordinate system. 

An approximate, but numerically very accurate formula for the interaction energy due 

to the flotation capillary force (Figure 15.1a) can be obtained by using the Nicolson’s 

superposition approximation.1 For this goal, the motion of particle 2 toward particle 1 can be 

considered as sliding of particle 2 (under the action of its weight) over the meniscus created 

by particle 1. In this way, we can derive:1,3,8,9 

)(2 021 qLKQQW πγ−=Δ .    (15.3) 

Here, ΔW is the capillary interaction energy; L is the center-to-center distance between the 

two particles; 

222111 sin,sin ψψ rQrQ ±=±= ,   (15.4) 

where r1 and r2 are the radii of the three-phase contact lines on particles 1 and 2; and ψ1 and 

ψ2 are the respective meniscus-slope angles (Figure 15.1a); the sign of Q1 and Q2 (plus or 

minus) is as in Equation 15.2. The minus sign in Equation 15.3 means that the capillary 

interaction corresponds to attraction. Furthermore, the force of capillary interaction is 

F = −dΔW/dL. Differentiating Equation 15.3, we obtain: 

)(2 121 qLqKQQF πγ−= ,    (15.5) 
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where K1 is the modified Bessel function of the second kind and first order.87–89 For small qL, 

we have K1(qL) ≈ 1/(qL), and then Equation 15.5 acquires the form: 

1for2 21 <<−= qL
L
QQ

F πγ .    (15.6) 

Equation 15.6 looks like a two-dimensional analog of the Coulomb’s law of electricity, and 

for this reason the quantities Q1 and Q2 have been called capillary charges.6,7 This analogy 

between capillary and electric forces has been further extended by introducing “capillary 

multipoles” as analogs of the electric multipoles;10,54–56 see Section 15.2.2. 

The “capillary charge” for floating particles can be estimated from the expression3,6,9 

( )iiiii DRqQ αα 332
6
1 coscos342 −+−≈ , (i = 1,2),  (15.7) 

where Di = (ρi − ρII)/ (ρI − ρII), ρi, ρI and ρII are the mass densities of the particle, lower and 

upper fluid phases, respectively. Equation 15.7 allows one to calculate the capillary charge Qi 

directly from the particle radius Ri and the central angle αi (by definition, sinαi = ri/R). 

 Flotation capillary forces have been found to affect many processes and phenomena in 

the mesoworld, that is, for particle sizes between 1 μm and 1 mm; see, for example, Refs. 9, 

37 and the references therein. For smaller particles, the effect of the gravitational field 

becomes negligible, but one could use electric field created by electrodes parallel to the 

interface.90,91 In electric field, the adsorbed dielectric particles experience a force normal to 

the liquid interface if their dielectric constant is different from those of the two neighboring 

fluid phases. 

 

15.2.2 Forces between Capillary Multipoles 

As mentioned above, the weight of micrometer-sized and sub- micrometer floating particles is 

not sufficient to deform the fluid interface and to bring about capillary force between the 

particles. However, interfacial deformation appears if the contact line at the particle surface 

has undulated or irregular shape (Figure 15.1b). This may happen when the particle surface is 

rough, angular or heterogeneous. In such cases, the contact line sticks to edges or to 

boundaries between domains on the heterogeneous surface. The undulated contact line 
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induces undulations in the surrounding fluid interface.9,46,54 Let z = ζ(x, y) be the equation 

describing the interfacial shape around such isolated particle. Using polar coordinates (r, ϕ) in 

the xy-plane, we can express the interfacial shape as a Fourier expansion:10,54–56 

ζ(r,ϕ) = ∑
∞

=

−

1m

mr (Am cos mϕ + Bm sin mϕ),   (15.8) 

where r is the distance from the particle centre, Am and Bm are coefficients. In analogy with 

electrostatics, Equation 15.8 can be interpreted as a multipole expansion. The terms with 

m = 1, 2, 3, ... , play the role of capillary “dipoles”, “quadrupoles”, “hexapoles”, and so 

on.10,54–56 Here, the term with m = 0 (capillary “charge”) is missing because it is assumed that 

there is no axisymmetric contribution to the deformation (negligible particle weight). The 

dipolar term with m = 1 disappears because it is annihilated by a spontaneous rotation of the 

floating particle around a horizontal axis (unless the particle is fixed to a holder).54 Therefore, 

for freely floating particles the leading term is the quadrupolar one, with m = 2. The 

interaction between capillary quadrupoles has been theoretically investigated.54,55 This 

interaction is nonmonotonic: attractive at long distances, but repulsive at short distances. 

Expressions for the rheological properties (surface dilatational and shear elasticity and yield 

stress) of Langmuir monolayers from angular particles have been derived.9,46,55,56 

“Mesoscale” capillary multipoles have been experimentally realized by Bowden et al.,47,48 by 

appropriate hydrophobization or hydrophilization of the sides of small floating plates. 

Interactions between capillary quadrupoles have been observed between floating particles, 

which have the shape of curved disks49 and ellipsoids.50-53 

As already mentioned, for multipoles the sign and magnitude of the capillary force 

depend on the mutual orientation of the particle. For that reason, particles-quadrupoles (m = 

2) will tend to assemble in a square lattice, whereas particles-hexapoles (m = 3) will 

preferably form a hexagonal lattice, with or without voids (Figure 15.2).47,48 Another 

possibility is that the particles could form simple linear (chain) aggregates.10,54 Such 

structures have been observed experimentally.47–49, 92 

 In Section 15.4 below, we review results about the forces due to capillary multipoles 

and give general analytical expressions for calculating these forces based on a recently 

developed theoretical approach.93 
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FIGURE 15.2 Two-dimensional arrays formed by capillary quadrupoles (m = 2) and hexapoles 
(m = 3). The quadrupoles form (a) tetragonal close-packed array or (b) linear aggregates. The 
hexapoles could form (c) hexagonal array with voids or (d) close-packed hexagonal array.47–49, 92 
The signs “+” and “−” denote, respectively, positive and negative “capillary charges”, that is 
convex and concave local deviations of the meniscus shape from planarity at the contact line. In 
contrast with the electric charges, two similar capillary charges attract each other, while the 
interaction between opposite capillary charges is repulsive.54–56 
 

 

15.2.3 Electric-Field-Induced Capillary Forces 

Not only the gravitational field (Figure 15.1a), but also the electric field can induce interfacial 

deformations around an adsorbed particle, if this particle is electrically charged (Figure 

15.1c). The overlap of the interfacial deformations around such two charged particles gives 

rise to electric-field-induced capillary force,57 which has been termed for brevity 

electrocapillary force.94 Being aware of the physical difference between the adsorption of 

molecules and particles, which is related to the great differences between their 

adsorption/desorption energies,95 here and hereafter we are using also the term “adsorbed 

particle” as a substitute for “particle attached to an interface”.  

(a) (b) 

(d) (c) 
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 Let us consider a particle from a dielectric material, which is adsorbed at the boundary 

between water and a nonpolar fluid, for example, oil or air (Figure 15.1c). As a rule, such a 

particle bears surface electric charges, the absence of such charges being exclusion. Charges 

located near the boundary between two phases of different dielectric constants experience 

image-charge forces.96–98 Because of that, electrodipping force, FED, is acting on each particle 

in direction toward the phase of greater dielectric constant,58 in our case – toward water 

(Figure 15.1c). 

At equilibrium, the electrodipping force is counterbalanced by the interfacial tension 

force: FED = 2πrcγ sinψc, where γ is the interfacial tension; rc is the radius of the contact line 

on the particle surface and ψc is the meniscus slope angle at the contact line (Figure 15.3). 

Consequently, FED can be determined from the experimental values of rc, γ, and ψc. This 

approach was used to obtain the values of FED for silanized glass particles of radii 200–300 

μm from photographs of these particles at an oil-water or air-water interface (Figure 15.4). 

FED was found to be much greater than the gravitational force acting on the particles.58  

 

 

 

 

 

 

FIGURE 15.3 Sketch of two electrically charged particles attached to an oil-water interface. FED 
is the electrodipping force, due to the image-charge effect, that pushes the particles into water and 
deforms the fluid interface around the particles. FER is the direct electric repulsion between the 
two like-charged particles. FEC is the electrocapillary attraction, related to deformations in the 
fluid interface created by the electric field.  

 

 Figure 15.4 compares the profiles of the liquid menisci around a noncharged particle 

and a charged particle. The particles represent hydrophobized glass spheres of density ρp = 

2.5 g/cm3. The oil phase is purified soybean oil of density ρoil = 0.92 g/cm3. The oil-water 

interfacial tension is γ = 30.5 mN/m. The calculated surface tension force, 2πrcγ sinψc, which 

counterbalances the gravitational force (particle weight minus the Archimedes force) 

corresponds to meniscus slope angle ψc = 1.5°, and the deformation of the liquid interface 
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caused by the particle is hardly visible (Figure 15.4a). In contrast, for the charged particle 

(Figure 15.4b), the meniscus slope angle is much greater, ψc = 26°. This is due to the fact that 

the electrodipping force, FED, which pushes the particle toward the water phase, has to be 

counterbalanced by the interfacial-tension force, 2πrcγ sinψc. Experimentally, it has been 

found that the angle ψc is insensitive to the concentration of NaCl in the aqueous phase, 

which means that (in the investigated case) the electrodipping force is due to charges situated 

at the particle-oil interface.58,60 With similar particles, the magnitude of FED at the air-water 

interface was found to be about six times smaller than at the oil-water interface.58 

 

 

 

 

 

 

FIGURE 15.4 Side-view photographs of hydrophobized spherical glass particles at the 
boundary water/soybean oil (no added surfactants). (a) Uncharged particle of radius 
R = 235 μm: the meniscus slope angle due to gravity is relatively small, ψc= 1.5°. (b) 
Electrically-charged particle of radius R = 274 μm: the experimental meniscus slope angle is 
ψc = 26° owing to the electrodipping force, FED (see Figure 15.3). If this force were missing, 
the gravitational slope angle of this particle would be only ψc = 1.9°. 
 

