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In this article we study theoretically the capillary meniscus
interaction between a floating submillimeter particle (attached
to a fluid interface) and a vertical wall. It is shown that along
with the particle weight and the upthrust, there is another force
exerted on the particle which is caused by the deformation of
the liquid meniscus, The latter we call *capillary image force™
because of its similarity to the known image forces in electro-
statics. In particular, the capillary image force can be both at-
tractive and repulsive, depending on the specific boundary con-
ditions at the three-phase contact line on the wall surface. An-
alytical expressions for the capillary interaction energy and force
are derived by means of two alternative approaches and the
agreement between them is very good. The theory predicts that
under certain conditions the energy of interaction between the
particle and the wall acquires a minimum; i.e., a stable equilib-
rium position of the particle at a finite separation from the wall
should be observed. This prediction is experimentally proven in
the second part of the study. @ 1994 Academic Press, Inc.

1. INTRODUCTION

The lateral capillary forces between particles, which are
floating attached to the interface between two phases, usually
cause interparticle attraction and formation of two-dimen-
sional aggregates. These forces were studied experimentally
by Hinsch (1} and Camoin et al. {2} and were utilized in
some extraction and separation techniques (3, 4). A new
interest in the capillary interactions has been aroused by the
experimental findings that they can bring about the forma-
tion of two-dimensional arrays from submicron particles and
even protein macromolecules (5-7).

The lateral capillary forces are due to the overlap of the
menisci formed around each of the floating particles. Hence,
the main problem in the theory of these forces is the cal-
culation of the shape of the fluid interface, which is deter-
mined by the shape, weight, and contact angles of the par-
ticles. Gifford and Scriven (8) studied numerically the in-
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teraction between two identical horizontal floating cylinders.
Nicolson (9)and Chan et af. ( 10) derived analytical expres-
sions for floating spheres and horizontal cylinders by using
a superposition approximation. More accurate expressions
for the system of two floating spheres were derived in Ref.
(11), where a solution of the Laplace equation of capillarity
in bipolar coordinates was used.

The capillary interaction between two partially immersed
spheres on substrate, or two vertical cylinders, was studied
theoretically in Refs. (12, 13) and experimentally in Ref.
(14). It is worthwhile noting that lateral capillary forces ap-
pear also between particles confined in a thin liquid film,
when the disjoining pressure of the film also affects the shape
of the interfaces (12, 15).

Closely related to the present study is the theoretical in-
vestigation (16} of the particle-wall interaction in the case
of a sphere, which is partially immersed in a liquid layer on
substrate in the neighborhood of a vertical wall. In Ref. (16}
the liquid layer was assumed to be almost plane-parallel with
thickness smaller than the particle diameter, (Otherwise, if
the thickness is greater and the particle is entirely immersed
inside the liquid layer, the capillary force will disappear.) It
was ¢stablished in Ref. {(16) that the meniscus between the
particle and the wall (if the wall contact angle is 90°) has
the same shape as the meniscus between two identical par-
ticles, each of them being the mirror image of the other one
with respect to the wall surface. For this reason, in such a
case the capillary interaction between the particle and the
wall is the same as that between the particle and its mirror
image. In this aspect there is some analogy with the image
forces in electrostatics.

The particle (sphere on substrate) studied in Ref. (16) is
not allowed to move in a vertical direction. Qur aim in the
present study is to extend and generalize the analysis in Ref.
{16) in the following aspects:

(1) To consider floating spherical particles attached to an
inclined fluid meniscus at a vertical wall, In this case there
is no restriction on the vertical movement of the particle,

0021-9797/94 $6.00
Copyright © 1994 by Academic Press, 1n<.
All rights of reproduction in any form reserved.



48 KRALCHEVSKY ET AL.

and the capillary image force interferes with the gravitational
and buovancy forces exerted on the particle.

(ii) The analogy with electrostatics suggests that not only
attractive, but also repulsive image forces could exist. One
of our purposes here is to specify the conditions under which
repulsive image forces can appear and to investigate them
in detail together with the attractive image forces (the latter
being similar to those studied in Ref. (16)).

(1ii) In Ref. {(16) only the so called “force approach”™ to
the theory of capillary interactions was applied (see, e.g.,
Ref. (13)). Below we make use of both the “force approach”
and the alternative “‘energy approach”™ and compare their
predictions.

It should be noted that we restrict our considerations to
an equilibrium system. In other words we assume that the
projection of the capillary force along the tangent to the liquid
meniscus { where the particle is attached ) is exactly counter-
balanced by some external force, If the external force is re-
moved, the particle will float along the meniscus surface
driven by gravity and the capillary image force. However,
in such a nonequilibrium situation a viscous flow will appear
in the fluid phases. This complicated nonequilibrium (hy-
drodynamic } problem is out of the scope of the present study.

The article is organized as follows. The next section is
devoted to the “pure” capillary image forces, appearing in
the special case when the interface at the wall is horizontal
in the absence of the floating particles. Section 3 considers
the meniscus shape in the more complicated (and realistic)
case when an inclined meniscus is formed at the wall. General
expressions for the energy of capillary interaction are derived
in Section 4. Section 5 is devoted to the alternative “force
approach,” Finally, numerical results are presented and dis-
cussed,

The repulsive capillary image forces, predicted theoreti-
cally in the present paper, are observed experimentally, and
this is the subject of the second part of this study, Ref. {17}.

2. ATTRACTIVE AND REPULSIVE CAPILLARY
IMAGE FORCES

Imagine a floating spherical particle in the vicinity of a
vertical planar wall. The particle is attached to the interface
between two fluid phases, I and II, of mass densities p; and
pr. respectively. Below we will use indices 1 and 2 to denote
properties belonging to the wall and particle, respectively.
For example, we denote by ¥, and » the angles character-
izing the meniscus slope at the wall and at the particle contact
line {see below for details). The particle can be both heavy
(¢> < 0) and hght (¢, > 0, e.g.. bubble).

The physical origin of the capillary interaction between a
floating particle and a wall lies on the fact that the wall per-
turbs the interfacial deformation created by the particle. As
discussed below, the range of the capillary interaction can
be characterized by the so-called capillary length, g™

g=(dpg/¥)'"*, Ap=p~ pu. [2.1]
where v is the interfacial tension and g is the gravity accel-
eration. Thus for a water—gas interface {(Ap = 1 g/em?, y =
72 mN/m) one has g~' = 2.7 mm.,

We assume that far away from the particle and the wall,
the interface is flat and horizontal. The coordinate plane xy
is chosen to coincide with the plane of this horizontal inter-
face. The vertical plane xz is perpendicular to the walt and
passes through the particle center. Let z = {{x, y) be the
equation describing the shape of the meniscus surface. The
explicit form of {{x, y) can be determined by solving the
Laplace equation of capillarity (18)

PR/ { S R A S 2
v[l |:(l + |v11§,|2)1/2] q f, VII_(ax,ay)’ [2‘2]

under appropriate boundary conditions. The two-dimen-
stonal divergence in Eq. [2.2] represents in fact the mean
curvature of the interface. For small interfacial slope,

[Vufl® < 1, [2.3]
Eq. [2.2] can be linearized
Vg = ¢’ [2.4]

It is instructive first to consider the simpler case, when the
contact angle at the wallis o) = /2 hence |, = n/2 — o,
= 0. In this case the meniscus would be flat ({ = 0) if the
floating particle is removed. We denote by {3{x, ) the me-
niscus shape in the presence of the particle. Since ¢, = 0 the
function {H(x, y) must satisfy the following boundary con-
dition at the wall surface

3%

ax = 0. [2.5]

=0

By using considerations for symmetry one can realize that
in view of Eq. [2.5], the function {3(x, ¥} would be the
same, if (instead of a wall at a distance 5 from the particle)
one has a second particle (image) floating at a distance 2s
from the original one—see Fig, 1a. The image must be iden-
tical to the original particle with respect to the size, weight,
and contact angle. In other words, the spherical particle and
its image ought to have identical “capillary charges,” (;,
defined (11)

Q2 = rasin . [2.6]
Here », is the radius of the three-phase contact line at the
particle surface. The notion of capillary charge, introduced
in Ref. { 11), originates from the fact that the lateral capiliary
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FIG. 1.

