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Theoretical expressions are derived for calculating the capillary
meniscus interactions between two vertical cylinders or two
spheres partially immersed in a liquid layer. In general, the radii
and the contact angles of the two particles can be different. Two
alternative approaches are followed. The first one consists in
calculation of capillary interaction energy, which is then differ-
entiated to get the force. In the second approach the force is
determined directly by integrating the pressure and the interfacial
tension. A very good coincidence between the numerical results
of these two independent approaches is established. The results
can contribute to a better understanding of phenomena like sur-
face aggregation, surface coagulation, and formation of two-di-
mensional arrays at interfaces. @ 1993 Academic Press, Inc.

1. INTRODUCTION

It is known from experiment that capillary interactions
exist between particles attached to a fluid-liquid interface.
These interactions, which usually lead to two-dimensional
particle aggregation or coagulation, can be important for
many processes of technological importance (1, 2). In spite
of that, capillary forces have not been studied very well theo-
retically. This could be attributed, at least in part, to the
complicated form of the Laplace equation, which governs
the shape of the capillary menisci and represents a second-
order nonlinear partial differential equation. Indeed, all
available theoretical studies on capillary forces (3-6) deal
with menisci of rotational or translational symmetry, when
the Laplace equation reduces to an ordinary differential
equation.

Some interesting experimental results for aggregation and
ordering of colloidal particles (7-9) and protein molecules
(10-12) at an interface suggest theoretical studies on the
capillary interactions of particle configurations which have
not yet been investigated. The present paper can be consid-
cred as a continuation of a previous study (13), where theo-
retical expressions for the energy of capillary interaction of
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two similar vertical cylinders or two similar spheres on a
substrate are derived. The meniscus shape was determined
by solving the Laplace partial differential equation in bipolar
coordinates by using the method of matched asymptotic ex-
pansions.

Our main purpose in the present article is 10 generalize
the results of Ref. (13) for the case when both the radii and
the contact angles of the two particles are different. In Section
2 we derive asymptotic expressions describing the shape of
the capillary meniscus and of the two contact lines. Then
the results are applied for calculating the capillary forces by
using two alternative approaches.

The first one is the energetic approach, based on a cal-
culation of the total capillary (interfacial plus gravitational )
cnergy of the system, AW, Then AW is differentiated with
respect (o the interparticte distance to get the capillary force.
The sccond is the force approach in which the capillary force
is calculated directly by integrating the force distributions:
the hydrostatic pressure through the particle surface and the
interfacial tension along the three-phase contact line.

Sections 3, 4, and 5 below are devoted to the derivation
of expressions for AW in the framework of the energetic
approach for the following three cases; (i) two vertical cyl-
inders, (ii) two spheres partially immersed in a liguid layer
on a substrate, and (iii) a cylinder and a sphere. The force
approach is considered in Section 6, where integral expres-
sions are derived for the forces exerted on each of the two
particles. The numerical resuits provided by the energetic
and the force approaches are compared and discussed by the
end of the paper. We mention in advance that the capillary
forces due to the hydrostatic pressure exerted on two particles
of different sizes and/or different contact angles turn out to
be of different magnitude. However, it turns out that the
horizontal projections of the total capillary forces (integrals
of hydrostatic pressure plus interfacial tension) have equal
magnitude and opposite directions; i.e., they obey a counter-
part of Newton’s third law—this is proved in Appendix I.

The capillary interaction between a particte and a vertical
wall is examined in a separate paper (14).

We hope the theoretical study of the capillary meniscus
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forces will contribute to quantitative interpretation of some
available experimental data and will suggest new experi-
ments.

2. CAPILLARY MENISCUS SHAPE

(a) Basic Equations

Let us consider the capillary meniscus around two vertical
circular cylinders of radii #; and r,—Fig. 1. The interface is
supposed to be flat and horizontal far from the cylinders.
We choose the coordinate plane xy to coincide with this
horizontal surface. In addition, the plane xz passes through
the axes of the two cylinders. We denote by

z={{x,y) [2.1]
the equation describing the surface of the meniscus. { can
be both positive and negative depending on the values of the
contact angles o, and a;—see Fig. 1.

The geometry of the system suggests the introduction of
bicylindrical coordinates (7, o, z)—see, e.g., Refs. (13, 15):

x=Vg,sinh+, —o0<7<+too,

y=Vg.sineg, —r<eo<m, [2.2]
where
2
a
gﬂ'ﬂ' = gTT = [2'3]

(cosh 7 - cos ¢)?

and ¢ is a constant which is determined below.
Let 7 = —7; and 7 = 1, correspond to the surfaces of the
left- and right-hand-side cylinders depicted in Fig. |. Then

S = a coth 7, k=12, [24]
AZ
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FIG. 1. Sketch of the capillary meniscus around two vertical cylinders
of radii r, and r;; @) and «; are three-phase contact angles.
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is the distance between the z-axis and the axis of the respective
cylinder—see (13, 15). Also,

r,=afsinhz,, k=12 [2.5]
From Egs. [2.4], [2.5] one easily derives
al=st—ri=s}-ri [2.6]

Let us denote by b the shortest distance between the two
cylindrical surfaces. Then

S1+s=n+tntbh [2.7]

On the other hand, from Eq. [2.6] one obtains
s3—si=ri-ri [2.8]

By combining Egs. [2.7] and [2.8] one derives

se=3[b* + 200 + r)(r + 1)/(B+ 1+ o),
k=1,2. [29]

A substitution from Eq. [2.9] into Eq. [2.6] leads to the
sought-for expression determining the parameter a:

b
a’= E(b +2r)X b+ 2r) (b + 2K + 2r2)/(b + 1+ )2,

[2.10]

Having once determined a, one can calculate 7; and 7> from
Eq. [2.5] and then s, and s, from Eq. {2.4].

By analogy with our previous study, Ref. (13), we inves-
tigate the case when the slope of the meniscus surface is

small:
a2 le%
— — € 1.
(GX) < (6y) A

In this case the Laplace equation describing the meniscus
shape can be linearized,

[2.11]

625— aZg— "
—+—== 212
ol T a4 § [2.12]
—cf. Egs. [2.57 and [2.13] in Ref, (13). Here
g* = Dpg/y, Ap=p— pu, [2.13]

where p; and py; are the mass densities of the two neighboring
flutd phases, v is the respective interfacial tension, and g is
the gravity acceleration. In bicylindrical coordinates Eq.
[2.12] takes the form
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2
(cosh 7 — cos @) (—g. + 3—§') = (ga)*t(o, 7). [2.14]

For small particles at not too large interparticle separations
(ga)? < 1 and hence Eq. [2.14] contains a small parameter.
Following the mathematical approach in Ref. (13) we con-
sider an inner and an outer region:
inner region (close to the cylinders):

(cosh 7 — cos ¢)? » (ga)*
outer region (far from the cylinders):

(cosh 7 — cos o)? < (ga)?.

Then the method of the matched inner and outer asymptotic
expansions (see, e.g., Ref. (16)) can be applied.

(b) Inner Asymptotic Solution
In the inner region Eq. [2.14] reduces to

62{ 625—

F"'a—fg:(}. [2.15]

The boundary conditions at the surfaces of the two cylinders
are counterparts of Eq. [3.29]in Ref. (13):

2
s = Vg, sin ¥
aT r==7] T=—T1]

a

& = Ve, | siny,. [2.16]
ar | _ _

T=72 T=T2
Here
Ye=7/2— @ k=12 [2.17]

—f. Fig. 1. In fact, Eq. [2.16] represents the conditions for
constancy of the three-phase contact angle.
Let us consider the functions

—nl7|

~c ol -2 8

$i(o, 1) oS Ao
=1
+ > C¥cosh n[r — (=1 ri]lcos he, k=1,2, [2.18]
n=1
where
Ou=rsine, k=1,2, [2.19]

and CP k=1,2,n=0,1,2,..., are constants. One can
check that for  # 0 the functions (e, 1), k = 1, 2 satisfy
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Eq. [2.15]. In addition, a comparison with Eqs. [3.29] and
[3.30] in Ref. (13) shows that {{o, 7) and {:(g, 7), satisfy
the boundary conditions at 7 = —r; and 7 = 7,, respectively.
That is why one can seek the solution in the inner region in
the form

AN

. f - ==
g—in(d, ) = {?l(a 7) for—7, <7 [220]

Glo,7) for0 <+ <7,
The constants € are to be determined from the conditions

iy

or

fi(a, 0) = - %8

$2(a, 0); [2.21]

=0 r=0

By substituting from Eq. [2.18] into Eq. [2.21] one deter-
mines

Co' =V =G [2.22]
CWy = 2(Q: — Qi) (—1)*sinh n7,
R o sioha(rtr)” [2.23]

Lhk=1L2 jFkn=123,....