 In the case when the electrostatic interactions are dominated by the field of charges 

situated at the particle/nonpolar-fluid interface, FED can be calculated from the 

expression:59,60 

FED = (4π/εn)(σpnR)2(1 – cosα)f(θ,εpn).   (15.9) 

Here, R is the particle radius; εn is the dielectric constant of the nonpolar fluid (oil, air); σpn is 

the surface charge density at the boundary particle–nonpolar fluid; εpn = εp/εn is the ratio of 

the respective two dielectric constants; α is a central angle; θ = α + ψc is the contact angle 

(see Figure 15.3). On the basis of the solution of the electrostatic boundary problem, we can 

accurately calculate the dimensionless function f(θ,εpn) by means of the relation 

f(θ,εpn) = fR(θ,εpn)/(1 − cosθ), where the function fR(θ,εpn) is tabulated: see Table 3 in Ref. 59. 

(a) uncharged particle (b) charged particle 

ψ c = 1.5° ψ c = 26° 
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The tabulated values can be used for a convenient computer calculation of fR(θ,εpn) with the 

help of a four-point interpolation formula, Equation D.1 in Ref. 59. From the experimental 

FED and Equation 15.9, we could determine the surface charge density, σpn, at the particle-oil 

and particle-air interface. Values of σpn in the range from 20 to 70 μC/m2 have been 

obtained.58,60,63,64,99,100  

 In the other limiting case, when the electrostatic interactions are dominated by the 

field of surface charges of density σpw situated at the particle/water interface, FED can be 

calculated from the expression:58 

)1(
2
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Here, k is the Boltzmann constant; T is the temperature; C is the bulk concentration of 1:1 

electrolyte; e is the elementary electric charge; κ = (2e2C/ε0εwkT)1/2 is the Debye screening 

parameter; ε0 is the dielectric constant of vacuum; and ϕpw is the electric potential at the 

particle/water boundary with respect to the bulk water phase; Equation 15.10 is valid for 

κR >> 1. Eliminating ϕpw, we can bring Equation 15.10 in the form: 

)1(1)
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.  (15.11) 

For not so great σpw, the square root in Equation 15.11 can be expanded in series. In such a 

case, Equation 15.11 predicts that FED should decay with the rise of the electrolyte 

concentration, C. Correspondingly, the depth of the meniscus around the particle (like that in 

Figure 15.4b) should diminish, which would lead to a greater surface mobility of the 

particle.101,102 

 Two like-charged particles at a liquid interface (Figure 15.1c) experience both direct 

electric repulsion, FER,62–64 and electrocapillary force,57 FEC. Note that FED acts on each 

individual particle, while FER and FEC are interaction forces between two (or more) particles 

(Figure 15.3).  

 For a particle in isolation, the charges at the particle/nonpolar-fluid interface create 

electric field in the nonpolar fluid (oil, air) that asymptotically resembles the electric field of a 
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dipole, because of the image-charge effect (Figure 15.5). This field practically does not 

penetrate into the water phase, because it is reflected by the oil-water boundary owing to the 

relatively large dielectric constant of water. For a single particle, the respective electrostatic 

problem has been solved.58,59 The asymptotic behavior of the force of direct electric repulsion 

between two such particles-dipoles (Figure 15.5) is:59,62 

)1/(
2

3
c4

n

2
d

ER >>= rL
L

p
F

ε
.   (15.12) 

L is the center-to-center distance between the two particles; the quantity 

pd = 4πσpnDR3sin3α      (15.13) 

is the effective particle dipole moment;59 R is the particle radius, α is central angle (Figure 

15.3), and σpn is the electric charge density at the particle/nonpolar-fluid interface; 

D = D(α,εpn) is a known dimensionless function, which can be calculated by means of Table 1 

and Equation D.1 in Ref. 59; εpn ≡ εp/εn is the ratio of the dielectric constants of the two 

phases. Equation 15.12 shows that FER asymptotically decays as 1/L4 like the force between 

two-point dipoles. However, at shorter distances, the finite size of the particle is expected to 

lead to a Coulombic repulsion, FER ~ 1/L2.62–64 

 

 

 

 

 

 

 

 

 

FIGURE 5 Two particles attached to the boundary water–nonpolar fluid and separated at a 
center-to-center distance L. In the nonpolar fluid (oil, air), the electric field of each separate 
particle is asymptotically identical to the field of a dipole of moment pd. This field is created 
by charges at the particle/nonpolar-fluid interface. 
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Equation 15.13 is derived for the case, when the surface charges are located at the 

particle/nonpolar-fluid interface. In this case, the total interaction force between the two 

particles (Figure 15.1c), of both electric and capillary origin, is:103 
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p
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p
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In view of Equation 15.12, the force of electrocapillary attraction is:103 

])([
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3 2c
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EC L
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O
L

p
F +−= δ

ε
  )1/( c >>rL .   (15.16) 

δ = tanψc can be either measured experimentally from photographs like Figure 15.4, or 

calculated from Equation 15.15. Outline of the derivation of Equations 15.14 through 15.16 is 

given in Section 15.5; details can be found in Ref. 103. 

 Because we consider the case of small meniscus slope, δ = tanψc < 1, the term 2δ/5 in 

Equation 15.14 is always smaller than 1. This means that always |FEC| < FER, that is, the 

electrocapillary attraction is always weaker than the direct electric repulsion, at least in the 

asymptotic region of long distances, L/rc >> 1. In other words, in the considered case, of 

electric charges, which are uniformly distributed over the particle/nonpolar-fluid interface, the 

electrocapillary attraction is weaker than the direct electric repulsion,103 both of them 

asymptotically decaying as 1/L4; see Equations 15.12 and 15.16. 

 Note, however, that the situation changes if the electric charges are not uniformly 

distributed over the particle/nonpolar-fluid interface. In Ref. 104 and Section 15.6 it is 

demonstrated that in such a case it is possible to have capillary attraction that is stronger and 

has longer range than the electrostatic repulsion, in agreement with the experiment.61 
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15.2.4 Capillary Immersion Forces  

Capillary interaction appears also when the particles (instead of being freely floating) are 

partially immersed (confined) in a liquid film; this is the immersion capillary force (Figure 

15.1d−f). The deformation of the liquid surface in this case is related to the wetting properties 

of the particle surface, that is, to the position of the contact line and the magnitude of the 

contact angle, rather than to gravity. The immersion capillary force, resulting from the 

overlap of such interfacial deformations, can be large enough to cause 2D aggregation and 

ordering of small colloidal particles,4,7–9 as observed in many experiments. In particular, 

colloidal particles and protein macromolecules confined in liquid films exhibit attraction and 

form clusters and larger ordered domains (2D arrays).8–13,25,26 Capillary immersion forces 

appear also between partially immersed bodies like vertical plates,2 vertical cylinders (rods), 

and so on.4,5,7–9,105–109 

For the first time, the capillary forces between two vertical cylinders and between two 

spheres partially immersed in a liquid layer were theoretically studied in Ref. 4. A general 

expression for the interaction energy has been used, which includes contributions from the 

energy of particle wetting, the gravitational energy, and the energy of increase of the 

meniscus area due to the deformation caused by the particles; this expression is valid for both 

floating and confined particles. Expressions and numerical results for the energy and force of 

interaction have been obtained for the case of small slope of the deformed meniscus; this case 

has a physical and practical importance because it corresponds to the usual experimental 

situation with small particles. The theory has been extended also to particles entrapped in thin 

films, for which the disjoining pressure effect, rather than gravity, keeps the non-deformed 

surface planar.7 

In the particular case, when the particle radii are equal, R1 = R2 = R and rk << L << q−1, 

from Equation 15.5 we can derive:7–9 

)()/( 1
6 qLKRF γ∝  for flotation force,               

)(1
2 qLKRF γ∝  for immersion force.   (15.17) 

The above expression for the immersion force follows from Equation 15.4, whereas that for 

the flotation force follows from Equation 15.7. Equation 15.17 shows that the flotation force 

decreases, while the immersion force increases, when the interfacial tension γ increases. 

Besides, the flotation force decreases much strongly with the decrease of particle size 
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(F ∝ R6) than the immersion force (F ∝ R2). Thus, the flotation force becomes negligible for 

R < 5−10 μm, whereas the immersion force can be significant even for R ≈ 3 nm. As already 

mentioned, the latter force is one of the main factors causing the self-assembly of small 

colloidal particles, viruses, and protein macromolecules confined in thin liquid films; see 

Refs. 7–9 for details.  