Sketch of a floating particle in the vicinity of a vertical wall. r,
is the radius of the three-phase contact line of the particle and - is the
meniscus slope angle at the particte contact line: (a) fixed contact angle at
the wall (90°), corresponding to attractive capillary image forces, and (b)
fixed contact line at the wall, leading to repulsive image force. {G(x, ¥)
describes the meniscus shape.

force, F, between two floating submillimeter particles, obeys
an asymptotic law representing a two-dimensional counter-
part of Coulomb’s law (11):

IR

F=-2
Y I

<l <qg. [2.7]

Here ;. = risin ¢, (k = 1, 2) are the capillary charges of
the particles and L is the distance between them (in our case
L = 25 and , accounts for the image—see Fig. ). In the
particular case shown in Fig. la, ¢, = ¢; = {,, whereas in
Fig. b, —¢, = ¢2 = 5. In Eq. [2.7] F is negative (positive)
when the force is attractive (repulsive ). In particular, F cor-
responds to attraction when 0,3, > 0.

For two identical floating particles the lateral capillary
force is always attractive (11). Hence, the particle and its
image, depicted in Fig. la, will attract each other; i.e., in
reality the wall will attract the floating particle. Moreover,
the resulting image force will obey Eq. [2.7] (in the range
of its validity) with @, = ;. (Equations [2.10] and [2.15]
below provide more general expressions for F.)

In some aspects the capillary image forces resemble the
electrostatic image forces, appearing when an electric charge,
imbedded in a medium of dielectric permittivity e, is located
in the neighborhood of a boundary with a second medium
of permittivity ;. The electrostatic image forces can be both
attractive and repulsive depending on whether e; > ¢, Or &
< ¢—see, e.g., Ref. (19). The difference (e, — ¢, ) enters the
expression for the force under the electrostatic boundary
condition at the interface.

As mentioned above, the boundary condition, Eq. [2.5],
leads to attractive capillary image forces, which was noted

in Ref. { 16). The analogy between the electric and capillary
image forces suggests one to look for some boundary con-
dition, which can lead to repulsive image forces. Such a
boundary condition can be

$olx=0 =10, [2.8]

which represents a requirement for a zero ¢levation of the
contact line at the wall. This can be realized in practice if
the contact line is attached to the edge of a vertical plate, as
shown in Fig. 1b, or to the boundary between hydrophilic
and hydrophobic domains on the surface of the wall. By
using again considerations for symmetry, one can realize
that in view of Eq. [2.8] and Fig. 1b, the function {(x, ¥)
would be the same if (instead of the wall at distance s from
the particle) one has a second particle (image) of the oppasite
capiliary charge (Q, = —(;) at a distance 2s from the original
particle. In such case the lateral capillary force is repulsive
{11); i.e., in reality the wall will repel the floating particle.

In summary, the capillary image force can be monotonic
attraction or repulsion for afl values of the particle-wall sep-
aration, 5, depending on whether the boundary condition at
the wall is given by Eq. [2.5] or [2.8]. In the special cases
discussed above the particle-wall interaction is equivalent
to the capillary interaction of the particle with its image of
the same or opposite capillary charge—cf. Figs. 1a and 1b.
Then one can use the expressions for the energy, AW, and
force, F, of capillary interaction derived in our previous pa-
per, Ref, (11). In particular, from Eqs. [6.7] and [7.7] in
Ref. (11} one obtains

AW = —7v(Qohy — Qrlzn)[1 + O(4°R3)]

dAW dh
== =m0 [+ O@PRD), [2.10)

[2.9]

where AW is the capillary interaction energy in the real sys-
tem (on the right of the wall surface—Figs. la and 1b), so
AW 1s half of the energy as given by Eq. [6.7] in Ref. (11);

hy = L idl

o [2.11]
is the mean elevation of the particle contact line with respect
to the horizontal surface z = 0; C, is a contour representing
the orthogonal projection of the particle contact line on the
plane xy; R, is the particle radius; and the subscript oo de-
notes the value of the respective quantity at infinite particle-
wall separation (s — o0 ). The capillary charge in this case
can be estimated by means of the expression (Eq. [6.13] in
Ref. 11),

O =~ (ae, = £G°R3(2 — 4D, + 3 cos ap ~ cos’ay)

X[1+ O(gRz)], [2.12]
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where

Dy ={p2 — pu)/ (pr — pu), [2.13]

with g, being the particle mass density. The asymptotic forms
of Eqgs. [2.9] and [2.10] for not-too-small separations read
(11)

AW = 7y(—1)*Q3Ko(2g5)

X[+ O(g*RH], n<s [2.14]
F = 2my(=1)*Q3gK, (2gs)
X[l 4+ O(g’RD], n<s, [2.15]

where Ky and K, are modified Bessel functions and

1 for fixed contact angle at the wall;
A= [2.16]
0 for fixed contact line at the wall.

Since K {x) = 1/x for x < 1(20), one can check that Eq.
[2.7])is a corollary of Eq. [2.15] with Q, = (—1)**'(J,. Note
that K,(2gs) decays exponentially for s = oo with a decay
length (2g)7', i.e., the capillary length ¢ ' really determines
the range of the capillary image forces, as mentioned in ad-
vance.

The above considerations may give the impression that
the theoretical treatment of the capillary image forces reduces
to a mere application of some equations for two floating
particles {the original particle and its image) derived else-
where ( 10, 1 1). However, the situation discussed above cor-
responds to the very particular case when the fluid interface
becomes flat if the floating particle is removed. For the sake
of convenience we will call the forces in this special case
“pure image forces.”

In reality, an inclined meniscus is formed in a neighbor-
hood of a wall, even in the absence of any floating particles.
In this case the capillary image force interferes with the grav-
ity force which tends to “slip™ the particle along the meniscus
created by the wall. The remaining part of the paper is de-
voted to derivation of expressions for AW and Fin this more
general case.