The value of the constant (j is to be determined by matching
the inner and outer asymptotic sclutions. With this end in
view let us investigate the asymptotic behavior of {™(a, 7)
for large | x|.

From Egs. [2.18], [2.20], [2.22], and [2.23] for r > O
one easily obtains

80, 7)=Co+ Qo —(Q1 + Oy) Z —3 -
n=]
2 sinh nrycosh n{ry, — 1) _
+ nr .
Q- Q) nzl [ sinh n(7, + 7;) — ¢
[2.24]
Besides, according to Eq. [3.36] in Ref. (13),
3
1m0 = In| 8] = 2[5 + 0(13)}; [2.25]
- x X
1e., 7 = 0 when x = o0, In the same limit
z 1
> - e =—In(l~e }y—>—Int (r—0). [2.26]

Ml

L
Then one obtains

0, 1) = Co+ (0 — QA

d

+{Q + QZ)[ln T’inl + O(;)] s [2.27]
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where

A = E: sinh n(r, — 73) [2.28]

1
Zonsinh n(r +713)

One can check that Eq. [2.27] holds not only for x = +oo,
but also for x = —op. Moreover, one can prove that the
asymptotics of {'" for x = 0 and | y| = oo are similar; ie.,
the generalized form of Eq. [2.27] reads

(FM)™=Co+ (0, — Q)4
(0 + QZ)[InZTG + o(i:)] [2.29]

where

r=Vx*+ 2. [2.30]

Eq. [2.30] represents the outer asymptotics of the inner so-
lution. For two cylinders of equal radii, 4 = 0, @, = (5, and
Eq. [2.29] reduces to Eq. [3.41] in Ref. (13).

{¢c) Outer and Compound Solution

Far away from the cylinders (¥ & ry, r,) the meniscus has
axial symmetry, Then in the outer region Eq. [ 2.12 ] reduces

to
tdf daey_
rdr(rdr)_qr'

Having in mind the outer boundary condition ({ — 0 for
r — o) from Eqg. [2.31], one obtains the solution in the
outer region in the form

[2.31]

F(r) = GKo(gr), [2.32]
where ¢ is an integration constant and Kj is the modified
Bessel function—see, e.g., (15, 17). The constant G, as well
as the constant Cy in Eq. [2.24], is to be determined by
means of the condition for matching the outer and inner
solutions (see Ref, (16)):

(g-in)oul = (g-uul)in'

By expanding the right-hand side of Eq. [2.32] in series for
small gr, one obtains

[2.33]

(£ = G{—In(y.qr/2) + O(g°rIn gr)], [2.34]
where v, = 1.781072418 - - -; In ~, is the Euler—-Masceroni
number—see, e.g., Ref. (15). Substitution from Egs. [2.29]
and [2.34] into Eq. [2.33] leads to the following expressions
for the integration constants:
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G=Q1+Q2,

Co = (0 — O2)A — (@) + )In{yega). [2.35]

The compound solution, which is uniformly valid in the
inner and outer regions, reads (16)

§-= g—in + g—uut _ (f-om)in, [236]

where in agreement with Eqs. [ 2.34] and [2.35] one has

(£ = —(Qy + @) In{veqr/2).
In addition, from Eqgs. {2.32] and [2.35] one obtains

[2.37]

=0+ G2)Kolgr). [2.38]
™ s given by Eq. [2.20], where in keeping with Eq. [2.18]
and the identity

o

|
T—2 3% —e™cosne =In(2cosht — 2 cos o)
H=1

{) and & can be represented in the form
Glo, 7)) = Co + OuIn(2 cosh 7 — 2 cos o)

+ 3 C¥cosh n[r — (—1)Yrilcos ne, k=1,2. [2.39]

n=1

The coefficients Q,, 0, Cp and C{* are given by Eqs. [2.19],
[2.23], and [2.35].

It is worthwhile noting that Egs. [2.36]-[2.39] represent
a zeroth-order asymptotic solution, which describes the me-
niscus shape with a good accuracy when Eq, [2.11] is satished
and (ga)? < 1. As shown below, such is the case of colloid-
sized particles, which represents an area of great practical
interest.

The shape of the meniscus surface calculated from Eqgs.
[2.36]-[2.39] is shown in Fig. 2 as an illustration. ¢, = 5°
for Fig. 2a, whereas » = —5° for Fig. 2b. The values of the
other parameters used are the same for both Figs. 2a and
2bir,=1um, r, =2 um, b = 3 um, and ¢, = 3°. A saddle-
like shape is observed between the two cylinders in Fig. 2a,
whereas there is no saddle point in Fig. 2b. As proven below,
the configurations shown in Figs. 2a and 2b correspond to
attractive and repulsive capillary forces, respectively.

(d) Elevation of the Contact Line

Since at + = —7, and 7 = 75, {" depends on o, the two
contact lines are not perfectly horizontal. As was shown in
Ref. (13) the deviation from horizontality is small with small
particles.
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FIG. 2.

The mean elevation of the contact lines above the hori-
zontal surface far from the cylinders is

e = wf o, (—1)r)dl

2 Ty
a do
=— -1 —,
2xhy f (o, ( )Tk}cosh T, — COS O

k=12 [2.40]

where ), is a contour, representing the projection of the
respective contact line on the coordinate plane xy. From
Egs. [2.19], [2.35], [2.39], and [2.40] one obtains
e = nesin Y76 + 2 In(t — exp(—27,)]
— (#5in ¢ + rzsin ¥2)In(y.qa)

+ (rsin ; — rpsin )

[ e

n=1

2 [exp(—n7isinh nT;
sinh n(r, + 732)

Lk=12 j#k, [241]
where in accordance with Eq. [2.5] 7, can be expressed as

foliows:

2
u=mﬁ+ %+q,k—L2 [2.42]
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The calculated shape of the capillary meniscus around two vertical cylinders. The slope angles at the contact lines are: (a)} ¥ = 3°, 2 = 5°%;
(b) ¢, =3° 2= —5° Inbothcases r, = 1 um, 2 = 2 um, and b = 3 um.

a and A are given by Eqgs. [2.10] and [2.28], respectively.
It is worthwhile noting that /&, can be both positive and neg-
ative—see Fig. 2b. When the two cylinders (particles) are
similar (ri = r3, ¥1 = ¥2), Eq. [2.41] reduces to Eq. [3.54]
in Ref. {13).

In the limit of infinite separation between the two cylinders
(b — o) the respective limiting values /., of s can be
calculated by means of Derjaguin’s { 18) formula,

4
veari{ 1 + cos i)’
(gri)* < 1.

hkw = rksin l[/kll’l

k=1,2, [2.43]
The next term of the expansion of A, for small (gry)? is
derived in Refs. (19, 20). It should be noted that Eq. [2.43]
cannot be derived by setting a — o in Egs. [2.41] and [ 2.42],
because Eq. [2.41] is an asymptotic formula, which is valid
for (ga)* < 1.

As shown in Appendix II at large interparticle distances
(r. €5, €', k=1,2), the general expression [2.41] for
hy can be expanded in series and a simple asymptotic formula
1s obtained:

I = resin iIn(2/yegre) — risin ;In{vy.qL/2), [2.41a]

where j, k = 1, 2;j# k,and L = b + r; + r, is the distance
between the axes of the cylinders.

In fact Eq. [ 2.41a] represents the elevation of the contact
ling at the surface of the cylinder k as a superposition of A,
(see Eq. [2.43] with cos ¥, =~ 1) and the elevation of the
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meniscus at a distance L from the single cylinder j (see Ap-
pendix 11).

The numerical comparison between Eq. [2.41] and its
asymptotic form, Eq. [2.41a], shows that they coincide ev-
erywhere, except in the region of small separations, where
the interparticle distance b is of the order of the diameter of
the larger cylinder.

Figure 3 illustrates the dependence of &, and A; on the
surface-to-surface separation, b, calculated from Eqgs. [2.41]
and [2.42]. As could be expected, A, decreases with an in-
crease in b. At very large b (b = g7'), where Eq. [2.41] is
no more valid, one calculates A/ fix., < 1 and even A/ hio
< 0.