The theory was verified in measurements of capillary immersion forces by Velev et 

al.106 for vertical cylinders by piezo-transduser balance and by Dushkin et al.107-109 for 

spherical particles and cylinders attached to a sensitive torsion balance. Recently, di Leonardo 

et al.110 directly measured capillary immersion forces between two colloidal spheres located 

in a liquid film by means of laser optical tweezers. The capillary attraction between particles 

confined in free liquid films has been found to produce spontaneous formation and growth of 

densely packed particle monolayers in the film.65,111–114  

The immersion capillary force can be also operative between particles captured in a 

spherical (rather than planar) thin liquid film or lipid vesicle. In this case the “capillary 

charge” characterizes the local deviation of the meniscus shape from sphere.9,115 

 

15.2.5 Capillary Forces in the Case of Finite Menisci 

Equation 15.1, which describes a meniscus decaying at infinity, is not valid for all physically 

possible cases. For example, when the particle diameter is much greater than the thickness of 

the surrounding liquid film (Figure 15.1e), the meniscus profile near an isolated particle, 

z = ζ(r), obeys the Laplace equation of capillarity in the form: 

const.
d
d

d
d

c ==⎟
⎠
⎞

⎜
⎝
⎛ P

r
r

rr
ζγ     (15.18) 

The capillary pressure, Pc, is the pressure jump across the meniscus. For particle diameters 

between 1 μm and 1 mm, Pc is constant because the effects of the gravitational hydrostatic 

pressure and molecular disjoining pressure are both negligible. Then, the solution of Equation 

15.18 is:89 

2
c )4/(ln)( rPrBAr γζ ++= .   (15.19) 
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Hence, in the considered case the Laplace equation has no axisymmetric solution that is finite 

at infinity (r → ∞). The latter fact implies that the meniscus around the particle must end at a 

peripheral contact line (of radius rp), out of which the film is plane-parallel (ζ ≡ 0), see 

Figure 15.1e. In other words, we are dealing with a finite meniscus. In this case, the overlap 

of the menisci, and the interaction between the particles, begins when they come at a distance 

L < 2rp from each other. This type of interaction is obviously different from that described by 

Equation 15.3. The respective capillary force can be calculated from the derived integral 

expressions by means of numerical integration.116,117 

Velikov et al.118 observed a strong attraction between latex particles of diameter 

2R ≈ 7 μm entrapped in a foam film whose thickness was at least 100 times smaller. Danov et 

al.116,117 described analogous observations with micrometer-sized latex spheres encapsulated 

within the bilamellar membrane of a giant lipid vesicle. The latter experiments, based on 

optical manipulation and dynamometry (optical tweezers), neatly reveal the film deformation 

caused by the particles and the related attraction between them. Basic characteristics of the 

meniscus were deduced from photographs of the vesicle-particle system, and the experimental 

capillary force profile is found from the analysis of the trajectories of pairs of particles, which 

are moving toward each other under the action of the capillary attraction. The computed 

profile quantitatively fits to the experimental data, with a single adjustable parameter, the 

bilayer tension. In general, the capillary force was found to be strong enough to cause 

aggregation of the confined colloidal particles.116,117 

 

15.2.6 Interactions between Inclusions in Lipid Membranes 

A bilayer lipid membrane cannot be simply modeled as a thin liquid film because the 

hydrocarbon chain interior of the membrane exhibits elastic behavior when its thickness is 

varied. The hybrid mechanical behavior of a lipid bilayer (neither liquid nor bulk elastic 

body) can be described by means of a mechanical model, which treats the membrane as a 

special elastic film (the hydrocarbon chain interior) sandwiched between two Gibbs dividing 

surfaces (the surface polar head group layers of the membrane). This sandwich model 9,43,44 

involves mechanical parameters such as the shear elastic modulus of the hydrocarbon chain 

interior, the bilayer surface tension, stretching (Gibbs) elasticity, surface bending moment and 
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curvature elastic moduli. A mechanical analysis of the bilayer deformations enables one to 

derive expressions for the total stretching, bending and torsion (Gaussian) moduli of the 

membrane as a whole in terms of the aforementioned mechanical parameters of the model. 

Inclusions in a lipid membrane (like membrane proteins) cause deformations in the 

bilayer surfaces accompanied by displacements in the membrane hydrocarbon interior (Figure 

15.1f). In the case of not-too-low membrane surface tension the shape of the membrane 

surfaces is governed by an analog of the Laplace equation of capillarity. The theory of the 

capillary immersion forces,4,5 was extended and applied to describe the interactions between 

two inclusions in a lipid membrane.9,43,44 The range of the obtained attractive force turns out 

to be of the order of several inclusion radii. The magnitude of interaction is estimated to be 

sufficient to bring about aggregation of the inclusions. The theoretical predictions are in 

agreement with the experimental observations, although additional data about the membrane 

mechanical parameters are needed to achieve an actually quantitative comparison.  

As an example, Figure 15.1f shows two integral membrane proteins incorporated in a 

lipid membrane. The width of the hydrophobic belt of the protein is greater than the thickness, 

h, of the hydrophobic interior of the nondisturbed membrane. For this reason, a mismatch, hc, 

appears (Figure 15.1f) which leads to deformations in the membrane near each inclusion. The 

overlap of the deformations around two inclusions gives rise to attraction between them, 

which is analogous to the capillary immersion force. The respective interaction energy is 

given by the expression:43 
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For a bilayer lipid membrane, we have q ≈ [4λ/(hγ)]1/2, where λ is the shear elastic modulus in 

the hydrocarbon chain zone and γ is the membrane “surface tension”; for details, see Refs. 43, 

44, and chapter 10 in Ref. 9. Note that the interaction energy, as given by Equation 15.20, is 

proportional to hc
2, that is, to the squared mismatch between the hydrophobic zones of the 

inclusion and bilayer. This interaction is one of the reasons for the dynamics and aggregation 

of membrane proteins in biomembranes.119–129 
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15.3 GENERAL EXPRESSIONS FOR THE CAPILLARY FORCE BETWEEN PARTICLES AT A 

LIQUID INTERFACE 

15.3.1 Obtaining the Capillary Force by Integration over the Midplane 

Here, we give an outline of the results in Ref. 93, where a general expression is derived for 

the lateral capillary force between two particles. This expression is applicable to floating 

axisymmetric particles (Figure 15.1a); to capillary multipoles of different orders (Figure 

15.1b), and to electrically charged particles (Figure 15.1c). For this goal, we consider two 

spherical particles separated at a center-to-center distance L, like those in Figures 15.1a−c. 

The liquid interface is assumed to be planar in the absence of adsorbed particles. The xy-plane 

of the coordinate system is chosen to coincide with the nondisturbed liquid interface. The x-

axis passes through the vertical axes of the two particles, and the yz-plane is located in the 

middle between the two particles. The meniscus shape is given by the equation z = ζ(x,y). The 

lower and upper fluid phases are denoted, respectively, as “phase a” and “phase b” (Figure 

15.6).  

 

 

 

 

 

 

 

 

FIGURE 15.6 Sketch of a particle that is attached to the interface between phases “a” and 
“b”. The vertical yz-plane represents the midplane between two particles (like the pairs shown 
in Figure 15.1). The horizontal xy-plane coincides with the unperturbed liquid interface far 
from the particles. The x-axis is parallel to the force of interaction between the two particles; 
na, nb and ns are unit vector fields normal to the interfaces particle/phase a; particle/phase b, 
and to the liquid interface, respectively. 
 

 At hydrostatic equilibrium, the divergence of the pressure tensor in the bulk phases is 

equal to zero:130 
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0P0P =⋅∇=⋅∇ ba    and   ,    (15.21) 

where ∇ denotes the del operator; Pa and Pb are the pressure tensors in the phases “a” and 

“b”. Likewise, at equilibrium the shape of the liquid interface obeys the Laplace equation of 

capillarity: 

ζγ =⋅−⋅= zH at     )(2 sabs nPPn ,    (15.22) 

where H is the mean curvature of the surface z = ζ(x,y); ns is the running unit normal to this 

interface directed toward phase “b”; as usual, γ is the interfacial tension. 

 Let us consider the right-hand-side particle (Figure 15.6). The force acting on this 

particle is:5 

)γ()p( FFF += ,    (15.23) 

where the force F(p) represents the integral of pressure tensor over the particle surface and F(γ) 

is the integral of the interfacial tension, considered as a vector, over the contact line, C: 

bbaa
)p(

ba

dd PnPnF ∫∫ ⋅−⋅−=
SS

SS ,        γmF ∫=
C

ld)γ( .  (15.24) 

Here, Sa and Sb are the portions of the particle surface that make contact with phases “a” and 

“b”, respectively; na and nb are outer unit normal fields with respect to the particle (Figure 

15.6); dl is the scalar linear element of the contact line C; m is the outward pointing unit 

normal field having the direction of the surface tension at the contact line, that is, normal to C 

and tangential to the liquid interface. 

