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A differential-interferometric method is used for the determination of the film curvature at the top of small air bubbles,
attached to a liquid surface. In addition the radius of the contact line and the equatorial bubble radius are measured by direct
visual observations. From these data and from the conditions for mechanical equilibrium the film, line and transversal
tensions are determined. The measured film and line tensions for bubbles formed in solutions of dodecy! sodium sulfate
exhibit a strong dependence on the film curvature and unexpectedly large values of the (negative) line tension. It occurs that
the transversal tension effect in the mechanical equilibrium of an attached bubble is of the same order as the disjoining

pressure effect.

INTRODUCTION

Differential interferometry is a wide-
spread, powerful and precise method for study-
ing solid surfaces and biological subjects
(1-4). The interest in this optical method
for investigating fluid surfaces and thin
1iquid films has grown during the last de-
cade. Zorin (5) has studied a biconcave
meniscus in ‘transmitted 1ight. Del Cerro
and Jameson (6) and Minqius and Nikolov (7)
have applied differential interferometry in
reflected 1ight to floating lenses. Recently
(8) this method was used for measuring the
curvature of the film at the top of small
bubbles attached to a 1iquid surface.

This application of differential inter-
ferometry has been stimulated to a large
extent by the growing interest in line ten-
sion (see e.g. the references in (9). This
quantity can affect the occurrence of a number
of processes of practical importance, e.g.
heterogeneous nucleagion (10,11), flotation
of ores (12), droplet coalescence in emul-
sions (13) and microbial adhestion (14).

Line tension can, in principle, be
measured by studying any phenomenon that is
affected by it, e.g. from the rate of hetero-
geneous nucleation (11). This approach re-
quires, however, knowTedge (and/or fitting)
of several parameters. Therefore, it is
better to determine the 1ine tension direct-
ly from the conditions for mechanical
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equilibrium of small particles at another
interface.

FILM, LINE and TRANSVERSAL TENSIONS

Let us consider the equilibrium of a
bubble {or drop) at a liquid surface - Fig. la.
A11 the interfaces are represented in the
figure by the corresponding surfaces of ten-
sion (see e.g.(15) which satisfy Laplace's
equation of capillarity (16) with appropriate
boundary conditions. One can describe macro-
scopically the equilibrium of the film at
the top of the bubble with the surrounding
phases by considering the film as a single
membrane of tension y which intersects the
other two interfaces onto a 1ine called con-
tact line. In our case this line is a cir-
cumference of radius r_ - see Fig., la. In
this approach, called fembrane approach, the
mechanical equilibrium at each point of the
contact line is determined by the balance of
four forces (17,9):
Y+2f‘+c§’+gK=0

(M

Here the vectors y , g% and g% act tangenti-
ally to the film and the two Tiquid (meniscus)
surfaces, and are equal to the film tengion
Yo,and the respective surface tensions oy and
oz. The force o  is directed toward the cen-
ter of curvature (18) and is determined by

the line tension k and the radius of curva-
ture, r_, of the contact line: IgKI = k/re.
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The alternative of the membrane approach
is to consider the film as a layer of finite
thickness, bounded by two surfaces of tensions
oy'and Ozf- see Fig. 1b, This approach is
called detailed (19, 20, 21). There are two
contact Tines in the detailed approach with
line tensions ki and K,. Each of the lines
must be in equilibrium which is determined by
the condition

+1,=0,1=1,2, (2)

where |o.“|= Ei/y ; and the vector 1., called
transversal tensign, acts on the conlact line
perpendicularily to the film surfaces inwards
(21, 22). In fact the transversal tension
accounts for the energy of interaction UL of
the two contact_lines, more precisely for
flat films t=L-1(3Ul/3n), where h is the film
thickness and L is the length of the contact
Tine (21). In this respect it is analogous
to the disjoining pressure Il which takes into
account the interaction of the two film sur-
faces (19, 23).