The range of validity of Eq. [2.41] can be estimated in
the following way. Let us choose cylinder 1 to be the one
with the smaller radius (r; < ;) and let b* be the value of
b satisfying the equation k,(b*) = h,,,, where &, and h;,,
are calculated from Eqgs. [2.41] and [2.43 ], respectively. Then
for b > b* one has A (b)/ hr, < 1, which is an indication
of nonapplicability of Eq. [2.41]. Hence, #* can be used as
a characteristic of the range of validity of Eq. [2.41]. Of
course, b* depends on r, and 7».

Figure 4 represents b* as a function of r; for different
values of r; and for specified values of the angles ¢, and ¢».
The decrease of the area below the curve b* = b*(r|} with
increasing r; corresponds to a decrease of the range of validity
of Eq. [2.41]. When r, is small, #* is determined by the
capillary length ¢™! and does not depend on the radii 7,
and r5.

3. CAPILLARY INTERACTION ENERGY BETWEEN
TWO CYLINDERS

According to Eq. [2.4] in Ref. { 13) the capillary interaction
energy of a system of N particles attached to the interface
between phases I and II reads

AW =W - W,, [3.1]
0.050 ¥= 40 mN/m
h{pum] r, = 0.2 um
0.045 | r;=0.1 um
by = dp= 00
Y
0.040 [ \‘-,‘ h,
ooasf Tl
0.020 .
0 5 10 15
b[um]

FIG. 3. Dependence of h, and A, on the surface-to-surface separation
b calculated by means of Egs. [2.41]-[2.42].
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FIG. 4. Plot of b* vs r, for different values of r;; the slope angles are
Y= = 3

with
N
W=73 mgZi+ 3 mygZ%
k=1 y=LII
N
+ 2 2 wrydry T va4, [3.2]
k=1 ¥=11I

where W, is the value of W at infinite interparticle separa-
tion; Z'” and Z$, given by Eq. [2.3] in Ref. (13), are the
z-coordinates of the mass centers of the respective particle
or phase, whose masses are denoted by m; and my, respec-
tively; Ay and wyy are the area and the surface energy density
of the interface between particle k and phase Y; v is the
interfacial tension of the boundary between phases 1 and II,
and AA is the difference between the areas of the latter
boundary and the portion of the plane xy included in the
system. Below we calculate the contribution of each term in
the right-hand side of Eq. [3.2] in the capillary interaction
energy AW for the case of two vertical cylinders depicted in
Fig. 1.
Let us start with the last term in Eq. [3.2]. This term
provides a contribution
AW, = v(A4 — AA,) [3.3]
to the interaction energy AW. (AA,, is the value of A4 at
infinite separation between cylinders.) When Eq. [2.11] is

satisfied, in accordance with Eq. [2.19] of Ref. (13), one
can write

AWy =1 — 1)

—Apg(L |z|dV—fV |z|dV). {3.4]

Here Ap is given by Eq. [2.13] and V; is the volume com-
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prised between the meniscus surface and its projection on
the coordinate plane xy. I is an integral term, which in view
of Eq. [2.18] of Ref. (13) can be represented in the form

2
I=3 ng dlu-(§vE). [3.5]
k=1 YCk

Here C;, k = 1, 2, are the same contours as in Eq. [2.40]
above; u is the unit running normal to the respective contour
directed inward; and V is the two-dimensional gradient op-
erator in the plane xy. If e, is the running unit tangent to
the r-lines, then g = —e. at the contour C; and u = e, at the
contour Cs.

By using Eq. [2.11] one derives a counterpart of Eq. [3.11]
in Ref. (13):

(—1)<a¢
_ vg—) ol =D e Ve,
T T={—1)%¢

sin ¥y [3.6]

Since angles ¢, and -, are supposed to be constant along
the respective contact lines, from Egs. [2.40], [3.5], and
[3.6] one obtains
I = g(rihsin ¢, + rhsin ys), [3.7]
The limiting value of [ for infinite separation between the
two cylinders (b — o) is
I = w(rih,5in ¥y + rhasin gs), [3.8]
where A, kK = 1, 2, are the respective limiting values of A;
given by Eq. [2.43].
Analogously to the derivations of Egs. [3.19] and [3.21]
in Ref. (13) one obtains

2
2 Z [wrrdiy — M wiyAry]
k=t ¥=LII b

2
=27 2 (wa — @) (e — Hradre [3.9]
k=1

Z [mygZy - lim myeZy’

Y=LI1I
=Apg(f |z|dV—f IzldV). [3.10]
Vm me

The first term in the right-hand side of Eq. [3.2] does not
give any contribution to the capillary interaction energy AW,
because the z-coordinates of the mass centers of the two
cylinders do not depend on the distance between them. Then
by combining Eqs. [3.1]-[3.4]and [3.7]-{3.10] one finally
obtains
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2
AW =1 2 [2(ww — wiir)
k=1

+ o sin Y (A — A Y. [3.11]
Note that the volume integrals in Eqs. [ 3.4] and [3.10] cancel
each other. If the contact angles a, and a; are the equilibrium
ones, i.e., if the Young equation,

Wen — Wiy T Y COS oy, k= 1, 2, [3.12]
holds, then in view of Eq. [2.17] one can transform Eq.
[3.11] to read

2
AW = —my 2 (A = heeo ) Tisin Y,

k=1

[3.13]

where A, and A, can be calculated from Eqgs. [2.41] and
[2.43]. Equation [3.13] is the sought-for expression for the
capillary interaction energy between two vertical cylinders
as a function of the distance b between cylinder surfaces. In
the case of two similar cylinders, Eq. [3.13] reduces to Eq.
[3.23]in Ref. (13).

For large interparticle distances one can obtain the
asymptotic expression for AW by substituting in Eq. [3.13]
from Eq. [2.41a]). The result reads:

AW = 2xyrirysin ¥ sin JaIn( v.gs),

rLhEs<g !, [3.13a]
where s = L/2 = (5, + 5;)/2—see Appendix II for more
details, Equation [ 3.13a] shows that the capillary interaction
energy is very long-range even for small particles.

Figure 5 represents the dependence of AW on the surface-
to-surface separation, b, between two cylinders of different

Cylinder 1: Cylinder 2:
¥, =5"° ¥, =5"
10712 r, =0.8um
_ (fixed )
10-15
l."-u
_________________ r.= 8 um
— e
- =
— For—— r,=0.8um
= e BT P
< 10-15 |
! } r. = 0.08 um
10-16 |

0 100 200 300 400 500 600 700 BOO
b[pm]

FIG. 5. Plot of the interaction energy AW vs the surface-to-surface sep-
aration b for different values of ry; r| is fixed equal to 0.8 wm; the slope
angles are , =, = 5°.
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—AwW[J]

rp /T,

FIG. 6. Dependence of the interaction energy AW on ry/r at fixed
radius, 7, and for a fixed value of the surface-to-surface separation, b.

radii but equal contact angles. As could be expected, AW is
negative (attraction) and | AW | decreases with increasing
b. It is worth noting that the magnitude of the interaction
energy is much larger than the thermal energy k7" The same
is true for spherical particles (instead of cylinders—see below)
and can lead to irreversible surface aggregation.

Figure 6 illustrates the behavior of AW when the radius
of one of the cylinders is increased at a fixed radius of the
other cylinder and at a fixed separation b. One sees that AW
exhibits a tendency of leveling off for large r,/r, . Besides,
the smaller the angles Y, the smaller the capillary interaction
energy |AW| (see also Eq. [3.13a]).

Figure 7 illustrates the dependence of AW on the slope
angles ¥, and ¥, (respectively, on the contact angles oy =
w/2 — ). One sees that AW is negative (attraction) when
¥, and -, have the same sign, AW is positive (repulsion)
when ¢, and ¥» have opposite signs, and AW = 0 when ¥,
=y, = 0 (see also Eq. [3.13a]). The case when ¢, = 0 (o,
= 90°), is of special interest. In this case cylinder 1 alone
does not form a meniscus; however, it still disturbs the me-
niscus created by cylinder 2. In fact this is the origin of the
interaction between the two cylinders, which is of lower
magnitude compared to the case when ¢, # 0—see Fig. 7.