 To calculate F(γ), we will use the fact that the Laplace equation, Equation 15.22, is the 

normal projection (along ns) of a more general equation (see, e.g., Ref. 9): 

ζγ =−⋅=⋅∇ zat     )()( absss PPnU ,   (15.25) 

where ∇s and Us are the del operator and the unit tensor of the surface z = ζ(x,y). Following 

the approach proposed in Ref. 106, we consider a rectangle ABMN situated in the xy-plane as 

shown in Figure 15.7. Next, we integrate Equation 15.25 over the surface SABMN, which 

represents the vertical projection of the rectangle ABMN on the interface z = ζ(x,y): 

)γ(
ssabs

ABMNABMNABMN

d)(d)(d FmUPPn −=⋅∇=−⋅ ∫∫∫ γγ
CSS

lSS ,  (15.26) 
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where the contour CABMN is the periphery of SABMN and we have used the 2D divergence 

theorem.9,131 Using the fact that the meniscus z = ζ(x,y) decays at infinity, we assume that the 

points A, B, M and N are located far from the particle, and then the x-projection of Equation 

15.26 acquires the form: 

x
S

x
CC

xx SlF ePPnmeFe ⋅−⋅−⋅=⋅≡ ∫∫
∪

)(d)(d abs
)γ()γ(

ABMNMNAB

γ .  (15.27) 

 

 

 

 

 

 

 

FIGURE 15.7 Integration domains for calculating the interaction force between two particles 
(details in the text). The projections of the contact lines on the particle surfaces are presented 
by two circles, but they could be arbitrary closed contours. The x-axis is parallel to the force 
of interaction between the two particles. 
 

Next, we consider a right prism built on the rectangle ABMN with lower and upper bases 

situated deeply in the interior of the phases “a” and “b”. In view of Equation 15.21, we have: 

aa
(a)(a)

dd0 PSP ⋅=⋅∇= ∫∫
∂VV

V  ,   (15.28) 

where V(a) is the portion of the aforementioned vertical prism that is located in the phase “a”, 

and ∂V(a) is the surface of V(a); dS is the respective outward pointing vectorial surface element. 

In view of the symmetry of the system, the x-projection of Equation 15.28 can be presented in 

the form: 

]dddd[0 aaaaas
a(a)

MN
(a)
ABABMN

PnPSPSPne ⋅−⋅+⋅+⋅⋅= ∫∫∫∫
SSSS

x SS .  (15.29) 
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Here, (a)
ABS  and (a)

MNS  are the portions of the vertical planes passing through the segments AB 

and MN, which are in contact with the phase “a”; Sa is the same in Equation 15.24. Likewise, 

we derive a counterpart of Equation 15.29 for the phase “b”: 

]dddd[0 bbbbbs
b(b)

MN
(b)
ABABMN

PnPSPSPne ⋅−⋅+⋅+⋅−⋅= ∫∫∫∫
SSSS

x SS .  (15.30) 

In view of Equations 15.24, we sum Equations 15.29 and 15.30, and obtain:  

]dd)(d[
MNABABMN

ab
)p()p( PSPSPPSeFe ⋅−⋅−−⋅⋅=⋅≡ ∫∫∫

SSS
xxxF ,  (15.31) 

where SAB = (b)
AB

(a)
AB SS ∪  and SMN = (b)

MN
(a)
MN SS ∪  are stripes of vertical planes that are based 

on the segments AB and MN; 

ζζ >≡<≡ zz forand,for ba PPPP .   (15.32) 

Finally, we sum up Equations 15.27 and 15.31; the integrals over SABMN cancel each other, 

and we obtain the following expression for the total force acting on the right-hand side 

particle (Figure 15.6): 

x
SS

x
CC

xxx lFFF ePSme ⋅⋅−⋅=+≡ ∫∫
∪∪ MNABMNAB

d)(d)p()γ( γ .   (15.33) 

Let us denote the first and the second integral in the right-hand side of Equation 15.33 by Fx
(C) 

and Fx
(S), respectively. Because the segments AB and MN are perpendicular to the x-axis, and 

the points A, B, M and N (by definition) are located far away from the particle, we have:  

0
2/122)( })]1/()1[(1{d)(d

MNAB

=

∞

∞−∪
∫∫ ++−=⋅≡ xxyx

CC

C
x ylF ζζγγme , (15.34) 

where ζx ≡ ∂ζ/∂x, ζy ≡ ∂ζ/∂y and γ  is a constant. Likewise, we obtain: 

( ) xxxxx
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S
x zyF ePPeePS ⋅−⋅=⋅⋅−≡ ∞→=

∞

∞−

∞

∞−∪
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MNAB

.  (15.35) 

In view of the definition of P, given by Equation 15.32, the above expression can be 

represented in the form: 
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where the subscripts “0” and “∞” denote the values of the respective quantity at x = 0 and at 

x → ∞, respectively. 

 In view of Equations 15.33 through 15.35, the total interaction force, Fx, can be 

expressed in two alternative forms: 

)()()γ()p( C
x

S
xxxx FFFFF +=+≡ ,   (15.37) 

where Fx
(p) and Fx

(γ) are integrals over the particle surface and contact line, whereas Fx
(S) and 

Fx
(C) are related to integrals over the surface and line on the midplane x = 0; see Figure 15.6. 

In other words, there are two equivalent approaches for calculation of Fx: (i) by integration 

over the particle surface5 and (ii) by integration over the midplane.106 Depending on the 

specific problem, we could use that approach, which is more convenient. In general, 

Fx
(p) ≠ Fx

(S) and Fx
(γ) ≠ Fx

(C), the difference between them being due to the integral over SABMN 

in Equations 15.27 and 15.31. 

Equations 15.33 through 15.35 show that the problem for calculating Fx can be 

reduced to the calculation of the meniscus shape, z = ζ(x,y), and of the pressure tensor, P, 

only in the midplane x = 0. This is a very important result because in the middle between the 

particles the meniscus slope is small, even if it is not small close to the particles. This fact 

allows us to considerably simplify the problem because of the following two reasons. First, 

for small meniscus slope the square root in Equation 15.34 can be expanded in series: 

0
22)( )(d

2 =

∞

∞−
∫ −= xyx

C
x yF ζζγ .   (15.38) 

Second, in the region of small slope the Laplace equation of capillarity can be linearized. 

Hence, in this region the meniscus shape can be expressed as a superposition of the menisci 

created by the two particles in isolation: 

),(),(),( yxyxyx BA ζζζ +=      (in the midplane x = 0), (15.39) 
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where ζA is the meniscus created by the left-hand-side particle if the other particle were 

missing, and ζB is the meniscus created by the right-hand-side particle if the other particle 

were missing. Equation 15.39 expresses a superposition approximation, which is applicable 

in all cases when the meniscus slope is small in the middle between the particles. (It is not 

necessary the slope to be small near the particles!) This approximation considerably 

simplifies the problem. It is worthwhile noting that a similar approximation was used by 

Verwey and Overbeek132 to derive their very successful expression for the electrostatic 

disjoining pressure. For capillary forces, this approach was first applied in Ref. 106. 

 

15.3.2 Application to Floating Noncharged Particles 

The general expressions in Section 15.3.1 can be applied to the cases where gravitational 

and/or electric fields are present. Here, we consider the special case where only gravitational 

field is present, that is, two noncharged particles floating on a horizontal liquid interface. In 

such a case, the pressure tensor is isotropic in the two neighboring phases, “a” and “b”: 

UPUP )(   and   )( bbaa zgpzgp ρρ −=−= ∞∞ ,   (15.40) 

where p∞ is the pressure at z = 0; U is the spatial unit tensor; ρa and ρb are the mass densities 

of the respective phases. Substituting Equation 15.40 into Equation 15.36, we obtain: 
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As before, q is the inverse capillary length: 

γ
ρρ g

q
)( ba2 −

≡ .     (15.42) 

Then, from Equations 15.33, 15.38 and 15.41, we obtain:106 

0
2222 ])()([d
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∂
−

∂
∂

+−= xx xy
qyF ζζζγ .  (15.43) 

Because we are using the assumption for small meniscus slope in the midplane, x = 0, we can 

substitute the superposition approximation, Equation 15.39, into Equation 15.43: 
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where we have used the fact that 
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Fx
(A) and Fx

(B), given by Equation 15.45, are the forces acting on the isolated particles A and 

B, each of them being equal to zero. In view of Equation 15.1, in Equation 15.44 we 

substitute: 

)(),( 00 BBBAAA qKQqKQ ρζρζ == ,   (15.46) 

where ρA and ρB are the distances from a given point in the xy-plane to the centers of particles 

A and B (see Figure 15.8).  

 

 

 

 

 

FIGURE 15.8 Polar coordinates (ρA,φA) and (ρB,φB) in the xy-plane connected with two 
particles, A and B. The projections of the contact lines on the particle surfaces are presented 
by two solid circles of radii rA and rB. The dashed circle Cδ, with outer unit normal nδ, is an 
auxiliary contour used for the derivation of the expression for the capillary force. 
 