3. INCLINED MENISCUS AT THE WALL

{a) Configuration of the System

Figure 2 shows a typical configuration: a capillary menis-~
cus formed at a planar vertical wall (the plane yz) in the
presence of a heavy particle, In the absence of a particle the
meniscus shape is determined by the equation z = {{{x)—
the dashed line in Fig. 2a. We restrict our considerations to
the case of a small meniscus slope:

-
»

8 5

FIG. 2. Skeich of the capillary meniscus {a) around a heavy particle
floating in the vicinity of a vertical planar wall of fixed three-phase contact
angle (o, < 90°). {;(x)1s the nondisturbed meniscus of the wall with {p(x,
¥) being the meniscus perturbation created by the particle, (b) Typical curve
of capillary interaction energy, AW, vs separation, s, for such a configuration.

s

2
< 1.
dax

[3.1]

In fact, this is the nontrivial case corresponding to an inter-
play of gravity (weight plus upthrust} and capillary image
forces. (Indeed, if the meniscus slope is larger, the capillary
image force becomes negligible compared to the gravity force
and the problem becomes trivial.)

The corresponding energy of capillary interaction, AW,
is depicted qualitatively in Fig. 2b. As far as we consider the
case of a mobile contact line, but of a fixed contact angle at
the wall, the “pure” capillary image force is attractive, One
can expect that the image force will prevail at small sepa-
rations, s, if the particle is not too small. On the contrary,
at larger separations the image force decays faster and the
gravity will tend to bring the particle away from the walk.
Hence, the energy AW will exhibit a maximum at some sep-
aration s = s*, which corresponds to an unstable equilibrium
position of the particle—see Fig. 2b.

Ifa; > 90° (¢, < 0) the plot of AW vs 5 will be a mono-
tonically increasing curve for a heavy particle (Q; < 0), be-
cause in this case both the capillary image force and gravity
will tend to bring the particle closer to the wall.

In the case of a light particle (> > 0, e.g., bubble) similar
considerations lead to the conclusion that AW (s) will cor-
respond to a monotonic “attraction”™ when ¥, > 0 (@, <
90°) and to a curve with a maximum, like that in Fig. 2b,
when lpl <0 (al > 900).

Physically more interesting is the case, depicted in Fig. 3,
corresponding to.a contact line, whose position is fixed at
the wall by attachment to an edge or to the boundary between
hydrophilic and hydrophobic domains on the surface of the
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FIG. 3. Sketch of the capillary meniscus (a) around a heavy particle of
radius R; floating in the vicinity of a vertical plate whose three-phasc contact
line is fixed at the edge. }/ is the maximum elevation of the liquid interface
with respect to the wall contact line, (b) The curve representing the capillary
interaction energy, AW, vs separation, 5, exhibits a minimum for this con-
figuration.

wall. In this case the pure capillary image force is repulsive,
Let H be the z coordinate of the contact line at the wall.
When H < 0, as in Fig. 3a, the gravity will tend to bring a
heavy particle { 2, < 0) closer to the wall; however, at small
5 the repulsive image force will oppose the approach of the
floating particle to the wall. Hence, at some separation s =
5* the capillary image force can counterbalance the gravity
and the particle will have an equilibrium position, corre-
sponding to a minimum of AW as shown in Fig. 3b. Similar
dependence of AW vs s appears when H > 0 and the particle
is light {Q; > 0).

The presence of a minimum in the plot of AW vs s provides
a possibility to determine the equilibrium separation, s*,
between the particle and the wall and to verify the theoretical
predictions against equilibrium experimental data. The par-
ticle—wall configurations (H < 0, ¢; > 0)and (H > 0, (J,
< 0) correspond to monotonous repulsion between the par-
ticle and the wall.

Below we focus our attention on the guantitative study of
the theoretical curves AW (5), which is a prerequisite for the
interpretation of experimental data.

(b) Expressions for the Shape of the Particle Contact Line

Here we follow a general theoretical approach, which is
applicable to all configurations discussed in the previous
subsection. The only limitation is that we suppose small me-
niscus slope, i.e., that Eq. [2.3] holds. This condition is sat-
isfied with submillimeter particles and with menisci on the
wall satisfying Eq. [3.1].

Since for a small meniscus slope the Laplace equation of
capillarity is linear, i.e., {{x, y) satisfies Eq. [2.4], one can

seek the solution as a superposition of the meniscus ¢, (x),
which is formed in the absence of a floating particle, and the
interfacial deformation, {{x, ), created by the particle,

$(x, ¥) = folx, y) + §1(x). [3.2]
As § (x) by definition satisfies Eq. [2.4] one has
dz
-, 331
Then from Egs. [2.4], [3.2], and [3.3] one obtains
%,
+—== . 4
axz 6_])2 q §.0 [3 ]

In the case of a fixed contact angle at the wall, the boundary
conditions at the wall surface are

d
% = —tan y, = const; fo

i =0.

[3.5]
x=0 x=0
(For the boundary condition at the particle surface, see Eq.
[3.46] below.) Since ¢ should vanish at x - oo, from Egs.
[3.3] and [3.5] one derives
0(x) =g 'tan y,e™ 7 (fixed contact angle). [3.6]
In the case of fixed contact /ine at the wall, the following
boundary conditions are applicable at the wall:
{ils=o = H = const;  {ole=0 = 0. [3.7]
The counterpart of Eq. [3.6], stemming from Egs. [3.3] and
[3.7]. reads
$(x) = He™™ (fixed contact ling). [3.8]

A comparison between Egs. [2.5] and [3.5] (or between
Eqs. [2.8] and [3.7]) shows that { in fact represents the
meniscus shape, corresponding to the pure capillary image
force considered in Section 2. Hence the meniscus shape
determined by {3(x, v) is the same as that in the case of two
floating particles (the original particle and its image) sepa-
rated at a center-to-center distance 2s.

In our previous studies (12, 13) we solved Eg. [3.4] in
bipolar coordinates for not-too-large interparticle separations,
(gs)* < 1. The presence of a small parameter in the theory
allows us to use the method of the matched asymptotic ex-
pansions in its simpler version: the procedure of Prandtl for
matching the zeroth-order “outer” and “inner” expansions
(25). This method provides a scheme which allows us to
find a uniformly valid (approximate) expression when the
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outer and inner asymptotes are known (23). In the present
study we obtain more general compound asymptotic expres-
sions for the shape of the particle contact line {| ,,ec, which
are uniformly valid at arbitrary separation.

For the case of a fixed contact angle at the wall and small
separations we can use the equation for the particle contact
line for two identical particles, derived in Ref. (12):

i (e) = Gu[In 2(cosh 72 — cos o)
—21n(v.qa)], (ga)* < 1. [3.9]

The superscript “in” denotes the inner asymptotic region,
(ga)’ <1, corresponding to a close approach of the particle
to the wall, compared with the capillary length, ¢~'. In Eq.
[3.9]vy.=1.781071 - - - is the constant of Euler—Masceroni
and (e, v} are bipolar coordinates in the plane xvy (see, e.g.,
Ref. (21)),

asinh _ asin e [3.10]

= y=
cosht —cos o’ cosht —cos o

—T< oS, 071 <oo,

where a is connected with the particle-wall separation s:

2 2

a= Vs —rs. [3.11]

The coordinate lines of the bipolar coordinates are circum-
ferences, as illustrated in Fig. 4. Here v = 7, is the r coor-
dinate of the horizontal projection of the particle contact
line

coshry =2, sinhr, = -r‘f [3.12]

T 2

Using Eq. [3.12] one can express 7, in two alternative forms:

2 =In(a/r, + Va¥/ri+ 1)
=In{s/rs + Vs?/ri —1).