5.00 G010
AW [J]
(x10")
250F {o.005
0.00 ¢ {o0.000
-250 F .. 1-0.005
s’ b= 4um '~
r=r,=1lpm
-5.00 L . L 0.010
-10 -5 0 5 10
¥, { deg ]

FIG. 7. Dependence of the interaction energy AW on the angle y at
various fixed values of the angle ¢ the values of the other parameters are:
b=dumandr,=r =1 um
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In the case when ¢, = 0 (and ¢, # 0), Eq. [3.13a] predicts
AW = 0 and does not represent the asymptotic behavior of
the interaction energy. As shown in Appendix I, higher order
terms in the series expansion of A; should be taken into ac-
count. The result is

. 1
AW ~ = keyrirdsin®y, 3

#/1=O,r[,r2<S<q_l. {314]
Equation [ 3.14] describes very well the dashed curve (for ¢,
= 0) in Fig. 7, which is calculated by using the general
expression Eq. [3.13].

4. CAPILLARY INTERACTION BETWEEN
PARTIALLY IMMERSED SPHERES

Let us consider a flat horizontal solid surface covered with

a liquid layer of thickness /. In addition, let us consider two

spheres of radii R, and R;, which are partially immersed in

the liquid layer—see Fig. 8. We investigate below the non-
trivial case, when

l(_) < mi[](ZR], 2R2); [4.1]

i.e., when both particles protrude from the liquid layer and

two contact lines are formed. We restrict our considerations
to smali particle radii,

(@R <1, k=12, [4.2]
and small meniscus slopes at the contact lines,
sinff, <1, k=12 [4.3]
A
z

LI Fr I rr77

5, ]

FIG. 8. Sketch of the capitlary meniscus around two spherical particles
partially immersed in a liquid layer on a horizontal substrate. Ry and ay (k
= 1, 2) are the particle radii and contact angles; /, is the thickness of the
liquid layer far from the particles.
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In this case the projections of the contact lines on the hori-
zontal plane xy can be treated approximately as circumfer-
ences of radii r; and r; (cf. Fig. 12 in Ref. (13}). The shortest
distance between the orthogonal projections of these two
circumferences on the plane z = (0 will be denoted again by
b. Instead of Eq. [2.17], in the present case one has

Vi = arcsin(%) o, k=12, [4.4]
k

where o; and a5 are the two contact angles. We will note in
advance that when the particles are small enough to satisfy
Eq. [4.2], the condition for the small meniscus slope, Eq.
[4.3], turns out to be satisfied automatically when sin®(a;
— o) € 1, irrespective of the value of «;.

The main difference between the case of two vertical cyl-
inders and two spheres is that the radius of the contact line
ri.and the slope angle i (k = 1, 2) vary with the interparticle
distance. Equation [ 3.7 ] holds for both cylinders and spheres;
however, instead of Eq. [3.8] in the case of spheres one is
to write

I, = (oSN Yo + Peflagsin g, ),  [4.5]
where r.,, and ¢4, are the limiting values of r, and ¢, (k =
1, 2) for b = oo. Then Eq. [2.19] of Ref. (13) takes the
form

2
AW = 7y 2 (Fefusin Wi — TeowPiooSIN Yy — FE + Fho)

k=1
*Apg(f |Z|dV—f IzidV), [4.6]
¥ Vo

where the volume integrals are the same as in Eq. [3.4] above.
Equation [4.6] is a counterpart of Eq. [4.3] in Ref. (13).
One can similarly derive the counterparts of Eqs. [4.4] and
[4.9] in Ref. (13),

2
2 2 (wryAry — lim wiyAey)
k=1 Y=Ll b

o

b
=2r 2 Ry — wn)(he — M) [4.7]

k=1

> (mygZ¥ — lim mygZy)
Y=L brow0

iApg[f |z|dV—f lz|dV
Vm Fmeo

2
+ > (f |Z|dV-J. |zIdV)], [4.8]
k=1 piH vid
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where Vg” and V(zz) represent parts of particle volumes,

which are¢ shown in Fig, 8; V‘zﬁ), corresponds to infinite sep-
aration between the particles. Finally, in accordance with
Egs. [3.1]1-[3.3] and {4.6]-[4.8] one obtains the following
expression for the capillary interaction energy between the
two spherical particles:

2
AW =3 [ZWRk(wkl — @) (e — Pio))
k=1

— 7y(—rhusin @y + FE + Pl SIN Yo — P )

+Apg(fV£k) IzIdV—fygg !zldV)]. [4.9]

When the Young equation, Eq. [3.12], is satisfied (equilib-
rium contact line without contact angle hysteresis), Eq. [4.9]
transforms to read

2

AW=-3

k=1

[w7[2(hk - hkw)RkCOS o — J‘khkSiIl l,l/k

2 . 2
+ ry + rkcohkmSID ’pkoo - rkoo]

_Apg(ngk) |z|dV—fV¥g Ide)]. [4.10]

The volume integral term in Eq. [4.10] (which is often neg-
ligible) can be easily calculated:

fV%“’ Izldv = fV”"

2o

|z|dV

1
= g {E (hi, — hD[20(2R, — b)) — h} — hix]

4
+§un—hxﬁmfhb+rﬁik&mﬁ4,

k=12 T[4.11]

Since the energy of capillary interaction between the two
particles, AW, depends on the distance

L:r1+r2+b:51+52 [4.12]

between the centers of the particles, the corresponding cap-
illary force can be calculated by differentiation:

__d(aw)
T [4.13]

By the end of Section 6 below it is demonstrated that the
capillary force F calculated from Eq. [4.13] coincides with
the force obtained by direct integration of the hydrostatic
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pressure through the particle surface and of the interfacial
tension along the contact line,

To determine the interaction energy AW one first calcu-
lates some geometric parameters. A calculative procedure is
proposed below.

The input geometric parameters are the distance between
the spheres, L, the thickness of the layer far from the particles,
ly, the particle radii, Ry, and the contact angles, ay, & = 1,
2. The parameters My, , e, and ¥y, are calculated by means
of Egs. [5.1]-[5.4] of Ref. (13). To determine A, r, and
W we used the following procedure.

From the equation of the sphere one finds

re(he) = [ + AR — I — RV, k= 1,2, [4.14]
Then from Eq. [4.4] one calculates

re( )

Y (k) = arcsin —ap, k=1,2, [4.15]

k

For a given value of b, Eq. [2.41], along with Egs. [2.10],
[2.28], and [2.42], determines A, as a function of r, and ¥,
k=1,2:

e = Filri(h), r(he), (), de(2)), k= 1,2, [4.16]

Equations [4.14]-[4.16] represent a set of six equations for
calculating the six parameters, A, ri, and ¢, k= 1, 2. One
can solve the problem by using numerical minimization of
the function

®(h, h2)

2
= X [l — Ful(ri(B), r(ha), yn(), ()], [4.17]
k=1

In view of Eq. [4.16] the minimum value of ®(},, k) is
zero; the couple (4T, A7) satisfying the equation (AT,
h3) = 0in fact represents the solution of Eq. [4.16]. To find
(AT, h3 ) we varied kb, between —lpand 2R, — Iy, k= 1, 2,
by using the method of Hooke and Jeeves (21).

5. CAPILLARY INTERACTION BETWEEN VERTICAL
CYLINDER AND SPHERE

The method developed above can be directly applied to
calculate the capillary interaction between a vertical cylinder
and a partially immersed sphere. The system is depicted in
Fig. 9. The geometrical parameters belonging to the cylinder
and the sphere are denoted by indices 1 and 2, respectively,
Thus r, and R, denote the radii of the cylinder and the sphere;
o and ¥, (k = 1, 2) are the respective contact and meniscus
slope angles—see Fig. 9. r, and L have the same meaning
as in the previous section; & can be calculated by means of
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FIG. 9. Sketch of a cylinder and a sphere, which are partially immersed
in a liquid layer on a horizontal substrate; /; is the layer thickness far from
the cylinder and particle.