If one takes the horizontal and the
vertical projection of the vectorial balance
(1) and then solves the two resulting equa-
tions with respect to vy and «, one gets

y/c = (sin ¢, + sin Wc)/sin 8, (3)
K/o =

relcose, + cosy . -(sing. + sin¥ )ecote},  (4)

where (for the cgse of an air bubble) we
assumed 0,” = 0, = o, and 8, ¢_ and ¥_ are
the angles at which the film, bfibble afid-the
external meniscus surfaces meet the plane of
the contact 1ine - see Fig. la. By eliminat-
ing 6 between (3) and (4) one can obtain a
simple (approximate) relation between y and «:

k/r. = 20 - y/cosd, a=(p_ - ¥ )12, (5)

The contact radius r_ and the equatorial
bubble radius R are easi1§ measured by observ-
ing the bubble from above. Then the angles
¢_and ¥_ can be calculated from the data for
the radif R and r using some perturbational
formulae, derived-in (24), describing the
shape of an axisymmetric sessile interface for
small values of the capillary number

B = pgbzlo.

Here p is the density of the liquid, g is the
gravity acceleration and b is the radius of
curvature at the bottom of the bubble.

The quantities b and B can be calculated from
the measured value of R (24):

1/b = [1-8/6 + sz(znz - 1/6)1/R (6)

u?isg interactions with zeroth approximation
bl0J= R. With these results for b and B one
can calculate ¢ as (24):

sin ¢C =

r ¢
c 1 c 1. 1 s
B - B oot 7 - g sin g - g sine)

¢
-82[(% + %cos¢c- % sin2¢c- %-ln sin 7§)sin¢c

1 1,2 % oc
- E(] + 3 cot T) cot - (7)

again usin? interations with zeroth approxi-
mation 0/ = arc sin (r_/b) then ¥, can be
determin&d from the equa%ion:

r
; - -C B, . -
siny. =g {1+ 2b(zc hc)} sin¢c,
(8)

where z

¢ and hc are given by (24):

z, = b{1 + cosg,,
: ¢
+S[%51"2¢c + % L,sin 7;-- %(1+cos ¢C)]};

1
he = rcsinwcﬂn{4/[Ye(pg/ozrc(1+005 ¥ 1k

Y, =1.78 072 418... is Euler's number, The
zéroth approximation to be used in the right-
hand side of (8) when calcy13ting ¥, by
iterations is hc=0 i.e. ?c 0J= 0.

With the calculated values of the angles

¢c and ¥_ one can determine the film tension
Y®and th& Tine tension « from Eqs. (3) - (4)
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provided that the angle 6 is known. Differ-
ential interferometry allows the measurement
of the radius of curvature of the film R

(see the next section) and hence, the calcula-
tion of 6 from

6 = arc sin(rc/Rf) (9)
of Fig. la.

In addition to the film tension vy and
the line tension k it is interesting to deter-
mine experimentally the transversal tension.
This can be done with sufficient accuracy from
the equation

_ 2
Fp = mrll - 2mr 1, cos 6, (10)

where for small bubbles II P./2 (P. = 2y/R
is the capillary pressure). “Eq. (Y0) is i
fact a force balance: The buoyancyzforce F
is counterbalanced by the force mr’ I due tB
the disjoining pressure Il acting ofer the
lower film surface and the force due to the
vertical component of 1,(see Fig. 1b). The
buoyancy force F can'El calculated by using
%hi value of the angTe Wc determined from
8):

Fb = 2nrcc sin Y. (11)

Determination of the film curvature from the
interference pattern

For our measurements of Ry we used the
differential - interferometric method of
“shearing" with a Epival Interphako Microscope
manufactured by Carl Zeiss-Jena (for the con-
struction of the microscope - see Refs. (4)
and (25)). The basic principle of the shear-
ing method consists in splitting the original
image into two images. The light beams com-
ing from the two images interfere, thus
creating a rather complicated interference
pattern. An example is shown in Fig. 2,
where the shearing distance d = 12,08um. The
upper part of Fig. 3 is a sketch of the cross
section (in the plane x0z) of the two images
of the reflecting surfaces splitted at a
distance d along the x-axis. The plane xOy

coincides with the contact line (of radius r).