By means of Eq. [3.13] we bring Eq. [3.9] into the form:

[3.13]

2
n Ye2qa?/(s — rcos o)

&= Q:ln + Qi [3.14]

eqrz

For large separations, (ga)? = 1, one can use the super-
position approximation of Nicolson (9), representing the
meniscus shape around a couple of particles as a superpo-
sition of the deformations, created by two separate single
particles. Since the meniscus around a single particle is de-
scribed by the equation z(r) = (,K,(gr), derived long ago
by Derjaguin (22), for the particle contact line we obtain

FIG. 4. Bicylindrical coordinates { ¢, 7) in the plane xy, The circumn-
ference of radius ry, corresponding to the line 7 = r, = const, represents the
projection of the particle contact line,

£8"(e) = QuKo(grr) + QoKolgn), (gs)* = 1, [3.15]

where the superscript “out” denotes the fact that the expres-
sion for {3(a), derived by means of the superposition ap-
proximation, is correct in the outer asymptotic region of
not-too-small interparticle separation, (gs)? » 1; the signs
“+" and “—" refer to fixed contact angle and line at the wall,
respectively. The indices “I” and “r” denote the left- and
right-hand side particles, in particular

ri=(x+s)2+y5ri=(x—s5)?*+y. [3.16]
On the other hand, for (ga)? = 1 and submillimeter particles
((gr2)* < 1), a = s{(cf. Eq. [3.11]) and instead of Eq. [3.16]
one can write

ri=(x+a)Y+yhri=(x—a)+y>. [3.17]
In particular, at the particle contact line (x, v € (), by
using Egs. [3.10]1-[3.12] one can transform Eqgs. [3.17] to
read

2a*(s+ a 2a%(s—a
rf=—( ), r§=—( ). [3.18]
§ — Cos o S — HhCOos o
Having in mind the asymptotic expansion
2
Ko(x)=1n x+0(xlnx), x<1l, [3.19]

[

the inner asymptotics (that for a = 0) of Eq. [3.15] read

2
+1In

(§8)Y" =~ Q| In +
Y eGrr

[3.20]
Y Gh
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The substitution of Eq. [ 3.18] into [ 3.20] {with “+"*) after
some algebra gives exactly Eq. [3.14] without any approxi-
mations, i.e.,

(53" = ¢4, [3.21]
but only if one uses Eq. [3.17] instead of Eq. [3.16]. Then
if in accordance with Eq. [ 3.19] we return back to K, function
in Eq. [3.14], we obtain a “compound” expression for {y(o},

which for small separations reduces to {i' (Eq. [3.14]) and
for large separations reduces to {§" (Eq. [3.153]):

2qa’
Solo) = ha, + QzKo(—) )
§ = 1,008 ¢
(fixed contact angle) [3.22]
and
M = (2ln . [3.23]
'qurz

As shown by Derjaguin (22) /.., is the elevation of the con-
tact line for a single particle.

In the case of a fixed contact line at the wall we have to
use an expression for the shape of the particle contact line
for two particles of opposite capillary charge (@, = —»).
The inner asymptotics of this expression can be obtained by
setting ¢y = —() in Eq. [2.39] of Ref. (13)(with k = 1, 2);
the result for (ga)? < 1 reads
(qa)* <1,

{8(0) = Qoa(o), [3.24]

where
[=.0]

- 1
F2({e)y=1,4+ 2 2 —tanh nre " cos no.
=1

[3.25]

On the other hand, the substitution of Eq. [3.18] into the
superposition approximation, Eq. [3.20] (with “—"), vields

) 7 5 a
(£8")" = Qoln = = Qzln(— + ) = Q2. [326]
fr h n
Moreover, since for large separations 7, — 75, Egs. [3.24]
and §3.26] yield
(£8™)" = (¢, [3.27]
as required by the method of the matched asymptotic ex-

pansions (25), Similarly to Eq. [3.20] one can rewrite Eq.
[3.24] in the form

2 o (3.28]
.

elf’2

in
i = O,n n———.
Yedtae™

Then in accordance with Eq. [3.19] we return back to Bessel
function, K}, in Eq. {3.28]. Thus we construct a compound
solution, which is uniformly valid for the all range of scpa-
rations;

$o( @) = Pa, — QaKolgrae™ ),

(fixed contact line). [3.29]
One can verify that for small separations, (ga)? < 1, Eq.
[3.29] reduces to Eq. [ 3.24], and for large separations, {ga)*
= |, asymptotically tends toward the superposition approx-
imation, Eq. [3.15] with “—."

{c) Elevation of the Particle Contact Line

The calculation of /; = /;(s) is an auxiliary problem to-
ward our final goal: to derive an analytical expression for
the capillary interaction energy AW (s).

(i) Fixed contact angle at the wall. As we consider sub-
millimeter floating particles (g>R% < 1) at a small meniscus
slope, from Egs. [2.11], [3.2], and [3.6] we obtain

1
by = g Man e % + fog; bap = —— f fodl.  [3.30]
2wy Jo,

In the inner region, (ga)* < 1, the following expression for
the mean capillary elevation was derived in Ref. (12) for
two identical particles,

1 — exp(—273)
Ye4ad

er(l]=Q2 TZ+21n ,(qa)zél,

[3.31]

where @ and 7, are defined by means of Egs. [3.11] and
[3.13] above.

For (ga)® = 1 (in the outer region) one can use the su-

perposition approximation of Nicolson {9) to derive

S8 = Mo + QaKo(2¢s), (qa)* =1, [3.32]
where, as usual, /., is the elevation of the contact line for
a single particle and O.Ky(2¢ys) is the elevation at a distance
2s from another single particle (the image}.

Below we proceed with the derivation of a generalization
of Eq. [3.31] which expresses A, for all values of ga. By
using Eq. [3.13], after some transformations (without any
approximations), one can rewrite Eq. [3.31] in the form

%= Qaln + (sIn ,(ga)? < 1. [3.33]

Y eGr2 veq(s + a)
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Taking into account the asymptotics of the Bessel function,
Ky, Eq. [3.19], and Eq. [3.23], one obtains a compound
expression for hyg:
hao = Moo, + C2Kp(g(s + a)). [3.34]
One can check that Eqgs. [3.31] and [3.32] are limiting cases
of Eq. [3.34]. Finally, the substitution of Eq. [3.34] into
Eq. [3.30] yields
hy = g 'tan ¥ €™ + hy,, + QKo(q(s + a)).  [3.35]
We recall that Eq. [3.35] holds in the case of a fixed contact
angle at the wall.
(ii) Fixed comtact line at the wall. By means of Egs.