Eq. [2.10]. We suppose again that (ga)? < 1 and that Eq.
[4.3] is satisfied. Then, by analogy with the derivations of
Eqs. [3.14] and [4.10], one obtains the following expression
for the energy of capillary interaction between the sphere
and the cylinder;

AW = —my[(h — Mg )risin ¥, — Ayrssin ¥,

+ hzmrzmsin lllzw + 2(h2 - hzw)chos oy — r%w + r%]

+ Apg[fyén |zidV—fV§2 |z|dV]. [5.1]

The last term in Eq. [ 5.1] can be calculated by means of Eq.
[4.11] for k = 2. The parameters rao,, Yoo, and Aa,, can be
determined by means of Eqgs. [5.1]-[5.4] in Ref. (13). &,
can be calculated directly from Eq. [2.43]. Since r, = const
and ¥, = const, Egs. [4.14]-[4.15] for k = 2 together with
Eq.[4.16], form a set of four equations determining the four
parameters r;, ¥, i, and 4, for each given distance L. This
set can be solved by means of a numerical minimization
procedure based on a counterpart of Eq. [4.17].

As an illustration Fig. 10 represents the dependence of
the capillary interaction energy AW on the distance, L, be-
tween a sphere and a vertical cylinder. One sees that AW is
negative (attraction) and | AW | increases with an increase
of the particle radius R,. Also, | AW is again much larger
than the thermal energy kT i.e., the capillary force prevails
over the Brownian force exerted on the particle.

6. CAPILLARY FORCES

As far as we deal with distributed forces { hydrostatic pres-
sure, interfacial tension )}, the derivative

da(AW)/dL
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FIG. 10. Plot of the capillary interaction energy AW vs the distance,
L, between a cylinder of radius r; = 0.5 um and a spherical particle of radius
R,; the values of the other parameters are: §, = 5°, a; = 10°, §, = 0.5 pgm.

of the total interaction energy with respect to the interparticle
distance in Eq. [4.13] in general must not be equal to the
capillary force exerted on one of the two particles. Indeed,
AW includes the capillary (surface plus gravitational ) energy
not only of the particles, but also of the capillary meniscus
and of the two adjacent phases.

The capillary force exerted on one of the particles can be
obtained by integrating the meniscus interfacial tension along
the contact line and the hydrostatic pressure through the
particle surface,

F% = Fr) 4+ F'«"‘P),

k=1,2, [6.1]

where

Flr? =f ydl, F¥ = —f dsp. [6.2]
L 5

Here L, and 5, (k = 1, 2) symbolize the respective contact
line and particle surface, <y is the meniscus surface tension
considered as a vector, and p is the hydrostatic pressure. It
should be noted that F'*? is a force, which is liable to direct
measurement.

As discussed by the end of this section, it turns out that
due to the special properties of the Laplace equation and its
boundary conditions the force approach based on Egs. [6.1]
and [6.2] and the energetic approach based on Eq. [4.13]
gives the same result for the capillary force—see also Ap-
pendix 1.

First, we calculate F'® for cach of the two cylinders de-
picted in Fig. 1. For the sake of convenience we make a
special choice of the coordinate system—see Fig, 11. The z-
axis coincides with the axis of the cylinder of consideration.
The plane z = 0 as usual coincides with the horizontal fluid
interface far from the cylinders. The x-axis is directed from
the cylinder of consideration toward the other cylinder. Then
the symmetry of the system implies that the y-components
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of F*) and F**) must be equal to zero. That is why our

- task is reduced to the calculation of

Ff) = o cFUY and  FU = e .F*  [6.3]
where e, is the unit vector of the x-axis. Due to the specific
choice of the coordinate system, the positive (negative) value
of F corresponds to capillary attraction {repulsion) be-

tween the two cylinders,

fa) Force Due to Interfacial Tension

Let z = {{¢) be the equation of the contact line with ¢
being the azimuthal angle in the plane xy—see Fig. 11. Then
the linear element along the contact line is

27172
di=xde, Xx= [r%c-l- (ﬁ) ] . [6.4]

de

The vector of the running unit tangent to the contact line is
1 . ¢
t= X —r:sin e, + rcos pe, + d—@ e |, [6.5]

with e,, e,, and e, being the unit vectors of the respective
axes. Similarly, the vector of the running unit normal to the
cylindrical surface is

n = ¢os e, + sin ge,. [6.6]

At a given point M of the contact line one can define the
vector of the unit running binermal as follows:
b=1tXn, [6.7]

Since the vector of the interfacial tension v belongs to the
plane formed by the vectors n and b, one can write

¥ = y(sin ;b + cos Y4n) [6.8]

4

FIG. 11. Sketch of the contact line z = {{¢) on a vertical cylinder of
radius r; and contact angle «,. The slope of the contact line is exaggerated.
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—see Fig. 11. Then by substituting from Egs. [6.5]-[6.71
into Eq. [6.8] one obtains

1 dt . .
7erx-'y=~y(cos¢cos:!/k—;d—ismqosm lpk). [6.9]

From Eqs. [6.2]-[6.4] and [6.9] one. derives
) = : T )
Fy¥ = 2ysinyy, | ——sin odp + AFY,
o de¢

where

27

AF® = ~ cos d/kf X cos ¢dy

[}
T 2
m'yl (ﬁ) cos gde [6.10]
I Jo dqo
—cf. Eqs. [2.11] and [4.3]. At the last step we expanded the
square root in Eq. [6.4] into a series.

Above we derived the expression for calculating { in bi-
polar coordinates (o, 7). Now it is more convenient to use
o for the parameterization of the contact line {(at 7 = (—1)*74
= const, kK = 1, 2}, instead of the azimuthal angle ¢. From
Eqs. [2.2]-[2.4], one can obtain the connection between
the two parameters, ¢ and ¢

1 — cosh ricos &
COS p = ————m—
i cosh r, —cos o ~

[6.11]

where 7, is given by Eq. [2.42]. A combination of Eqs. [6.10]
and [6.11] yields

' " dt sin odo
K1) = 2+ i inh A i L AFUR
F ¥ sin Yisinh 7 o docoshr,—coso
k=1,2. [6.12]
In addition, from Eq. [2.39] one obtains
¢ _ 9%
do do r=(—1)kry
= QRL — > nC¥sin ne. [6.13]

cosh 7, —cos o

n=1

By substituting from Eq. [6.13] into Eq. [6.12] and by using
Eq. [2.23] and the identities

f’ sin’ecdo _we’’
o (coshr —cos¢)? sinhr7’
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f" sin #ng sin odo .
—— =g ",
o cosh7 —cos o
one derives
F¥7) = 274 sin 1}/k[le’* + 2(Q, — Q) —1)%sinh 1,
oo —2n1'k — (n)
e E
X > + AFP [6.14]

1 E™

n=1

{(k =1, 2); where Q, and 7, are given by Egs. [2.19] and
[2.42], and

— L, in(r+r
E = pmtntrim)

L 2
AFP = %f (?) {1 — cosh 1.cos ¢)da.
0 (22

The last integral can be calculated numerically after substi-
tuting the expression for d¢/de¢ from Eq. [6.13]. Equation
[ 6.14] represents the sought-for contribution of the interfacial
tension into the horizontal projection of the capillary force.
At alarge interparticle separation one can obtain a simple
asymptotic expression for F{*) as explained in Appendix
II. The final result is
F¥ = myrrsin sin yol [6.14a]
The latter expression for F*"? coincides with the derivative
d(AW}Y/dL of the interaction energy expressed by means
of Eq. [3.13a] (L = 2s). This means that F*"’ dominates
the capillary forces, at least for large interparticle separations.
Equation [6.14a] shows that F*") decays very slowly with
the inverse first power of the interparticle distance. Thus,
the capillary forces turn out to have a very long-range.

(b) Force Due to Hydrostatic Pressure

Below we proceed with the derivation of an expression for
F*) Let z, and z, be the z-coordinates of the highest and
of the lowest point of the contact line—see Fig. 11. S; in Eq.
[6.2] can be chosen to be part of the cylinder surface, com-
prised between the planes z = z, and z = z,. The hydrostatic
pressure in the two neighboring fluid phases is

Py = Po— prE=, Y=I; IL [615]
where py = const is the pressure at the level z = 0. Then in
Eq. {6.2] one is to substitute for p the expression

n forz; < z< {()
= [6.16]

pm for{(g)<z=<z,
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where as usual z = {(¢) is the equation of the contact line.
Accordingly, from Egs. [6.2]-[6.3] one obtains

$e)

T Zp
Fko) = —f diricos go[ ndz +f Pudz] . [6.17]
—x te)

Zg

By substituting from Eq. [6.15] into Eq. [6.17] one derives
FO = o, [ G0 edp, [6.18)
0

where Ap is the same as in Eq. [2.13]. On the other hand,
by differentiating Eq. [6.11] one obtains

de sinh 7
ds  coshr,—coso’ [6.19]
Finally, Eqgs. [2.5], [6.11], [6.18], and [6.19] yicld
T 1 — cosh r cos ¢
FUkr) = A f 2
* PEL B {cosh 7 — cos ¢)? {ido,
r = (=1)ry, [6.20]

k=1, 2; & is given by Eq. [2.39] above.