The lower part of the figure is a sketch of

the resulting interference pattern (cf. Fig.2).

One clearly discerns three regions correspond-
ing to the interference of light reflected
by the two images of the respective surfaces:
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(I) meniscus-meniscus (moustaches), (II)
meniscus-film {(rings) and (III) film-film
(streaks). In fact, all fringes are loci of
points for which the distance between the
reflecting surfaces satisfies the requirement

Iz (x,¥)- z (x,y)]= 2, = n%; n=0,1,2,..., (12)

where subscripts "2" and "r" denote left and
right hand side images, A is the 1ight wave-
length, and n is the order of interference.
The equation of the film shape is

, (13)

1
2 2\*?
-y 14-20

2y = (Rf, - (x + d/2)

where the upper sign refers to the left hand
side image, and tEe lo!ef §ign to the right
hand side: z = (RS - r2)1/¢ is the coordinate
of the cente?. Thus, for region III,
Equations (12) and (13) lead to

x27aZ + y2/b2 = 1 (14)
n n
with
- 02_.202 0\ _(1.a2/02v
a = bn/sn, bn -(Rf snzn/4)=,en-(1+d /En)’.
(15)

Therefore, the streaks are parts of ellipses
and the reason why they look like straight
lines is the high eccentricity (1-1/8:) 1.
Equation (15) allows ths calculation of the
hat curvature Re = € (af + 22/4)% (2 _,a_ and
d are known from the"exPerimfnt). " "

The visual determination of R. was per-
formed with complete splitting i.e. with
r_ < d/2 (d was increased to 24.16um in
this case in order to avoid a gap between
photographic and visual measurements). The
essence of the method is to record r_at the
moment when the top ring shrinks to & point.
From Fig. 4 it follows that at this moment
D + Q(d) = 2, where Q(d) = Q{x=d) is calcu-
19ted from (23):

1
Q(x)=r {arc COSh(FZ"éTﬁWE) - arc c°sh(§TﬁW;)}
.sin ¥,

_ (.2 z
Then R = (rc + Do)/ZDO.
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In order to check the interferometric
method we performed some measurements with
objects of known curvature (26). We used
small sessile water drops on a hydrophobic
surface (Teflon) and a mercury drop on glass.
The curvature at the top of such a drop can
be determined both from the visually measured

equatorial drop radius and interferometrically.

The interferometrical measurement yields some
value b, for the radius of curvature at the
top of such a drop and the independent visual
measurement yields another value, b_, for
the same radius. Of course, if there is no
systematic error in the interferometric
measurements, one must obtain b; = b_. The
data for b, vs b_ from (26) is shown in
Fig.5. Oné sees"that b, = b_ in the frame-
work of the random errot of the measurements
but there is not any systematic error in the
curvature range studied.

EXPERIMENTS AND DISCUSSION

The experimental method we used to obtain
bubbles of different radii is essentially
the "shrinking bubble method" of Princen and
Mason (27). A relatively large bubble at the
1iquid surface is allowed to decrease gradual-
ly its volume due to the escaping gas through
the thin film, and its geometrical parameters
are recorded optically as a function of the
time.