[2.11], [3.2], and [3.8], one obtains an analogue of Eq.
[3.30]:

l
21”’2

hz = He ™ + hzo, hzo =

Lodl.  13.36]
&)

By substituting {, from Eq. [3.24] into Eq. [3.36] and car-
rying out the integration one derives
B=0r73. (ga)r <,

[3.37]
where

2
> n e~ tanh nt,

n=1

*
Ty =75+

[3.38]

Here 1 is given by Eq. [3.13]. For (ga)? = 1 (that is for
(gs)? = 1) by using the superposition approximation one
obtains an analogue of Eq. {3.32],
hSS' = o, — 02Ko(2g5), (ga)’ =1,  [3.39]
where /1, is determined by Eq. [3.23].
Equation [3.37] can be rewritten in the form

. 2
h% = (xln = Qoln ——— (ga)’ < 1. [3.40]

RELLS Y e GFa€

Returning back to the Bessel function, K}, by means of Eq.
[3.19] one constructs the compound expression for /g,
which is uniformly valid for arbitrary separations, gs:

hao = ha — QaKo(grae™). [3.41]
It can be proven that Eqgs. [3.37] and [3.39] are limiting
cases of Eq. [3.41]. Substituting Eq. [3.41] into Eq. [3.36]
we finally obtain

hy = He™ + hy, — OuKolgrae™). [3.42]
Equation [ 3.42] enables us to calculate the particle contact
line elevation in the case of fixed contact line at the wall.

{d) The Normal Force Balance and the Capillary Charge

Since a floating particle moves tangentiaily to the inclined
liquid meniscus under the combined action of gravity and
capillary image forces, it is natural to suppose that the net
force exerted on the particle has zera projection along the
normal n to the meniscus surface z = {,(x). This is analogous
to the case of a slipping solid body on an inclined solid plane,
when the normal projection of the weight of the body is
counterbalanced by the bearing reaction of the substrate,
(The difference between the cases of solid and liquid sub-
strates is only in the fact that the deformation of the solid is
negligible, whereas the deformation of the liquid surface is
significant and should be taken into account.) Then the bal-
ance of the forces along the normal n reads

(F™ + FP)on = —F™.n = 2xry sin ¢, [3.43]
where F™ FO? and F'* are the forces due to the particle
weight, meniscus interfacial tension, v, and the hydrostatic
pressure ( buoyancy), respectively. The interfacial tension v
acts tangentially to the liquid meniscus, which meets the
plane of the contact line at angle ,. (As discussed in Ref,
( 12} the contact line is not exactly a planar circumference;
however, the deviation from planarity is negligible when Eq.
[2.3] holds.) Using some geometrical considerations one can
relate y; with the three-phase contact angle o5,

b2 = Rz[l + COS(OQ + l‘bz)], [3.44]
where b, is the depth of immersion of the spherical particle
inside the lower fluid ( phase [)—see Fig. 3a. For a spherical
particle of radius R, the depth of immersion b, determines
the contact line radius:
ry = [b(2R, — b))% [3.45]
Angle Y- enters in the boundary condition for Eq. [3.4] at
the particle contact line (see Ref. (12) for details),

1d
€, v[l{0|r=72 = (COSh T2 — CO8 O—) - ﬁ
a dr

T=T)

= sin Y, = const, [3.46]
where e, is the unit vector along the r lines,

Let e, be the unit vector of the z axis and  be the running
slope angle of the nondisturbed meniscus {{x). In keeping
with Eq. [3.1] one obtains
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e.n=cosy =1 —%(%)zm 1. [3.47]
Then one can write approximately
(F™ + FP)en=F™ + F@, (3.48]
Eqs. [2.6], [3.43], and [3.48] vield |
0, = (F™ + FP)Y/2xy. [3.49]

By using an available expression for (F{*' + F¥), Eq. [32]
in Ref. (23), one can transform Eq. [3.49] to read (11)

0> = 4q™((3R: — by)b3 — 4D, RY — 3rims].  [3.50]
Formally Eq. [3.50] coincides with Eq. [7.2] in Ref. (11).
However, h; on the right-hand side of Eq. [3.50] now con-
tains a contribution from both {, and ¢, {cf. Eqgs. [2.11] and
[3.2]), whereas { is identically zero in Ref. {11). In the
configurations depicted in Figs. 2 and 3 one can have |{;|
® |{u|: hence in the present case the contribution of /, in
Eq. [3.50] should not be neglected (as we did in Ref. (11)
to derive Eq. [2.12], the latter being applicable for calculation
of @, only when [{,] < {§&!).

4. ENERGY OF CAPILLARY INTERACTION

According to Eq. [2.2] in Ref. (12) the free energy of the
system can be represented as a superposition of gravitational,
wetting, and liquid meniscus contributions:

W=Ww,+ W, + W,. {4.1]

In our case ¥ will depend on the separation s between the

particle and the wall—see Figs. 2 and 3. We call capillary
interaction energy the difference:

AW{s) = W(s) — W(w). [4.2]

A detailed derivation of an expression for AW ¢an be found
in Ref. (11) for the case of two floating particles. That is
why here we focus our attention on some points, which are
specific for particle-wall interaction, and will utilize some
results from Ref, (1) when this is possible.

Let us start with the free energy of wetting, W,,. When
the particle—wall separation, s, is varied, W, will vary because
the contact lines at the particle and wall surfaces can change
their positions thus altering the areas wet by phases I and 11.

Here we assume that the meniscus surface meets the sur-
face of the floating particle at the equilibrium contact angle,
a>. Under this condition it is proven in Ref. (11) that the

wetting free energy of the particle can be represented in the
form

Wparticle( oy = —Dr~yRoby(s)cos ey + const, [4.3]
where the additive constant does not depend on s. If one
assumes formation of equilibrium contact angle, «,, at the
wall, similar consideration yields

W:a"(s) = —v COos alAAw(S) + COIlSt, [4-4]

where W ¥ ig the wetting free energy of the wall and

su= [ o x=0.9) [4.5]

is the change in the area of the wall surface, which is wetted
by phase I, due to the presence of a floating particle in a
neighborhood of the wall. It is proven in Appendix I that
AAd, =270, e %, [4.6]
As far as we deal with a vertical wall and small meniscus
slope (cf. Eq. [3.1]), one has cos o, = sin | ~ tan ;. Then

from Eqs. [4.3] and [4.4] one obtains the free energy of
capillary interaction due to wetting:

AWW = *271'7( RgbgCOS [25)

+ MQ.gtan ey — W, [4.7]
Here W, equals the sum of the limiting values of the other
terms on the right-hand side of Eq. [4.7] for s = o0, lLe.,
AW, (s = o) = 0; parameter A, defined by Eq. [2.16],
accounts for the fact that the wetting free energy of the wall
does not contribute to AW, when the position of the contact
line at the wall is fixed.

Let us proceed with the energy W, due to the surface free
energy of the liquid meniscus (the boundary between the
fluid phases [ and II—see Figs. 2 and 3). W, depends upon
the particle—wall separation s, because the shape of the me-
niscus (and hence its area) depends on s. W, can be rep-
resented in the form (12)

Wo(s) = y[AAT(s) — A5(5)] + const, [4.8]
where the constant does not depend on s. AAT(s) is the
difference between the area of the disturbed meniscus and
its othogonal projection on the nondisturbed meniscus, z =
{1(x); A% is the area encircled by the projection of the contact
line on the nondisturbed meniscus. AA47(s) can be presented
in the form

AA*’=L [+ [Tug]?)2

— (1 + |V |)2}ds,  [4.9]
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where Sy, denotes the surface outside the hatched areas (the
horizontal projections of the wall and the particle contact
line) in Fig. 5. Since we deal with a small meniscus slope
one obtains (cf. Eqs. [2.3] and [3.2])

AS =~ 7r3 [4.10]

AA"Nl

~35Js (Vo) Vudo + 2(Vulo) - Vuli 1ds.