The series expansion of Eq. [6.20] for a large separation
between the cylinders leads to the following asymptotic
expression for F¥*? (see Appendix 11):

FUP) o Ty(qri) 2hrsin %.%’ k=12, #k. [620a}

The comparison between Eq. [6.20a] and Eq. [6.14a] shows
that the ratio

2
Fikoyy FR) o M
risin
is usually a small quantity ({gry)? < 1) and decreases slowly
with the distance between the cylinders (see also Eq. [2.41a]).

{c) Application to Spherical Particle

As explained in Sections 4 and 5 above, the expression
for the meniscus profile {(o, 7) in the case of two vertical
cylinders can be also applied for approximate calculation of
the capillary interactions between two spheres on a substra-
tum or between a sphere and a cylinder. Similarly, when the
deviation of the contact line from the horizontal is not too
large, one can use Eqs. [6.14] and [6.20] for approximate
calculation of F{**) and F%” for two interacting spheres
as well as for a sphere and a cylinder. In particular, the ap-
plicability of Eq. [6.20] needs additicnal discussion. Indeed,
the horizontal projection of the force exerted on an element
ds, from the surface of a sphere is p cos 8ds, = pds.—see Fig.
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12. Here ds. = {ds;)cos 8 is the area of the orthogonal pro-
jection of ds; on the surface of the respective cylinder (z,
and z, in Fig. 12 are the same as in Fig. 11). Hence the
integration taken through the spherical belt can be approx-
imately replaced by the integral through the surface of the
cylinder comprised between the planes z = z; and z = z,.
In other words, Eq. [6.17] and its corollary, Eq. [6.20], can
be used also in the case of a spherical particle.

{d; Discussion and Numerical Results

It should be noted that Egs. [4.131, [6.1], and [6.2] rep-
resent two alternative approaches for calculating the capillary
interactions: an energetic and a force approach. First of all,
Eq. {4.13] makes sense if F{ = F{?); je., if the capillary
meniscus interactions obey a counterpart of Newton’s third
law. It is proven in Appendix I that this condition is really
satisfied, at least for a small slope of the meniscus surface.
This is a nontrivial result, because it is not obvious why
F and F{¥ are to coincide when the radii and the contact
angles of the two cylinders ( particles) are different. Besides,
it turns out that only the sum F¥*?) + F*") gatisfies a coun-
terpart of Newton’s law, whereas FU) and F&*) separately
do not. (F{'P' # F@P_ etc.) This is illustrated below by
means of some numerical results.

Figure 13a represents F{?) for k = 1, 2, calculated from
Eq. [6.20] for two cylinders of different radii but of equal
contact angles. One sees that the hydrostatic pressure force
exerted on the cylinder of larger radius is larger. Both
FU? and F(2#) are of the order of 107'° N and are much
smaller than F% shown in Fig. 13b for the same two cyl-
inders as calculated from Eq. {6.14]. As could be expected,
FUv = F {5 agreement with Newton’s law (see Appen-
dix 1). More precisely there is a small difference between
FU and F$" which is due to the difference between
FUP and F{27 this difference is too small and cannot be
visualized in Fig. 13b. We recall that in the notation of the
present section the positive sign of FU" corresponds to at-
traction between the two cylinders (particles).

:e

7 P
ll \\
’I d Sc xds;

4 1

FIG. 12. Cross section of a spherical particle. The pressure p is directed
normally 1o the spherical surface element df,.



PARTICLE CAPILLARY INTERACTIONS

10.00

thk") r, =05 pm

750 | r, =1 pum
[N]x10% ¥=40 mN/m

5.00 Yy =Pa=5°

2,50

0.00 . - - =

0 10 20 30 40 S50
L[tm]

433

5.00
Kk
F{r
4.00 |
[N1x 10
3.00

200

1.00

0.00

L[ pm]

FIG. 13. Plot of capillary force vs distance L between two vertical cylinders of different radii but equal contact angles: (a) £ calculated from Eq.

[6.20], (b) F®¥ calculated from Eq. [6.14].

Figure 14 illustrates the fact that the capillary forces can
be both attractive and repulsive depending on the sign of the
slope angles ¢, and y¥». As could be expected, both Fi*
and F*" are repulsive when ¢, and y, are of different signs.

In addition, we calculated the capillary force by differ-
entiating the capillary energy AW numerically in accordance
with Eqgs. [3.13] and [4.13]. The result turned out to be in
very good agreement with the numerical data for F® =
F¢ 4+ F) - As an illustration the values of F{V, F(*)
and d(AW)Y/dL are compared in Table 1 for the case of two
vertical cylinders of different radii (#, = 10 gm, r; = 30 gm)
and different contact angles (¥, = 10°, ¢, = 1°). ¥V and
F'? are calculated by means of Eqs. [6.14] and [6.20]. The
data in Table | confirm the equivalence of the force and
energetic approaches to the calculation of the capillary in-
teractions. In other words, one can write

d(AW)
FN=F2 =— ¢ 6.21
x ¥ n [6.21]
1.60
F&kp)
1.20
[N1x 1o
080
0.40
0.00
-0.40 : . .
) 25 50 75 100
L[ pm ]

The numerical coincidence between the three forces in
Eq. [6.21] represents also a confirmation of the reliability of
the asymptotic expressions derived in Section 2 above.

It is worth mentioning that the approximate expressions
[6.14a} and [6.20a] are very accurate except in the case of
small separations between the cylinders.

To calculate F¥ or AW one needs the values of the geo-
metrical parameters 7, Yy, and A;. As pointed out above,
the values of these parameters depend on the geometrical
configuration of the system: two vertical cylinders, two
spherical particles on a horizontal substrate, etc. It is worth-
while noting that a similar calculative procedure is applicable
also to spherical particles floating on a liquid-fluid interface.
In this case the geometrical configuration of the system can
be determined from the balance between the gravity force
(particle weight plus buoyancy) and the vertical component
of the interfacial tension acting on the three-phase contact
line:

2wrey siny = F. [6.22]

5.00
Flen r,=r,= lum

250 | ¥ =40 mN/m

[Nlx 1ot

000~ —~m==--mm-m-m--o -

—250f

-5.00 L L L
0 25 50 75 100

L{pum]

FIG. 14. Plot of capillary force vs distance 1. between two vertical cylinders of equal radii at various contact angles: {(a} F¥” calculated from Eq.

[6.20]; (b) F¥) caleulated from Eq. [6.14].
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TABLE 1
Comparison between FV, F?, and dAW/dL for r, = 10 pm,
ry =30 pm, ¢, = 10°, ¢, = 1°

s (pm) FEN) F@ (N} dAWIEL (N)
50 1.482 x 1078 1.485 x 107" 1.483 x 10°%
100 3.054 x 107° 3.061 x 10~° 3.054 x 107°
150 1.737 x 107° 1.742 X 10~ 1.737 x 107
200 1.231 x 107° 1.234 x 107° 1.231 x 107~
250 9.590 x 107'® 9.612 x 19710 9.588 x 10710
300 7.876 x 10710 7.893 x 10-10 7.875 X 1010
350 6.692 xr,10"° 6.706 x 1070 6.691 x 170
400 5.822 x'1¢71° 5.834 x 19710 5.821 x 197°
450 5.155 x 1071° 5.165 X 10710 5.154 x 10710
500 4.626 x 1071° 4.635 X 107'° 4,625 x 1p7'°

The following expression for F, is available (see, e.g., Eq.
{32]in Ref. (22)):

Fg = g[(.ﬂl - pp)Vl + (pn — Pp)Vu

—{pr — PI[)WrI%hk]- [6.23]
Here p, is the particle mass density and ¥, and V, are the
parts of the particle volume situated, respectively, below and
above the level of the contact line. We believe that the ap-
plication of the above approach to a reexamination of the
problem for capillary forces between freely floating particles
deserves special attention and can be the subject of a sub-
sequent paper.