The experigents were carried out with
0.05% (1.73x10""kmo1/m”) solutions of dodecyl
sodium sulfate (Fisher Scientific, for high
performance liquid chromatography) and two
concentrations of NaCl (Merck, analytical
grade) - 0.25 and 0.32 kmol/m”. A1l experi-
ments were carried out in a thermostated room
at 22+ 0.50C. The surface tensions of the
two solutions used, with 0.25 and 0.32 kmol/m
NaC1l, were 32.4 and 31.7 mN/m{dyn/cm) res-
pectively. The essential part of the measure-
ment cell (the one containing the solution)
consists of a glass cylinder of diameter 1 cm
and height 1.4 cm whose bottom is an optical-
1y plane-parallel glass. The bottom was fixed
to She cylinder with glass powder heated at
500°°C without using chemical seals. The air
bubbles were blown out of a Hamilton syringe.
The optical measurements were carried out
with a microscope Epival Interphako, Carl
leiss, Jena. The use of the shearing method
was described in the previous section. The
values of r_and R were recorded visually
every time When the diameter of the respective
circumference became equal to an integar
number of scale divisions. At suitably chosen
time intervals (100-200 s) the image was

3
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splitted and measurements of R_ wer performed
either by taking photographs oﬁ visually, by
counting the number of interference rings.

A major experimental problem is that we
need for the calculations the set of values
r , R and R, at a given moment, t, whereas
sbme time efapses after the registration of
each of these quantities. One possible way
to find the required values is by least
sqguares interpolation of the data for r_(t),
R?t) and Rf(tg. We interpolated R(t) b§ the
equation

R(t) = a](to'-t)q +a,(t -t)t, (16)

where t , g, a, and a, are constants to be
determifed by lhe min?mization of the disper-
sion

81(ay 355 t,0) = T R(t)- RyIZ. (17)

1 1 1

Here Ri is the measured value of R at the
moment t. and R(t.) is calculated from
Equation' (16). Similar interpolation formula
were used for rc(t) and Rf(t).

We have processed in full details only 4
experigents - two for the solution with 0.25
kmo1/m NaC% {runs la and 1b) and two for
0.32 kmol/m> NaCl (runs 2a and 2b). The re-
sults are presented in Figs. 6 and 7.

As explained above, when calculating v
and k we used the data for r_, R and Rf ?at
the same moment t), obtained from the
interpolation curves r (t), R{t) and R_(t) -
see e.g. Equation (16); The error bar; in
Figs. 6 and 7 denote the standard deviations
of v/20 and « calculated by using the standard
deviations of the measured radii r_, R and Rf
with respect to the interpolation Eurves.
The points in the Figs. (calculated from the
smooth curves) correspond to the moments,

at which R, was measured, and represent the
most probable values of y/20 and k at those
moments.

The most striking features in the be-
havior of v/20 vs P_ are the large variations
of v (the respectivé values v,/2 for planar
films, i.e. for R, > », taken from Ref. (28),
are shown on the grdinate axis of Fig. 6 by
arrows) and the fact that at some capillary
pressures vy is larger than 2o (this has not
been observed with planar films).



86 Thin Liquid Film Phenomena

Quite unexpected are the data for
(Fig. 7) - besides the large values of « and
the variation of x with r_, we must point
out the change of sign of x for both solutions
of NaCl and to the smaller absolute valuef of
k for smaller bubbles i.e. for larger r_ ~ ',
There is a tendegfy of k to level off fbr
large bubbles (r_  -0), which is more pro-
nounced on the p?ot K/0 Vs Rf - Fig. 8.

A1l these findings reveal that {unlike
the surface tension and similarly the dis-
joining pressure) vy and k are strong functions
of the geometrical parameters of the system.
This is a new and unexpected result for v.

For the line tension this was predicted on
theoretical gounds by many authors (29-33)
but has not been observed experimentally.

There have been only a few attempts for
experimental determination of the line ten-
sion for fluid systems with configuration
similar to ours. The authors of Refs. (34)
and (35) have studied the same system as ours
(bubbTes formed from solutions of sodium
dodecylsulfate) but their values for k are
different from ours; for exgmple they obtained
k = 0.85 nN for 0.32 kmo1/m°. The reason for
the discrepancy between our and their results
lies probably in the fact that they used in-
complete experimental information (they did
not measure the angle 6) and to make up for
this deficiency they erroneously assumed that
Y 39@ x remained constant for all bubble
radii.