[4.11]

By using the linearized Laplace equation, Eq. [2.4], one
derives
(Vifo) » Vil = V- (&Vudo) — ﬁ]zfog'k, k=0,1. [4.12]

Hence

1
AAY =~ EL.,. {Vu-{(§+ {0Vudo]

- g [{? - {1]ds.  [4.13]
An application of Green’s theorem (26) leads to
P l 1 2 2 2
AAY=-J—2¢q (§° — {1)ds, [4.14]
2 2 S

where J denotes

2
J=—> Al + 0w Vo,

k=1 vCk

[4.15]

and C| is a “degenerated” contour, representing the hori-
zontal projection of the two sides of the vertical plate (Fig.
5); it 15 a Tunning outer unit normal to the respective contour.
The dashed rectangular contour in Fig. 3 represents sche-
matically the outer boundary of S, which is sttuated far
away from the particle, where u - ¥y — 0; the latter fact is
used to derive Eq. [4.14]. It is proven in Appendix | that

J=2aQy[hy + g 'tan §, e7%],

{fixed contact angle at the wall) [4.16]

J =270, h, — He ¥],

(fixed contact line at the wall}. [4.17]

Let V,, be the volume comprised between .S, and the me-
niscus surface z = {(x, y)—see the hatched area in Figs. 2
and 3. Then

141
f |z\dV=f dsf za‘z=lf 2ds. [4.18]
Ve Sm 0 2 Jsa

FIG. 5. Projections of the three-phase contact lines of the wall (1) and
of the particle (2). The integration area S, is situated outside of the projection
contours C, and C; with g being their running outer unit normal.

Besides,

2ds = const — fc $ids
S a5

~ const — 7r3{1(s). [4.19]
The mean value theorem was used to evaluate the integral
over A% in Eq. [4.19].

From Egs. [2.1], [4.8], [4.10], [4.14], [4.18], and [4.19]
one obtains the following expression for the capillary inter-
action energy due to the meniscus deformation:

! 1
AWp =2 yd = yrrs = 5 7y(gr)*§i(s)

—Apgf |z|dV — Whe. [4.20]
Vm

The constant W, is chosen in such a way that AW, tends
to zero for s = 0.

Let us proceed with the gravitational contribution, AW,,
to AW. When the particle-wall separation, s, varies, the me-
niscus shape (at x > 0) changes, which affects the gravita-
tional energy of phases I and II, as well as of the floating
particle; the wall is supposed to be immobile. The derivation
of an expression for AW, is completely analogous to the
respective derivation for two floating particles in Ref. (11).
For that reason here we quote only the final result,

AWg=AWg+Apgf lz|dz — Wy,  [4.21]

Vm

where
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AW, = —xy{2Qh: — ¢*[r3(r} — 2h})/4
+ (4D,RY — 3RDE+ BINR: — 53)/3]} — W, [4.22]

Equation [4.22]isa particglar case of Eq. [4.9]in Ref. (11).
The constants W, and W, are d~etermined in such way
that for s — oo both AW,,, and AW, tend to zero.

Note that Egs. {4.20] and {4.21] contain the integral over
V., with opposite signs. Therefore, this integral will not ap-
pear in the sum AW, + AW,. Hence, in keeping with Eqs.
[4.1]and [4.2] one can represent the total energy of capillary
interaction in the form

AW = AW, + AW, + AW, [4.23]
where AW, is given by Eq. [4.20] without the integral over
it

AWy = Sy d — yarf — 4 7ov(@r)’51(S) — Waw.  [4.24]
In Egs. [4.20] and [4.24] the expressions for Jand {,(s) are
given by Eqs. [4.16] and [3.6] for fixed contact angle and
Eqgs. [4.17]and [3.8] for fixed contact line at the wall. Equa-
tion [4.23] along with Eqgs. [4.7],{4.22], and [4.24] will be
used below to calculate AW,

5. FORCE APPROACH

(a) Basic Fquations

The force approach to the capillary interactions includes
a direct calculation of the forces exerted on the particle, e.g.,
pressure integrated throughout the particle surface or surface
tension integrated along the three-phase contact line (13,
16). In this aspect the force approach is an alternative to the
energetic one. On the other hand, these two approaches are
equivalent and must give the same numerical results for the
capillary force as proven by means of a variational method
in Ref. (15). The equivalence of these approaches provides
a good numerical test for the correctness of the approximated
expressions for the capillary interaction energy and force de-
rived in this paper.
The net force exerted on the particle is
F = F' + F™ + Fi»), [5.1]
where the quantities on the right-hand side are defined after
Eq. [3.43]. In fact, the buoyancy ( Archimedes) force, FI7,
is a net force due to the hydrostatic pressure, p:

F@' = —9 dsnp
52

[5.2]

Here S, denotes the particle surface with running outer unit
normal n. Similarly, the net force due to the surface tension,
F'*), can be represented in the form

F?=0 dly,

L

[5.3]

where v is the meniscus interfacial tension vector, acting on

the contact line L, at the particle surface.

The tangentially resolved net force acting on the particle
must be equal to the negative derivative of the capillary in-
teraction energy,

AW dAW
e YW

dl ds [54]

where t is the running unit tangent to the generatrix, {,{x),
of the nonperturbed meniscus at the wall, d/is an elementary
arc in the interface, and ds is its horizontal projection. Equa-
tion [5.4] is the basis for a comparison of the energetic and
force approaches. ( Note that everywhere in this paper we
assume that F, is exactly balanced by some applied external
force; this enables us to work with equilibrium meniscus
shape and hydrostatic pressure—aotherwise the viscous fric-
tion effects should also be taken into account.)

As far as we work with small meniscus slope, we can write

siny =tany=——| ,t-e,=cosy~1, [55]

where angle ¢ characterizes the meniscus slope. From Eqgs.
[3.43],]5.1],[5.4], and [ 5.5] it follows that the x component
of the net force, F,, is

Fr=e, [FM+F" 1+ F®] = Fcosy ~ F,. [5.6]
This allows us to calculate F, (instead of F,) by using a
method similar to the one developed in our previous study,

Ref. {13). As the weight is directed along the vertical,
F{™ =0and

F.=F» 4+ F0, [5.7]

For calculation of F%’ one can directly use Eq. [6.18] in
Ref. (13),

Flp) = Apgrzf de cos (@), [5.8]
0

where ¢ is the azimuthal angle, which provides a parame-
trization of the circumference C; in the plane xy. Note that
¢ includes contributions from both {; and {,—cf. Eq. [3.2].
Sometimes it is more convenient to use parametrization of
C> by o—see Eq. [3.10]. The connection between ¢ and ¢
reads (Ref. (16))
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scose+r d a
c050=—£—2,—a=u—— [5.9]
St ncose de s+ rcose

O<g=nm, 0<p<=m,

Let us proceed now with calculation of the force due to
the interfacial tension. To take into account the presence of
an inclined meniscus at the wall we should modify the
method developed in Ref. (13). For the sake of clarity we
consider the force acting on a cylinder of radius 7,, whose
axis is directed along the normal to the surface ¢ (x) and
passes through the particle center—see Fig. 6. The angle be-
tween the running unit normal to the cylinder surface, n,
and the surface tension vector, v, is equal to ¥ in each point
of the three-phase contact line. Since the boundary condition
(Eq. [3.46]) for the spherical particle and this (fictitious)
cylinder are the same, the shape of the three-phase contact
line and the force, F, will also be the same in both cases.