 Numerical solution of the integral in Equation 15.44, along with Equation 15.46 was 

carried out in Ref. 106 for two equal-sized particles, and it was found that the numerical 

result exactly coincides with the prediction of Equation 15.5, that is, the x-projection of force 

acting on the right-hand side particle is: 

)(2 1 qLqKQQF BAx πγ−= .    (15.47) 

To prove analytically that Equation 15.47 is an exact corollary of Equations 15.44 and 15.46 

we have to first introduce the tensor of capillary interaction. 
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15.3.3 Obtaining the Force by Integrating the Tensor of Capillary Interaction 

In the case of small meniscus slope, ζA and ζB obey the linearized Laplace equations of 

capillarity: 
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Introducing the notations 

yxxx ≡≡ 21    and   ,    (15.49) 

we define the symmetric two-dimensional tensor Tkn as follows: 
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(k,n = 1,2) where δkn is the 2D Kronecker symbol and summation is assumed over the 

repeated index j (the Einstein rule). By using Equations 15.48 through 15.50, we can prove 
that93 
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that is, ∇⋅T = 0, in tensorial notations. Integrating the latter relation over a domain S+, which 

represents the right half of the xy-plane, corresponding to x > 0, except a circle, Cδ, around the 

center of particle B (Figure 15.8), we obtain: 
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where nδ is the outer unit normal field of the contour Cδ. Taking the x-projection of the latter 

equation, in view of Equation 15.50, we derive: 
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Finally, the combination of Equations 15.44 and 15.53 yields: 

x
C

x lF eTn ⋅⋅−= ∫
δ

δγ d .    (15.54) 

In the following, Equation 15.54 is used for calculating the force of capillary interaction for 

various capillary multipoles, including capillary charges (m = 0). Because the tensor T, 
defined by Equation 15.50 is used for this purpose, it has been called the tensor of capillary 
interaction.93 The way in which Equation 15.54 is applied to derive Equation 15.47 is 
demonstrated in the next section.  
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15.4 INTERACTIONS BETWEEN CAPILLARY MULTIPOLES 

15.4.1 Integral Expression for the Capillary Force 

Here, following Ref. 93, we apply Equation 15.54 for deriving expressions for the lateral 

capillary force between various capillary multipoles. As before, the left- and right-hand side 

particles are denoted as “particle A” and “particle B”, respectively (Figure 15.8). In the 

general case, the meniscus around each particle in isolation can be expressed as a Fourier 

expansion56  
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where small meniscus slope is presumed; Km is the modified Bessel functions of second kind 

and order m (m = 0, 1, …); hY,m and φY,m are the amplitude and phase shift for the mth mode of 

undulation of the particle contact line; rY (Y = A, B) is the radius of its vertical projection on 

the xy-plane (Figure 15.8). The capillary charge of the particle (corresponding to m = 0) is: 
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where (ρA,φA) and (ρB,φB) are polar coordinates associated, respectively, with the left- and 

right-hand side particle (Figure 15.8): 
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For the right-hand side particle, Equation 15.54 acquires the form:  

δ
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where eρ is a radial unit vector; rδ is the radius of the contour Cδ . The way of derivation of 

Equation 15.54 implies that Fx must be the same independently of the choice of rδ (see 

above). In what follows, we will use the transition rδ → 0; see Equations 15.65 through 15.68 

below. This transition is possible because the Fourier expansion, Equation 15.55, defines the 
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functions ζA(ρA,φA) and ζB(ρB,φB) in the whole xy-plane. The poles of ζA in the point ρA = 0, 

and of ζB in the point ρB = 0, do not represent an obstacle for the derivation of expressions for 

the physical quantities. In fact, the method based on the limiting transition rδ → 0 is 

equivalent to the method of residues applied in Ref. 56.  

 With the help of Equations 15.50 and 15.58, we can represent Equation 15.59 in the 

form:93 
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The latter equation will be applied for calculating the force of interaction between various 

capillary multipoles (see below). 

 

15.4.2 Interaction of a Capillary Charge with Capillary Multipoles 

Let us consider the case, in which the particle B is a capillary charge. Then, only the term 

with m = 0 remains in the Fourier expansion for ζB; see Equation 15.55. Then, ζB = ζB(ρB); all 

terms containing the derivative ∂ζB/∂φB disappear, and Equation 15.60 reduces to: 
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With the help of Equation 15.58, we can check that 
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Next, in Equation 15.61 we apply the limiting transition rδ → 0; see the discussion after 

Equation 15.59. Having in mind that ζB ∝ K0(qρB), we obtain: 
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From Equation 15.55, along with Equation 15.56 we derive: 
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Substituting Equation 15.64 into Equation 15.63, we obtain: 
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Equation 15.57 yields: 
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In addition, for rδ → 0 we have x → L/2 and y → 0. Hence, 
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First, let us assume that the particle A is a capillary charge, i.e. ζA = −QAK0(qρA). 

Then, with the help of Equation 15.67 we derive: 
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The combination of Equations 15.65 and 15.68 gives exactly the known expression for the 

capillary force, Equation 15.47. An equivalent form of Equation 15.47 can be obtained if we 

use Equation 15.56, along with the identity K1(qL) = K−1(qL):93 
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The latter presentation of the force between two capillary charges (m = 0) is useful, because it 

allows generalization for capillary multipoles of arbitrary order; see Equations 15.71 and 

15.78 below. The advantage of the present method, which based on the transition rδ → 0, is 

that it allows us to derive (relatively simply) such generalized expressions.  
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 Second, let us assume that the particle A is a capillary multipole of order m, while the 

particle B is a capillary charge (m = 0), as before. In such a case, in view of Equations 15.55, 

15.65 and 15.67, we obtain: 
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Substituting Equation 15.70 into Equation 15.65 we derive the expression for the charge-

multipole capillary interaction force: 
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(m = 0, 1, 2, …), where Equation 15.56 has been used for Y = B. Substituting m = 0 in 

Equation 15.71, we obtain Equation 15.69. Integrating Equation 15.71 with respect to L, we 

obtain an expression for the interaction energy: 
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(m = 0, 1, 2, …), where Equation 15.56 has been used again for Y = B.  

 In the case of qL << 1, Equation 15.71 reduces to: 
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m
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L
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which is valid for m ≥ 1. Integrating Equation 15.73 we obtain the respective asymptotic 

expression for the energy of capillary interaction: 
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(m = 1, 2, …). Equation 15.74 is the correct asymptotic expression for ΔW. In Ref. 56, see 

Table 2 therein, the factor 2π in the right-hand side of Equation 15.74 is given (by mistake) as 

π/2.  
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15.4.3 Interactions between Capillary Multipoles of Arbitrary Order 

Here, we consider the general case where the particle A is a capillary multipole of order m, 

whereas the particle B is a capillary multipole of order n (m, n = 1, 2, …); see also Figure 

15.8. Because we are using the limiting transition ρB = rδ → 0, we can work, from the very 

beginning, with the expression for ζB in its form for small ρB : 
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see Equation 15.55. Substituting Equation 15.75 into Equation 15.60, after some 

mathematical transformations we obtain:93 
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Next, in Equation 15.76 we substitute the expression for ζA for a capillary multipole of order 

m, and after some transformations we derive:93 
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From Equation 15.77, after long and nontrivial calculations, the general expression for the 

force of interaction between two capillary multipoles of orders m and n was derived in Ref. 

93: 
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(m, n = 1, 2, 3, …). In the asymptotic case of small particles, qL <<1, Equation 15.78 reduces 

to: 
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Integrating Equation 15.79, we obtain the energy of capillary interaction between m- and n-

multipoles: 
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One can check that Equation 15.80 is identical to the respective expression in Ref. 56, having 

in mind that the phase-shift angles in Ref. 56 are defined as π − φY,m, where φY,m is the phase-

shift angle in the present chapter (Y = A, B;  m = 1, 2, …). 

 Equation 15.78 is more general than Equation 15.79, the latter representing a special 

case at qL << 1. The capillary interaction energy, ΔW, obtained by integration of the general 

Equation 15.78, is: 
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where m, n = 1, 2, …, and  
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The integral in Equation 15.82 cannot be solved analytically, and numerical integration 

should be applied. For this reason, it is simpler to calculate the force from Equation 15.78 

than the energy from Equation 15.81. 

 In summary, in this section we considered the interaction between capillary multipoles 

of various orders, m, n = 0, 1, 2, 3, …, under the assumption that the meniscus slope is small, 

i.e. ζx
2 + ζy

2 << 1. As a rule, this assumption is fulfilled for millimeter-sized and smaller 

particles. The derived analytical expressions for the interaction between capillary charge and 

multipole, Equations 15.71 and 15.72, and between two capillary multipoles, Equations 15.78 

and 15.81, are more general that the previously published ones,56 which have been derived 

using the additional assumption qL << 1. Note also that in Ref. 56 we used the energy 

approach, that is, ΔW was calculated, and then the force Fx was obtained by differentiation. In 

contrast, in this section we used the force approach, which in based on the calculation of Fx, 

and then the interaction energy, ΔW, is obtained by integration. Of course, if correctly 

applied, the two approaches yield identical results. 
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15.5 ELECTROCAPILLARY INTERACTION 

15.5.1 Meniscus Profile in the Presence of Electric Field 

Here, following Ref. 103, we consider two electrically charged particles, like those in Figure 
15.1c, which are located at the boundary between water and a nonpolar fluid (oil or air). In 
other words, phase “a” is the water and phase “b” is the nonpolar fluid. The charged particles 
create electric field, which in its own turn gives rise to mechanical stresses described by the 
Maxwell pressure tensor: 
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where the subscripts “w” and “n” denote quantities related, respectively, to the water and 
nonpolar-fluid phases. In particular, pw and pn are the scalar (hydrostatic) pressures in the 

respective phases, whereas ϕw and ϕn are the fields of the electrostatic potential therein. The 

substitution of Equations 15.83 and 15.84 into the right-hand side of the Laplace equation of 
capillarity, Equation 15.22, yields: 
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where we have used the vectorial identity A2B2 = (A×B)2 + (A⋅B)2 with A = ns and B = ∇ϕ.  