7. CONCLUDING REMARKS

This article presents a theoretical study of the capillary
meniscus interactions between two particles attached to a
liquid—fluid interface. Theoretical expressions for calculating
the capillary forces acting between two vertical cylinders,
between a cylinder and a sphere, and between two spheres
are derived. In general these expressions hold for particles
of different contact angles and different radii of the contact
lines. On the other hand, the validity of these expressions is
limited to the case of a small slope of the meniscus surface
{cf. Eq. [2.11]) and to particle radii and interparticle sepa-
rations which are small compared with the capillary length
g~ '—cf. Eq. [2.13]. For a liquid—gas interface ¢ ' is of order
of 1 mm. Hence our asymptotic expressions are valid for
particles with radii of the order of 100 um or smaller. For-
tunately, this range of radii corresponds to systems of con-
siderable scientific and practical importance connected with
processes of interfacial aggregation and interfacial separation
of particles.

To calculate the capillary interactions between two par-
ticles one first determines the shape of the capillary meniscus.
In fact this is the main theoretical problem connected with
capillary forces. The forementioned restrictions for small
slope and small radii enabled us to solve the problem by
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using bipolar coordinates in conjunction with the method
of matched asymptotic expansions. The derived compound
solution, given by Eqs. [2.36]-[2.39], can be applied to
calculating the meniscus shape in any case, when the hori-
zontal projection of each of the two contact lines is circular
irrespective of the shape of the particles. Equations [2.36]-
[2.39] aliow calculation of the meniscus profile-—see Fig. 2.
This provides a possibility for comparison between the theory
and experiment because the meniscus shape can be deter-
mined experimentally by means of different interferometric
(23) or holographic (24) techniques. A combination between
theory and experiment can produce a method for direct de-
termination of the microparticle contact angle.

Having once determined the meniscus profile, one can
calculate the capillary forces by using the two alternative
approaches: the energetic one and the force one. In this paper
we have followed the two approaches in parallel and have
compared the resulis,

The energetic approach is based on a general expression
for the total capillary energy AW —see Eq. [2.4] in our pre-
vious paper, Ref. (13). Here this expression is specified for
three geometical configurations: (i) two vertical cylinders,
Eq. [3.13]; (i1) two different spheres, Eq. [4.10]; and (iii)
a cylinder and a sphere, Eq. [5.1]. It is worth noting that
the capillary energy AW turns out to be much larger in mag-
nitude than the thermal energy, kT, even for submicrometer
particles—see Figs. 5-7 and 10.

The force approach, which is physically more transparent,
provides expressions for direct calculation of the capillary
forces—see Eqs, [6.1], [6.14], and [6.20]. It turns out that
for micrometer-sized particles the contribution of the hy-
drostatic pressure to the capillary force is much smaller than
the contribution of the interfacial tension—see Figs. 13 and
14. Besides, it turns out that in spite of the different radii
and contact angles of the two particles, the capillary forces
exerted on them are equal. In other words, they obey a coun-
terpart of Newton’s third law, at least for small slopes of the
meniscus surface—the theoretical proof is given in Appendix
I. This result reveals why the energetic approach makes sense.
Indeed, the total capillary energy AW can be considered as
a potential of the capillary forces—see Eq. [6.21]. The nu-
merical test of Eq. [6.21] (see Table 1) demonstrates a.very
good agreement between the results of the energetical and
force approaches. This is also an argument in favor of the
reliability of our asymptotic expressions for the meniscus
shape. For large separations between the particles, simple
asymptotic expressions for the capillary interaction energy
and forces are obtained by expanding in series the general
equations and keeping the leading terms—see Eqgs. [2.41a],
[3.13a],[3.14], [6.14a], and [6.20a]. The numerical com-
parison of these asymptotic expressions with the respective
general formulas, Egs. [2.41], [3.13], [6.14], and [6.20],
shows very good agreement except in the case of small in-
terparticle separations. We hope the results can be generalized
for the case of multiparticle capillary meniscus interactions.
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APPENDIX I: THE CAPILLARY FORCES AND
NEWTON’S THIRD LAW

Let F“‘) (k =1, 2) be the projection of the capillary force
F'®) on the horizontal coordinate plane xy. ( The choice of
the coordinate system is the same as in Fig. 1.) Our aim here
is to prove that the horizontal projections of capillary forces
exerted on the two cylinders (or spherical particles) obey a
counterpart of Newton’s third law; i.e., that

FP = —F{. [A.1]
It will be demonstrated that Eq. [A.1] holds because the
shape of the capillary meniscus surface satisfies the Laplace
equation along with the condition for constancy of the three-
phase contact angles. We will consider again the case when
the slope of the meniscus surface is small—cf. Eq. [2.11].
On the other hand, our derivation is not limited to small
particle radii, 7, or to a small interparticle distance, L.

From Eqgs. [6.1]-[6.2] one obiains

E{"—f d1~m+f d!uf dzp, k=1,2. [A2]

Here L, denotes the respective contact line and Oy is its
orthogonal projection on the horizontal plane xy; u, z,, and
z), are the same as in Eqs. [3.5] and [6.17]; 7y is a vector
representing the horizontal projection of the interfacial ten-
sion ¥.

Let us first consider the left-hand-side cylinder (particle).
From Egs. [6.5]-[6.8] one can derive

Y= (e ?f;smw,bl+ecosdq) T=—71, [A3]

where e, and e, are the running unit vectors tangential to
the o and 7 lines in bipolar coordinates—cf. Eq. [2.2]. In
our case e, and e, represent also the units tangent and normal
to the contour (. In particular,

", dle, = 0 [A4]
%f,::%z—i, A=Vg., 7=-1 [A.5]
—cf. also Eq. [2.3]. In addition,
.‘f dlyg = {:—G’Yn
~f ] (5], tae
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where the angle 8 characterizes the running slope of the con-
tact line L.,. By expanding the square root in Eq. [A.6] and
by using Eqs. [A.3] and [A.4] one obtains

j; dbyn =y § dl[ i sin ¢, + e, = (‘:;f;) ], [A.7]

where the higher order terms with respect to the slope are
neglected—cf. Eq. [2.11]. Then having in mind the con-
stancy of angle ¢, from Eqs. [3.6], [A.5], and {A.7], one
derives

f dlvy = 'vf dl{(ea
Ly (&)

1a¢ 1a¢
)\6cr+e7)\6 )sma,f/,
RN 2 aty?
+ =1 |t
e5(5) * (&)
The last equation can be transformed to read

b di - wfc dll—e, - (VOVE + 5e90)- 9], [AS8]

where V is the gradient operator in the plane xy and Eq.
[3.6] was used again. On the other hand, similarly to Eq.
[6.18], one can derive

j"cl diu L dzp = — Apg fc] dlus . [A.9]
Equations [2.13], [A.2], and [A.8]-[A.9] yield
Fi'! =v 9 din
<y
VOV = FULTE - VE+ g7, [AI0]

where g = —e, and U is the idemfactor (the unit tensor) in
the plane xy. Analogous considerations lead to an expression
for Fff ), which can be obtained by formally changing the
index 1 to 2 in Eq. [A.10]. Then

2
Fi'+FP =+ 3 9 diu

C

- {VOVE—IUNVH -V + ¢2F ). [A11]

As is known, { tends exponentially to zero far from the cyl-
inders—see, ¢.g., Eq. [2.38]. Then by using Green’s theorem
{see, e.g., Ref. (25)) one can transform Eq. [A.11] to read

o F(”__YL ds{V-[(VEV{]

— VIV VI + g1}, [A2]
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where S, is the orthogonal projection of the meniscus surface
on the plane xy. From the Laplace equation, Eq. [2.12], it
follows

VUVOVE = g0V EH (V) VVE. [A3]

Besides,

VI(VE) - Vi = 2(V() - VVE. [A.14]

Then Eq. [A.13] takes the form

V-[(VOVE] =3V + (V- (V). [A.15]
The substitution from Eq. [A.15] into Eqg. [A.12] leads to
the sought-for relation, Eq. [ A.1], representing Newton’s law.