Let us introduce a new coordinate system (x’, ¥", z*) whose
z” axis coincides with the cylinder axis—see Fig. 6. The unit
basis vectors of the new coordinate system read

€; = eosy — essin

’

e; = e,cos y + e,sin 3. [5.10]
In this coordinate system the linear element, d/, along the
contact line and its running unit tangent, £, can be expressed
(see Eq. [5.5] and Fig. 6)

B B 1 dg-o 27172
dl‘—r;,_xdrp,x—[l +(r2 d(p) ] [5.11]
N Y , 1dG
£= ” [ sin e, + cos e, + v dg e [5.12]

The vector of the running unit normal to the cylinder surface
is '

n = cos ey + sin gey,. [5.13]
At a given point M of the contact line one can define the
vector of the running unit binormal:

b=EXn [5.14]
The vector v belongs to the plane, formed by the vectors 5
and b

¥ = y{sin yub + cos ¥an) [5.15]

By using Egs. [5.10]-[5.15] we obtain the following expres-
sion for the x component of the interfacial tension vector
acting on the contact line:

Z A

FIG. 6. Sketch of the system used for derivation of the expression for
F{™: fictitious cylinder of radius r, whose axis (perpendicular to ,(x))
passes through the particle center.

=e = | cos ¢ —L@sin sin
Yx Y=Y szdqo ['4 2
1. .
+ cos Yrcos | — X sin y sin ¥ | .

Finally, we obtain {see Egs. [5.3} and [5.6])
Fi = f vyl = =2myrysin Yasin
Lz
k. d .
— 24 sin u’/zf o sin dp + AFY) | [5.16]
o do
where
AF{ = 2yryc08 Y208 f X cos pdo
0 -
2 [ (dro)2
e — — | cos ¢de
rado \do

{c is given by Eq. [3.22] in the case of fixed contact angle
and by Eq. [3.29] in the case of fixed contact line at the wall
surface. For sin ¢ one should use Eq. [5.5] along with Eq.
[3.6] (fixed contact angle) or Eq. [ 3.8] (fixed contact line).

[5.17]

(B) Asymptotic Expression for F,

To specify the system, let us consider the case of fixed
contact angle at the wall, Then from Eq. [3.6] one obtains

ﬁ = tan §, e” ¥,
ox

IX=3

sin ¢ = tan y = — [5.18]
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As shown in Refs. (11, 16) the asymptotic form at large
separations of the second term in Eq. [5.16] is given by Eq.
[2.15]. The last term in Eq. [5.16] is negligible at large dis-
tances.

To estimate F{*’ one can use the approximation in Eq.
[5.8],

dh
t(p) = hy + =2 ryc0s @, [5.20]
ds
to obtain
dh
FP ms wy(qr)h — , rn < s, [5.21]
ds
where
o g Man e + I, + W Ky(2g8), 1 <5 [5.22]
dh
?SZ =~ —tan Y e % — 2g0,K,(2gs), r; < 5. [5.23]

For not extremely small y, and not-too-large capillary
charges, (), Eq. [5.21] reduces to

F@& o —myg(rtan ¢ e™%)?, r,<s.  [5.24]
In fact, for comparatively heavy particles, Eq. [5.24] does
not describe well F{ but in this case F# is negligible in
comparison with F{"? in Eq. [5.7]. However, if the capillary
charge, Q,, is small (D, ~ 1), F¥ has significant contri-
bution to the total capillary force. In this case we recommend
the use of the more rigorous Eq. [ 5.21] instead of Eq. [ 5.24].
The combination of Egs. [2.15], [5.16],[5.18], and [5.24]
leads to

F, = Fo = —7y[290Q3K,(2gs) + 2Q,tan , e”%

+ g(rtan ¢, e )21 X [1 + O(¢°R3)], n < 5. [5.25]
In the limit §, — 0, Eq. [5.25] reduces to the pure capillary
image force, given by Eq. [2.15]. The image force (the first
term in the brackets in Eq, [5.25]) is proportional to 03 o
R§—see Eq. [2.12]. This strong dependence of the lateral
capillary force on the particle radius is typical for floating
particles—cf. Ref. (11),

The second term in the brackets in Eq. [5.25] is propor-
tional to (5 o« R}, i.e., to the particle volume. This term
originates from the superposition of the particle weight and
the upthrust { Archimedes force). This term corresponds to
an effective particle~wall repulsion or attraction depending
on the sign of the product Q,tan ¢,.

The third term in the brackets in Eq. [ 5.25] is proportional
to wr3, i.e,, to the area encircled by the contact line. This

term takes into account the pressure jump across the inter-
face. The respective force can be estimated by multiplying
the area #r3 by the hydrostatic pressure Apgh, and by sin
== tan ¥, ¢~ ¥ to take projection along the tangent t. Taking
into account that 4, ~ ¢~ 'tan ¥, e % and Apg = v¢*, one
thus obtains the last term in Eq. [5.25]. Note that this term
always corresponds to an effective particle-wall attraction
because the product /itan ¥, 1s positive for both convex and
concave menisci—cf. Figs. 2 and 3.

Similarly, from Eqgs. [2.15], [3.8], [3.36], [3.39], and
[5.24] one can obtain an asymptotic expression for F, in the
case of fixed contact line at the wall;

F, = F = —my[-2qQ3K:(2g5) + 2Q,gHe ™™

+ g{rgHe ) X [1 + O(g’R3)], rn <€5. [5.26]

The physical interpretation of the different terms in Eq.
[5.26] is similar to that in Eq. [5.25]. The only difference
is that the capillary image force is now repulsive.

In Appendix Il we show analytically that the same asymp-
totic formulas for F, can be deduced from the general expres-
sion for the capillary interaction energy, Eq. [4.23]. In other
words, the energetical and force approaches lead to the same
asymptotical expression for F; as it should be expected.

6. NUMERICAL RESULTS AND DISCUSSION

{a)} Procedure of Calculations

(i) We suppose that the material parameters p, pu, p2,
v, and «,, as well as the geometrical parameters R; and s,
are known. Then from Eqs. [2.1] and [2.13] g and D, are
calculated. We assume that the parameters ¢, or  are known
in the cases of fixed contact angle or ling, respectively—see
Figs. 2 and 3. Note that y, and H can be both positive and
negative; say, in Fig, 2 ¢, is positive, whereas in Fig, 3, H is
negative.