 In what follows, we will restrict our considerations to the case, where the electric 
charges are located at the particle/nonpolar-fluid interface. This case has been observed 

experimentally with various systems.58–70 The dielectric constant of water, εw, is usually much 

greater than those of the particle, εp, and of the nonpolar fluid, εn: i.e. εw >> εp, εn. For this 

reason, the electric field created by charges, located at the particle/nonpolar-fluid interface, 
practically does not penetrate into the water phase; see, for example, the known problems for 
the image-charge effect96,97 and for a hydrophobic particle near an oil-water interface.98 
Experimentally, the non-penetration of the field into water is manifested as independence of 
the configuration of the adsorbed particles on the electrolyte concentration in the aqueous 
phase.58,60,64 Thus, in first approximation, the role of the water is to keep the electric potential 
constant at the particle/water and water/nonpolar-fluid interfaces. In such a case, we can set 

ϕw ≡ 0, and 
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),(at0n yxz ζϕ == .    (15.86) 

In other words, the interface z = ζ(x,y) is equipotential, and then the vector ∇ϕn is directed 

along the normal ns. Setting ϕw = 0 and ns × ∇ϕn = 0 in Equation 15.85, and using the 

assumption for small meniscus slope, we obtain: 
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We have used also the fact that if the liquid interface is flat far from the particles, then pn = 
pw. (In the present section we will neglect the effect of the gravitational hydrostatic pressure, 
which is negligible for small particles.) Equation 15.87, along with the boundary condition, 
Equation 15.86, allows us to calculate the deformation of the liquid interface created by the 
particles and their electric field, as well as the force of interaction between the particles. For 
this goal, we will apply the following iteration procedure: 

1. The electrostatic potential in zero-order approximation, ϕ0(r), will be calculated 

assuming that the liquid interface is flat and equipotential, that is, ϕ0|z=0 = 0.  

2. Next, substituting ϕn = ϕ0 in the right-hand side of Equation 15.87, we will find 

the meniscus shape, z = ζ(x,y), in first approximation. After that, we will 

determine the surface tension contribution to the interaction force, Fx
(γ); see 

Section 15.5.2. 

3. To find the next correction term, we will seek ϕn in the form: 

)()( 10n rr ϕϕϕ += ,    (15.88) 

where ϕ1 accounts for the fact that the deformation of the liquid interface affects the 

field of the electrostatic potential ϕn. Expanding in series the boundary condition, 

Equation 15.86, we obtain 0 = ϕn(x, y, ζ(x,y)) = ϕn(x, y, 0) + (∂ϕn/∂z)z=0ζ + …. 

Substituting Equation 15.88 we get: 
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Thus, ϕ1 is solution of the equation ∇2ϕ1 = 0 (no ions in the nonpolar fluid), along the 

boundary condition 15.89. 

4. With ϕn = ϕ0(r) + ϕ1(r), we calculate the Maxwell pressure tensor, P, and then by 

using Equation 15.24 we determine Fx
(p). Thus, we find the total interaction force, 

Fx = Fx
(γ) + Fx

(p). 
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The next step in the iteration procedure would be to substitute ϕn = ϕ0(r) + ϕ1(r) in the right-

hand side of Equation 15.87 and to determine the next correction in the meniscus profile 

ζ(x,y). However, it turns out that the resulting correction term is of the order of the neglected 

term in Equation 15.87, ζx
2 + ζy

2 << 1, and hence this correction term is negligible in the 

framework of the assumption for small meniscus slope. For this reason, we stop the iterations 
after completing step 4.  

 

15.5.2 Calculation of Fx
(γ) for Two Particles with Dipolar Fields 

As mentioned above, an adsorbed charged particle creates an electric field, which has 
asymptotically dipolar character because of the image-charge effect (see Figure 15.5). For this 
reason, in zero-order approximation we will assume that the electric field created by the two 
particles, A and B, in the nonpolar fluid is equivalent to the superposition of the fields of two 
dipoles: 
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where pd is the dipole moment; as before, ρA and ρB are position vectors with respect to the 

particle centers (Figure 15.8); A and B are two identical particles separated at a center-to-
center distance L (Figure 15.9). 

 

 

 

 

 

 

 

FIGURE 15.9 Sketch of the meniscus profile, z = ζ(x,y), around two identical charged 
particles, A and B, which are attached to the boundary between a water phase and a nonpolar 
fluid (e.g., air or oil). The contact lines on the particle surfaces are presented by two solid 
circles of radius rc. The distance between the plane of the contact lines and the plane of the 
non-perturbed interface far from the particles is denoted by hc. 
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First, to determine the profile, z = ζA(x,y) or z = ζB(x,y), of the meniscus around each 

of the two particles in isolation, in the right-hand side of Equation 15.87 we substitute 

ϕn = ϕY,0, Y = A, B, from Equation 15.91, which leads to: 
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The first integral of Equation 15.92 is: 
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Setting ρY = rc in Equation 15.93, we determine the meniscus slope at the contact line (Figure 

15.9): 
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Insofar as the meniscus slope is small, δ is a small parameter, which will be used below. 

Furthermore, having in mind that the electrodipping force, FED, acting on each particle is 

counterbalanced by the vertical component of the surface tension force, FED = 2πγ rcsinψc 

(Figure 15.3), from Equation 15.94 we obtain: 
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(sinψc ≈ tanψc at small meniscus slope). The subsequent integration of Equation 15.93 yields 

the following expression for the meniscus shape around an isolated particle: 
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As already mentioned, in the present section we neglect the gravitational effects (for small 

particles), so that ζY(ρY) is determined by the particle electric field. Here, we have assumed 

that the xy-plane coincides with the plane of the particles’ contact line, which is located at a 

distance hc below the plane of the non-disturbed liquid interface far from the particles (Figure 

15.9). Setting ρY → ∞ in Equation 15.96, we find: 
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Next, to determine the profile z = ζ(x,y) of the meniscus around the pair of two particles 

(Figure 15.9), in the right-hand side of Equation 15.87 we substitute ϕn = ϕA,0 + ϕB,0 from 

Equation 15.91, which leads to: 
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One can check that a particular solution to the inhomogeneous Equation 15.98 is: 

)21(
4

)11(
128 2

22

2
n

2
d

44n

2
d

inh
LL

pp

BA

BA

BABA ρρ

ρρ
ρρεγπρρεγπ

ζ
+

−++−≡ ,  (15.99) 

where we have used the fact that (Figure 15.8) 
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The solution of Equation 15.98 represents the sum of ζinh(x,y) plus the solution of the 

respective homogeneous equation, ζh (x,y), that is, 
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Because ζ = 0 at the particle’s contact line (Figure 15.9), the respective boundary conditions 

for ζh read: 

ccinhh andat     rr BA ==−= ρρζζ ,   (15.102) 

where ζinh is given by Equation 15.99. Having determined ζ(x, y), we can calculate the x-

projection of the interaction force F(γ) acting on the right-hand side particle by using Equation 

15.24: 
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The function ζh(x, y) was found in Ref. 103 in the form of Fourier expansion by solving 

Equation 15.101 in bipolar coordinates. Next, ζ = ζinh + ζh was substituted in Equation 15.103 

and the integration was carried out. The result was obtained in the form of a series expansion 

with respect to the powers of rc/L: 
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The positive sign of the first term in the right-hand side of Equation 15.105 means that at long 

interparticle distances, Fx
(γ) corresponds to repulsion. To see what is the total interaction 

force, we also have to calculate also Fx
(p). 

 

15.5.3 Calculation of Fx
(p) and of the Total Electrocapillary Force 

The force experienced by a dipole of moment p is F = p⋅∇E, where E is the intensity of the 

applied external electric field (the field of the considered dipole p being excluded).133 With 

p = pdez and E = −∇(ϕA,0 + ϕ1), we find the x-projection of the force F(p) acting on the particle 
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where we have substituted ϕA,0 from Equation 15.91. In Equation 15.106, the factor 1/2 

appears because the electric field is present only in the upper half-space (Figure 15.5). Thus, 

to calculate Fx
(p) we have to first determine ϕ1. We recall that ϕ1 satisfies the Laplace 

Equation ∇2ϕ1 = 0, along with the boundary condition (Equation 15.89). At given boundary 

condition for ϕ1 in the plane z = 0, we can calculate ϕ1 in the upper half-space (z > 0) by using 

the known Green function for the Dirichlet boundary problem: 
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where x~  and y~  are integration variables. In view of Equation 15.89, the function ϕs is 

defined as follows: 
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where the definition of ζ is extended as ζ ≡ 0 in the circles ρA < rc and ρB < rc; see Figure 

15.9. In Equations 15.107 and 15.108, ϕ0 can be substituted from Equations 15.90 and 15.91, 

and ζ(x,y) – from the series expansion derived in Ref. 103. As a result, from Equations 15.106 

through 15.108 we arrive at an expression for Fx
(p) in the form of series expansion:103 
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Combining Equations 15.104, 15.105 and 15.109, 15.110 we finally obtain an expression for 

the total interaction force, Fx, acting on the right-hand-side particle B, in the form of an 

asymptotic expansion: 
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where δ = tanψc is the meniscus slope at the contact line given by Equation 15.94. The first 

term in the right-hand side of Equation 15.111 corresponds to the force of direct electric 

repulsion, FED, between two charged particles adsorbed at a planar liquid interface (δ = 0), 

whereas the sum of all other terms in Equation 15.111 (those ∝ δ) gives the electrocapillary 

force, FEC; see also Figure 15.3 and Equations 15.14 through 15.16. Note that for long 

distances (L/rc >> 1), FEC is negative (attractive) thanks to the contribution from the leading 

term in fx
(p); see Equation 15.110. However, δ < 1, and then the total force, Fx, is positive 
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(repulsive). Thus, for the considered system, in the region where the asymptotic expansion, 

Equation 15.111 is applicable, the electrostatic repulsion between the two like-charged 

particles prevails over the capillary attraction. In the next section, we demonstrate that in 

another case the capillary attraction can prevail. 