Navascues and Mederos (ll) have deter-
mined x from the nucleation rate of water
drops on mercury. They found k varying from
- 0.290 to -0.393 nN for critical radii
changing from 20.7 to 25.2nm. These low
values of « should not be surprising in view
of the small size of the nuclei.

The only measurements with particle size
close to ours were carried out by Torza and
Mason (13), who determined x from the equilib-
rium configurations of five doublets of
emulsion droplets. They obtained five dif-
ferent values for k (of the order of 10 nN)
and attributed these differences to scatter-
ing caused by impurities in their system.

In fact, a closer inspection of their data
reveals that the variation in k may well be
due to geometrical factors. Indeed, their
radius of curvature r,, of the interface be-
tween two droplets col;esponds to R; in our
experiments, and if one plots their data for
k vs R, one obtains, as with our data, a
quite Sood linear dependence - see inset in
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Fig. 8.

We cannot for the time being complietely
rule out the possibility that the observed
facts are due, at least in part, to non-
equilibrium phenomena. Such an effect may
be connected with the relatively slow sur-
factant desorption during the sarinking of
the bubble, whichzcan ead to oy # 0, # O
(more precisely o7 < g, - cf. F1g. 1§). But
this effect is ex&ecteﬁ to be more efficient
for small bubbles and in this way one hardly
could explain the rise of |x| for large
bubbles. Besides, such a lowering of ¢ is
unlikely to exist for concentrations above
c.m.c. (36). It is more probable that the
observed effects are due to some slow ir-
reversible processes, which change the film
tension y(e.g. either condensation of water
on the film or gradual change in the film
thickness). Because of the connection be-
tween vy and «/r_ (cf. Eq. {5)) this change
in v causes a rtse in x, which counter-
balances the alteration in the film tencion
(cosd is practially a constant). From a
microscopic point of view such a rise in k
may be due to deviations of the transition
region (between the film and meniscus) from
its equilibrium shape or to local changes of
the surface tension in this region - cf. (23).
Both effects can have hydrodynamic origin.
The definitive explanation of the observed
experimental facts requires however addition-
al theoretical and experimental studies which
are now under way.

Yet, whatever the origin of these effects
might be, we believe to have firmly estab-
lished that the attachment of small bubbles
to a liquid surface gives rise to unexpected-
1y large line tensions accompanied with
corresponding variations of the film tension.
Both effects are pronounced functions of the
bubble and film radii.

The data for the transversal tension
provides additional new information for the
equilibrium of an attached bubble. Table I
shows how the terms in Eq. (10) vary during
the shrinking of a bubble (Run 2a).

It is interesting to note that the
buoyancy force F, is much smaller than the
other two terms Bn (10). In the limiting
case of zero gravity (space laboratory) only
the disjoining pressure and transversal ten-
sion terms will remain in this force balance.
The values of the transversal tension t
(1ast column in Table I) are close to tae
value 4.77 nN/m, which we calculated from



No. 252, Vol. 82

the data for flat films in Ref. (28) using
Eq. (17) from Ref. (21).

In conclusion, these experimental results

indicate that the linear effects 1like the line
and transversal tensions could play a much
more significant role in the attachment of a
fluid particle to another interface than it
was believed until now.
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Figure 1. The force balance at each point of the periphery of a spherical thin film in the membrane
approach (a) and in the detailed approach (h).
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flected from a bubble, attached to a deformed air/liquid of complete splitting (shearing distance d > 2r.).
surface (r. = 45.4 um, objective 25x).
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Figure 6. Dimensionless film tension /20 vs capillary
pressure P. = 2v/R;.
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Figure 7. Line tension, «, vs reciprocal radius re! of the
contact line.
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Figure 8. Dependence of x/o on R (the points corre-
spond to runs: 1a(x), 1b (-e-), 2a (0) and 2b (). The inset
shows the same plot for the data of Torza and Mason(73)
for doublets of emulsion droplets.