APPENDIX II: CAPILLARY INTERACTIONS AT
LARGE INTERPARTICLE SEPARATION

When two cylinders, like those shown in Fig. 1, are sep-
arated at a large distance from one another, i.e., when

a=2<t, k=12 [B.1]
Sk

simple asymptotic formulas for the capillary energy and force
can be obtained by using appropriate series €Xpansions.
Equation [2.6] can be transformed to read
a’ =531 —- e1) = 53(1 — €3). [B.2]
Let us consider the simplest case when ¢, ~ ¢ <€ 1. From
Eq. [B.2] one obtains

a =~ sl + O(eD)]. [B.3]

One sees from Eq. [B3] that at large interparticle distances

L
A= §) = 5= [ =§,

B.4
5 (B4]
where L is the distance between the axes of the cylinders—
cf. Eq. [4.12] and Fig. 1. Then from Eq. [2.42] one derives

Tk’ﬁ“_ﬁln{;[l +0(e%)]} [B.5}
k

1
sinh 7 = cosh 7. = — [1 + O(e%)]. [B.6]
€

By substituting from Egs. [B.4]-[B.6] into Egs. [2.23],
[2.28], and [2.35] one can derive expressions for the con-
stants 4, €y, and CF)-
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A= 3{ed— €]} + O(ed) [B.7]
Co = —(Q1 + Q)In{vegs[1 + O(e£)]} + O(Quei)

[B.8]
CH = (—1)k%(Q2 - Ql)(%‘)n[l + 0(eR)], [B.9]

where (. are defined by Eq. [2.19].

Equations [ B.4]-[B.9] can be used to obtain the asymp-
totics of the general expressions for the capillary interaction
energy and forces derived in the paper. Thus, Eq, [2.41]
expressing the mean elevation of the three-phase contact lines
can be simplified to read

i = rsin Yadn(2/vegr) — risin Yin(vegs) + O(Qued),
k=1,2.7%k. [B.10]

Equation [ B.10} can be written in the form

Ay == g, + AR L), [B.11]
where #;,, is the elevation of the contact line at a single
cylinder & (compare the first term in the right-hand side of
Eq. [B.10] with Eq. [2.43] for cos ¥ =~ 1) and Ah(L) =
r;sin ;Ko(gL) is the elevation of the meniscus surface at a
distance I from a single cylinder j (see, e.g., Ref. (20)). In
fact, the second term in the right-hand side of Eq. [B.10]
contains the leading term in the expansion of the modified
Bessel function Kg{x) for small values of x = gL. Equation
[B.11] means that at large distances between the particles,
the superposition approximation for the shape of the me-
niscus holds.

To get an asymptotic expression for the shape of the con-
tact line at the cylinder surfaces we aretoset v = —7; or 7
= 1, in Eq. [2.39] and to expand in series. Thus by using
Egs. [2.19] and [B.4]-[B.10] one obtains

5g

. cO
0= Glo, v = (—1)%%) == My — rurgsin l,b,—s— [B.12]

It can be easily shown that for similar cylinders the incli-
nation of the contact line, characterized by means of the
angle n; is small compared with the slope of the meniscus
at the cylinder surface. n; is defined through the relation:

tan ne = [£5(7) — $6(0)]/2r. [B.13]
By using Eqs. [B.12] and [ B.13] one obtains
M Tk o [B.14]

—cf. Eq. [B.1]. The asymptotic form of the interaction en-
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ergy between the two cylinders can be obtained by combining
Eq. [3.13] with Eq. [B.10] (sce also Eq. [2.43]). The result
reads:

AW = 2@yr,rsin §sin ysln(vegs) + O(Qrel). |[B.15]
By differentiating Eq. [B.15], along with Eq. {B.4], one ob-
tains an approximate formula for the capillary force acting
between the cylinders:

daw o ,
F=——z= myrnsin§sin f, — [1 + O(e)]. [B.16]
dL s
The same result (Eq. [B.16]) can be obtained by expansion
in series of Eq. [6.14] for F¥Y). Since (gri)? < 1 the other
component of the capillary force, F%* (see Eq. 6.20]),

) 1
F&) = my(gryyhyr,sin u’zjg [1 + O],

k=1,2,j#k, [B.17]
is much smaller than F%7 (je, F¥ =~ F)—cf. Egs.
[B.16]—{B.17].

If 4, < ¥, and/or r; <€ r,, the higher order terms in the
expansions should be also taken into account. For example,
it stems from Eq. [3.13] that the energy of capillary inter-
action between two vertical cylinders is given by the expres-
sion

AW = 22y QaIn{vy.gs) — %WT{Q%E% + sz%}

+ O(Qiel). [B.18]

Let ¢, (and () be equal to zero. Then Eq. [B.18] takes the
form

L1
AW = — jmyririsin’y, 7 T 00 ¢1=0. [B.19]

The differentiation of Eq. [B.19] with respect to the inter-
particle distance L yields the capillary force, in this case:

,,
Fagryririsiny, 55 yi=0. [B20]

The numerical calculations show that the asymptotic
expressions, Eqs. [ B.10]-[B.201], although quite simple, de-
scribe very well the capillary interactions except at very small
interparticle distances. It should also be kept in mind that
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the asymptotic formulas, as well as the general expressions,
are restricted to small slopes of the meniscus profile (sin“y;
<€ 1, k=1, 2) and to not very large interparticle distances
(gl. < 1); i.e., the approximate expressions [B.3]-[B.20]
are strictly applicable for interparticle distances L in the re-
gion

<€l g, [B.21]

ACKNOWLEDGMENT

This work was supported by the Research and Development corporation
of Japan (JRDC) under the Nagayama Protein Array Project as part of the
program “Exploratory Research for Advanced Technology™ (ERATO).

REFERENCES

1. Gerson, D. F,, Zaijc, ), E., and Ouchi, M. D., in “Chemistry for Energy™
(M. Tomlinson, Ed.), ACS Symposium Series, Vol. 90, p. 77. Am.
Chem. Soc., Washington, DC, 1979.

2. Henry, J. D, Prudich, M. E., and Vaidyanathan, K. P, Sep. Purif
Methods 8, 81 (1979).

3. Nicolson, M. M., Proc. Cambridge Philos. Soc. 45, 288 (1949).

. Gifford, W. A, and Scriven, L. E., Chem. Eng. Sci. 26, 287 (1971).

. Chan, D. Y. C,, Henry, }. D,, and White, L. R., J. Colloid Interface

Sei. 79, 410 (1981).

. Fortes, M. A., Can. J. Chem. 60, 2889 (1982).

. Pieranski, P., Phys. Rev. Leut. 45, 569 { 1980).

. Onoda, G. Y., Phys. Rev. Leu. 55, 226 (1985).

. Hayashi, 8., Kumamote, Y., Suzuki, T, and Hirai, T., J. Colloid In-

terface Sci. 144, 538 (1991).

10. Yoshimura, H., Ende, 8., Matsumoto, M., Nagayama, K., and Kagawa,
Y., J. Biochem. 106, 958 (1989),

11. Yoshimura, H., Matsumoto, M., Endo, $., and Nagayama, K., Ultra-
microscopy 32, 265 (1990).

12. Haggerty, L., Watson, B. H., Barteau, M. A., and Lenhoff, A. M, J.
Vac. Sci. Technol. B9, 1219 (1991},

13. Kralchevsky, P, A, Paunov, V. N., Ivanov, 1. B, and Nagayama, K_,
J. Colloid Interface Sci. 151, 79 {1992).

14. Paunov, V. N,, Kralchevsky, P. A., Denkov, N. D., Ivanov, I. B, and
Nagayama, K., Colloids Surf., in press.

15. Korn, G. A., and Korn, T. M., “Mathematical Handbook.” McGraw-
Hill, New York, 1968.

16. Nayfeh, A. H., “Perturbation Methods.” Wiley, New York, 1973,

17. Abramovitz, M., and Stegun, L. A., “Handbook of Mathematical Func-
tions.” Dover, New York, 1965.
18. Derjaguin, B., Dokl Akad. Nauk USSR 51, 517 (1946).
19. Lo, L. L., J. Fiuid Mech. 132, 65 (1983).
20. Kralchevsky, P. A, Ivanov, 1. B, and Nikolov, A. D., J. Colleid Interface
Sci. 112, 108 (1986).

21, Hooke, R., and Jeeves, T. A., J. Assoc. Comp. Mach. 8,212 (1961).

22, Ivanov, I. B., Kralchevsky, P. A., and Nikolov, A. D., J. Colloid Interface
Sei. 112,97 (1986).

23. Divitrov, A. 8., Kralchevsky, P, A, Nikolov, A. D., and Wasan, D. T,
Colloids Surf. 47, 299 (1990).

24. Hinsch, K., J. Colloid Interface Sci. 92, 243 (1983).

25. McComnell, A. I, “Application of Tensor Analysis.” Dover, New York,
1957.

B

D OGe ) O