 

15.6 HYBRID ELECTRO-GRAVITY-INDUCED CAPILLARY ATTRACTION 

15.6.1 Interaction between Two Floating Particles: Experiment 

Experiments with hydrophobized glass spheres of radii (R) in the range of 200–300 μm, 

which are attached to the boundary tetradecane/water, were carried out in Ref. 61. Such 

particles are moving toward each other under the action of attractive force, whose physical 

origin was investigated. An illustrative example is given in Figure 15.10. Two different 

procedures of particle hydrophobization were used, which lead to obtaining uncharged and 

charged particles.61 To establish whether a given particle was charged or uncharged, the 

meniscus-slope angle ψc was measured from side-view photographs of the particles, like 

those in Figure 15.4. For uncharged particles, the experimental angle ψc is small and equal to 

the calculated gravitational angle, ψg (see, e.g., Figure 15.4a). For charged particles, the 

experimental angle ψc is markedly larger than ψg (Figure 15.4b). The reason to work with 

particle radii 200–300 μm is that for such particles the angle ψc can be measured with a good 

accuracy, which is difficult for smaller particles.  

 To confirm that the electric field of the particles with ψc >> ψg is really due to surface 

electric charges (rather than dipoles), in independent control experiments we inserted two 

electrodes in the form of parallel metal plates in the oily phase. The lower edge of each 

electrode was situated close to the oil/water interface without touching it. When a particle 

(with ψc >> ψg) is present at the liquid interface between the electrodes, it moves toward one 

of them, usually toward the cathode. If the polarity of the electrodes is exchanged, the particle 

moves toward the other electrode. This is the behavior of a particle with positive surface 

charge, rather than behavior of a dipole.104 
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FIGURE 15.10 A side-view photograph of two hydrophobized glass particles of radius ≈ 300 
μm at the interface between tetradecane and water solution of 50 mM sodium dodecyl sulfate 
(SDS) + 50 mM NaCl. The circles represent consecutive positions of the two particles, which 
are moving toward each other under the action of an attractive force. 
 
 In experiments like that illustrated in Figure 15.10, the center-to-center distance 

between the two particles was recorded as a function of time, that is, L = L(t).61 The purpose 

of these experiments was to check whether the particle motion is influenced by any electric 

field-induced capillary attraction. For this reason, control experiments with uncharged 

particles were carried out. Illustrative experimental results are shown in Figure 15.11 for four 

pairs of particles. For uncharged adsorbed particles, the attraction between them can be 

attributed to the action of the gravity-induced capillary force, which is theoretically described 

by Equation 15.5. For this reason, the experimental distance, L(t), was fitted by means of the 

equation: 61 
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Here, Fz
(g,1) and Fz

(g,2) are the vertical gravitational forces (weight minus Archimedes force) 

acting on the first and second particle; βm is the mean hydrodynamic resistance; and fh is a 

drag coefficient that is given by the Stimson−Jeffrey formula.61,104 The expression for Fx in 

Equation 15.112 follows from Equation 15.5 and from the vertical force balance, Fz
(g,j)  = 

2πγ rc sinψc,j = 2πγ Qj (j = 1, 2), where Qj is given by Equation 15.7. The solid lines in Figure 

15.11 represent the best fits of the data by means of Equation 15.112. The excellent 

agreement between theory and experiment indicates that the attraction between the uncharged 

particles is really due to the gravity-induced lateral capillary force. A single adjustable 
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parameter, βm, was used in these fits, and the obtained parameter values agree very well with 

the theoretical estimates; see Refs. 61 and 104 for details. 
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FIGURE 15.11 Experimental time-dependences of the interparticle center-to-center distance, 
L(t), measured for four pairs of uncharged hydrophobic spherical particles attached to the 
interface between tetradecane and water solution of 50 mM SDS + 50 mM NaCl. The data 
points are from Ref. 61 and the theoretical fits are drawn by means of Equation 15.112. 
 

 Figure 15.12 shows a typical set of data from Ref. 61 for two electrically charged 

particles, for which ψc,j >> ψg,j (j = 1, 2). To see whether the charge of the particles influences 

their motion, we calculated what would be the distance L(t) if gravity alone were responsible 

for the particle motion – see the upper long-dash curve in Figure 15.12. The difference 

between the latter curve and the experimental points indicates that the charge of the particles 

leads to acceleration of their motion toward each other.  

We also took into account also the fact that there is a meniscus on the walls of the 

experimental cell (the oil/water interface does not meet the vertical wall at 90°). This leads to 

the formation of a slightly concave oil/water interface (meniscus). The slope of this meniscus 

near the center of the cell (where the investigated particles are located) is rather small, but it 

still could accelerate the particle motion. The dash-dot line in Figure 15.12 is calculated by 

taking into account this effect. We see that the influence of the meniscus on the wall on the 

particle motion is relatively weak, and cannot explain the experimental data.104 
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FIGURE 15.12 Experimental time-dependence of the interparticle center-to-center distance, 
L(t), measured for a pair of charged hydrophobic spherical particles attached to the interface 
between tetradecane and water; ψc,1 and ψc,2 are the experimental values of the meniscus 
slope angle for the two particles, whereas ψg,1 and ψg,2 are the respective calculated values for 
uncharged particles (gravity force alone). The data points are from Ref. 61 and the theoretical 
fit is drawn by means of Equation 15.130. The calculated upper long-dash curve shows what 
would be the distance L(t) if gravity alone were responsible for the particle motion. The dash-
dot line is calculated by taking into account also the slight concavity of the interface due to 
the meniscus on the wall. 
 

 Note that the data in Figure 15.12 indicates the action of an additional attraction, 

which is stronger than the direct electric repulsion between the two like-charged particles. 

Moreover, this additional attraction is rather long-ranged as compared to the range of the 

electrostatic meniscus deformations observed in Ref. 60. We tried various ways to interpret 

these results. We found only one model, which can explain the experimental data. This model, 

developed in Ref. 104, is briefly described in the next section. 

 

15.6.2 Overlap of Gravitational and Electric Interfacial Deformations 

Theoretical expressions derived in Section 15.3 allow us to make (relatively easy) estimates 

of the range of the lateral capillary force between two adsorbed particles. In view of 

Equations 15.38 and 15.44, we could expect that  
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where we have substituted ζA = ζ1 and ζB = ζ2. For purely gravitational meniscus, we have 

∂ζi/∂r∝ K1(qr) ∝ 1/r, i = 1,2, and then Equation 15.113 yields Fx
(C) ∝ 1/L, in agreement with 

Equation 15.6. Likewise, for two similar capillary quadrupoles we have ∂ζi/∂r∝ 1/r3, i = 1,2, 

and then Equation 15.113 yields Fx
(C) ∝ 1/L5, in agreement with Equation 15.79 for m = n = 2. 

One could check that the same approach gives correctly the asymptotic behavior of the force 

of interaction between two capillary multipoles of arbitrary orders. 

 For a particle with isotropic distribution of the surface charge (Figure 15.13a), due to 

the image-charge effect, the particle’s electric field has asymptotically dipolar character. It 

was established, both theoretically and experimentally,60 that in such a case ζ1 ∝ 1/r4, and 

consequently, ∂ζ1/∂r∝ 1/r5. Let us assume that the latter interfacial deformation overlaps with 

the gravitational deformation around the second particle, that is, ∂ζ2/∂r∝ 1/r. Then, Equation 

15.113 yields Fx
(C) ∝ 1/L5. The latter capillary force decays faster than the direct electric 

repulsion between the two particles, FER ∝ 1/L4; see Equation 15.12. Hence, it cannot explain 

the experimental results (Figure 15.12). 

 Next, let us consider a particle with anisotropic distribution of the surface charge 

(Figure 15.13b). Due to the image-charge effect, the electric field of such particle can be 

modeled as a pair of dipoles directed along the z-axis and separated at a distance 2sy. The 

anisotropy of the particle’s electric field gives rise to anisotropic electric field-induced 

deformation of the liquid interface around the particle, which is equivalent to a capillary 

quadrupole; see Equation 15.122 below. For a capillary quadrupole, we have ∂ζ1/∂r∝ 1/r3. 

The latter interfacial deformation overlaps with the gravitational deformation around the 

second particle, for which ∂ζ2/∂r∝ 1/r. Then, Equation 15.113 yields Fx
(C) ∝ 1/L3. The latter 

capillary force decays slower than the direct electric repulsion between the two particles, 

FER ∝ 1/L4. Below, we demonstrate that it can quantitatively explain the experimental results 

(Figure 15.12). 
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FIGURE 13 Modeling of charged particles attached to an oil/water interface. (a) If the 
distribution of the surface charges is isotropic, the particle can be modeled as a dipole (see 
also Figure 15.5). (b) If the surface-charge distribution is anisotropic, the particle can be 
modeled as a pair of two parallel dipoles. 
 

 Following Ref. 104, let us consider the interaction between two identical particles of 

anisotropic surface-charge distribution. The potential of the electric field created by the 

considered quadrupolar configuration (Figure 15.13b) in the nonpolar fluid is: 
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where Q̂  denotes electric charge. In Equation 15.114, the planes of the two quadrupoles are 

parallel to the vertical yz-plane, which is perpendicular to the x-axis that connects the two 

particles (Figure 15.13b). This configuration is stable, because of the interparticle electrostatic 

repulsion. 

In zero-order approximation, the Laplace Equation of capillarity (Equation 15.87) acquires 

the form: 
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where polar coordinates, (r,φ), have been introduced in the xy-plane. The boundary conditions 

are: 

∞→→== rhrr at     ;at     0 cc ζζ .  (15.116) 

The boundary condition at r = rc corresponds to fixed contact line at the particle surface. This 

is a realistic boundary condition, because contact angle hysteresis is usually present at solid 

surfaces, the absence of hysteresis being exclusion.134–140 We will seek the solution of 

Equation 15.115 in the form: 

)2cos()()(),( 20 φξξφζ rrr += .   (15.117) 

From Equations 15.114, 15.115 and 15.117 we obtain the following equations for the 

coefficient functions:104 
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The solution of Equation 15.118, along with the boundary conditions (Equation 15.120) is:104 
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Because ξ0 describes the interfacial deformation produced by isotropic electric field, we have 

ξ0 ∝ 1/r4, as expected (see above). Furthermore, the general solution of Equation 15.119 

reads:  

32222
n

222222

2
22

12 )(32
)3(ˆ5

zy

zyzy

ssrr
ssrssQ

r
ArA

++εγπ

++
++=ξ ,   (15.122) 

where A1 and A2 are constants of integration. From the boundary condition at r → ∞, we 

obtain A1 = 0. From the boundary condition at r = rc, we obtain: 

3222
cn

222
c

222

2 )(32
)3(ˆ5

zy

zyzy

ssr
ssrssQ

A
++εγπ

++
−=      (15.123) 

In fact, the term A2/r2 in Equation 15.122 is the source of the long-range deformation, 

ξ2 ∝ 1/r2, created by the four charges configuration in Figure 15.13b. This deformation 
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appears because the anisotropic electric field tends to produce a saddle-shaped meniscus 

around the particle, but the isotropic boundary condition for fixed contact line, ξ2(rc) = 0, 

must be preserved. This leads to a nonzero value of the coefficient A2; see equation 15.123. 

For this reason, the higher-order quadrupolar term ξ2 (Figure 15.13b) produces a deformation 

of longer range (ξ2 ∝ 1/r2) than the dipolar term (Figure 15.13a), which yields ξ0 ∝ 1/r4; 

compare Equations 15.121 and 15.122, as well as Figures 15.13a and 15.13b. The asymptotic 

form of Equation 15.122 is: 
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where A2 is given by Equation 15.123. 

 The final result for the total interaction force between two different particles (particles 

1 and 2) reads:104 
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where terms O(1/L4) are neglected; rc1 and rc2 are the radii of the contact lines of the two 

particles; the quantities a1
(el) and a2

(el) are related to the electric field-induced interfacial 

deformations: 
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Here, jzjj sQp ,d ˆ4=  is the particle dipole moment (see Figure 15.13b); sy,j and sz,j (j = 1, 2) 

are the values of sy and sz for the two different particles; Fz
(el,j) is the electrodipping force 

acting on the respective particle. For sz,j → 0, Equation 15.128 reduces to Equation 15.95. The 

effect of the meniscus on the wall of the experimental cell, induces a small repulsive 

quadrupolar term, which is also taken into account through h1
(wall) and h2

(wall):  
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where ψw is the meniscus slope angle at the wall of the experimental cell, and bc is the width 

of the cell (the shorter side of the rectangular horizontal section of the experimental cell).  

 In view of Equation 15.112, the first term in the right-hand side of Equation 15.125 is 

the gravity-induced lateral capillary force; the second and the third terms express a hybrid 

electro-gravity-induced capillary force, which is due to the interaction between a gravity-

induced capillary charge and an electric field-induced capillary quadrupole. Finally, the 

distance L(t) between the two particles can be determined by integrating the equation:104 
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where the last correction term accounts for the sliding of the particle along the meniscus on 

the wall; ac is the long side of the base of the experimental cell; Fx is given by Equation 

15.125.  

The solid lines in Figure 15.14 represent the best fits of experimental data from Ref. 

61 by means of Equation 15.130. For simplicity, it was assumed that sy,1/b1 = sy,2/b2 = sy/b. 

The two adjustable parameters, which have been varied to fit each experimental curve, are 

sy/b and ψw. All other parameters are known from the experiment. In particular, the 

electrodipping force in Equation 15.127 was calculated from experimentally determined 

quantities: Fz
(el,j) = 2πγ rc sinψc,j, j = 1, 2. The coefficients of hydrodynamic resistance, β1 and 

β2, were calculated as explained in Ref. 61. As a result, we obtained values of sy/b in the 

range 0.20–0.35, which is reasonable; see Figure 15.13b. From the determined parameter 

values, we estimated the term hj
(wall) in Equation 15.126, which turned out to be really a small 

correction.  

The anisotropy of the surface charge (sy/b > 0) and some scattering of the obtained sy/b 

values could be explained with the relatively low value of the surface charge density, σpn, at 

the particle/nonpolar-fluid interface. Indeed, the average value σpn ≈ 70 μC/m2 (determined 

for this type of particles in Refs. 58 and 60) is equivalent to an average distance of 480 Å 

between two surface charges assuming square packing. Under such conditions, we can expect 

that the energy of repulsion between the adsorbed ions is much smaller than their adsorption 

energies, which would lead to deviations from uniform and isotropic surface charge 

distribution. In Figure 15.14, the agreement between the experimental points and the 



 49

theoretical curves is excellent, which indicates that the experimentally observed strong 

attraction in this system can be really attributed to the interplay of gravitational and electric 

field-induced deformations in the liquid interface and to the resulting hybrid capillary force. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
FIGURE 14 Plots of the dimensionless distance between two particles, qL versus time, (t). 
The experimental points are data from Ref. 61 with the same numbers of the pairs of particles. 
The solid lines represent the best fits of the data by means of Equation 15.130. (a) The 
aqueous phase is pure water; q−1 = 4.74 mm. (b) The aqueous phase is water solution of 0.1 
mM sodium dodecyl sulfate (SDS); q−1 = 4.35 mm. 
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15.7 CONCLUDING REMARKS 

The capillary forces between particles at a liquid interface, that is, the long-range interparticle 

interactions mediated by the interface, are universal in three aspects: (i) particle nature; (ii) 

particle size and (iii) particle shape. 

 With respect to the particle’s chemical nature, the capillary forces are operative 

between both inorganic and organic particles, including biological objects such as cells and 

viruses.9,25,26 The particle is only important to create deformation in the liquid interface when 

it is attached to it, or when it is captured in a liquid film (see Section 15.2).  

 With respect to the particle size, the lateral capillary forces are observed for particle 

diameters from several nanometers to several centimeters. This includes both the 

“nanoworld” (1 nm–1 μm) and the “mesoworld” (1 μm–1 mm). In the mesoworld, the 

gravity-induced capillary force is powerful, whereas the Brownian motion is negligible. In 

contrast, in the nanoworld, the Brownian motion becomes essential, but the gravity-induced 

capillary force is completely negligible. Then, the immersion-type capillary forces (Sections 

15.2.4 through 15.2.6) and the electric field-induced interactions90,91 could come into play. 

Here (Section 15.5) we considered only the case of charges located at the particle/nonpolar-

fluid interface. The capillary forces due to charges at the particle/water interface, which are 

expected to be significant in the nanoworld,58 need additional investigation. Hybrid, electro-

gravity-induced capillary force was found to engender a powerful attraction in the 

mesoworld61,104 (Section 15.6). 

 With respect to the particle shape, the capillary forces are operative between both 

perfect colloidal spheres and between particles of angular and irregular shape (Sections 15.2.2 

and 15.4). In the latter case, the particle shape leads to the formation of undulated or irregular 

contact line, which induces deformations in the surrounding liquid interface. In such a case, 

we are dealing with the so-called capillary multipoles. Theoretical expressions for the 

interactions between capillary multipoles of arbitrary orders, derived by means of the general 

approach from Section 15.3, are given in Section 15.4. Moreover, as demonstrated in Section 

15.6, particles, which represent electric multipoles, induce capillary multipoles because their 

electric field creates anisotropic deformations in the surrounding liquid interface. 

 The possible applications of the capillary forces in material science are numerous. 

This includes “bottom-up” approaches based on particle self-assembly under the action of 

capillary force such as the convective self-assembly method.11,12,25,141,142 In addition, self-
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assembled structures can be used in “top-down” approaches for lithographic masks,32 

microcontact printing,31 antireflective coatings,22 etc. The great scientific and practical 

importance of the lateral capillary forces will certainly stimulate future research in this field. 
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