(ii) Equations [2.6], [3.351, [3.44], [3.45], and [3.50]
form a set of five equations for the five unknown variables
ry, Gh, 2, ¥, and b,. Equation [ 3.42] should be used instead
of Eq. [3.35] when the contact line (not the contact angle)
is fixed at the wall. We use the following iterative procedure
in order to solve this set of five equations:

(1) As a first step, an initial guess for r; and ¢;: §°} i
calculated from Eq. [2.12]} and

0 .
r(g )= R3sin ay,

S

(0)
3 =0;

(2) Q" is calculated from Eq. [2.6];

(3) A" is calculated by means of Eq. {3.35] or Eq.
[3.42], depending on the physical situation {fixed contact
angle or contact line at the wall);

(4) b is calculated from Eq. [3.44];

(5) r51is calculated from Eq. [3.45];

(6) ¢S is calculated by using Eqgs. [2.6] and [3.50];

(7) If |1 — 0705 | < ¢, the iteration process stops,
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else the next iteration proceeds from point (2). Here eis the
relative error of the calculations, which is fixed in advance,
We used e = 10785,

The current values of Qék), r‘zk), 1//5"), bs®, and A$¥ are
then used for calculation of the capillary force and interaction
energy.

(iii) To determine W, W,,.,, and Wgw one needs the
limiting values 2., O1c0, 200, Wouo, and by, for s > oo . The
latter are determined by the same set of five equations in
which Eq. [3.35] (or {3.42]) is exchanged with Eq. [3.23].

(iv) By using Eq. [4.23], along with Eqgs. [4.7], [4.22],
[4.24],and [4.16] (or [4.17]), one determines the capillary
interaction energy, AW; then the capillary force, F, =~
—dAW /ds, can be calculated by means of numerical differ-
entiation.

{v) An alternative way to determine F, is to use Eqs.
[5.6]-[5.8]. [5.16], and [5.17] in conjunction with Egs.
[3.6] and [3.22] (fixed contact angle at the wall), or [3.8]
and {3.29] (fixed contact line at the wall),

(b) Numerical Results

As discussed in the previous section, the energetical and
force approaches provide two alternative ways for calculation
of the capillary force F,. They should give the same numerical
values of F, only if the approximations for small meniscus
slope (Eq. [2.3]) and small particle (g2 R% < 1) are satisfied.
In order to check the self-consistency of the theory we com-
pare the complete expression for F,, Egs. [5.6]-[5.7], with
the derivative of the energy, dAW/ds, calculated numerically
by using Egs. [4.23]. The results are presented in Table |
for a heavy particle of radius R, = 400 pym for the case of
fixed contact line at the wall. One sees that the energetical
and the force approaches are in very good quantitative
agreement. The numerical values of the capillary force cal-
culated by means of the two alternative approaches coincide

within a few percent except at a distance gs ~ 0.5 where the
force is very close to zero.

In order to check the accuracy of our asymptotic expres-
sion for /,, Eq. [3.42], we have compared it numerically
with the rigorous one calculated by substituting the expres-
sion for {y, Eq. [3.29], in Eq. [3.36]. One sees in Table |
that their numerical values are in very good agreecment for
all values of gs,

We will restrict our numerical study only to the most in-
teresting cases of nonmonotonic capillary interaction be-
tween a floating particle and a wall. The behavior of the
capillary force in the other situations is trivial and can be
easily calculated and interpreted by using the asymptotic
expressions, Eqs. [5.25]) and [5.26].

Figures 7a and 7b represent the capillary interaction en-
ergy, AW, vs particle—wall separation, s, for a comparatively
large particle of radius R; = 500 um and contact angle a, =
70°. Here and subsequently in the graphics the different cou-
ples of curves (solid + dashed) correspond to different mass
densities of the floating particle. Mass densities of real sub-
stances { mercury, copper, and titanium) are used in the cal-
culations and the particle three-phase contact angle is fixed
at ey = 70° (different substances can have the same «; after
an appropriate treatment of their surfaces). The solid curves
are calculated by using the more rigorous expression for AW,
Eq. [4.23], along with Eqs. [4.7], [4.22], and {4.24]. The
corresponding dashed curves are calculated by means of the
asymptotic expressions derived in Appendix II, Eqs. [B.6]
and [B.9]. The case of fixed contact angle at the wall (o, =
89°) is shown in Fig. 7a, where the capillary interaction en-
ergy exhibits a maximum as a function of the separation, s.
The value, s = s*, at the energy maximum corresponds to
some ronstable equilibrivm position of the particle. Hence
a situation with s = s* is very difficult to be realized exper-
imentally in this case.

TABLE 1

Comparison of the Lateral Capillary Force, F,, Eqgs. [5.6]-[5.7], with the Derivative —dAW/ds of Eq. [4.23] and of the Expression
for h,, Eq. [3.42], with its Counterpart, Obtained by Means of Numerical Integration of Eq. [3.29] along with Eq. [3.36]

AWIKT bl PP
gs (X10719 F(N) —dAW)ds (N) Eq. [3.42] Egs. [3.29] and [3.36]
0.2 —4.699 3737 X 107 3.613 X 1077 0.856 0.849
0.3 —6.441 1.923 X 1077 1.815 X 1077 0.956 0.952
0.4 ~7.261 8.431 X 107 7.633 % 1078 1.017 1.014
0.5 ~7.544 2.044 X 107 1485 % 1078 1.054 1.052
0.8 —6.961 5413 X 10°° —5.560 X 107 1.095 1.094
1.0 —6.149 —6.444 X 107 —6.474 X 107 1.095 1.095
2.0 -2612 —3772 X 10°F ~3.716 X 1078 1.049 1.049
3.0 ~0.994 ~1.506 X 107 —1.480 X 107 1.019 1.019
5.0 ~0.136 —2.098 % 107 —2.060 X 10°° 1.003 1.003

Note. The contact line is fixed at the wall. The parameters are R; = 400 pm, H = —40 pm, a; = 70°, p; = 8.9 g/em®, py = 1 g/cm?®, pp = 0, v = 72.4

mN/m, f;, = —156.5 um, ¥, = —12.1°.
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a | 1 = 89° (fixed contact angle) |
AW/kT X 1 0-115 PHg =135 glc'.na

20| pou = 8.9 g/ocm3
: pTi = 5.4 g/cm?

10F

0.0 — --------------------------------------------------------------------
: v =72.4 mN/m
1.0} Ap=1.Dg/em3
: Az = 500 um
20| Oz = 700
0g 5.0 200

10.0 1 ép.O
s/Ro

b [H == 50 pm (fixed contact fine} |
AW/KT x10°11

ol
2 ¥ =72.4 mN/m
Ap=1.0g/cm3
1o Az = 500 um
op=70°
0.0 B e
.1 .0 .
i pHg =13.5 gfem3
i Cu pcu = 8.9 g/cm3
20 Hg pTi= 5.4 g/cm?
! 5.0 10.0 15.0 200
0 s/R2

FIG. 7. Plot of the capillary interaction energy, AW, vs separation, 5, between a particle and a wall: (a) in the case of fixed contact angle at the wall
{@, = const), and (b) in the case of fixed contact line at the wall (H = const). The three curves correspond to different mass densities of the particle for

the same particle contact angle, o,

The complementary case of fixed contact line at the wall
is illustrated in Fig. 7b where the parameters of the system
are the same. Here, the liquid level elevation 1s H = —50
um. In this case A has a minimum and the particle position
5 = §* corresponds to stable equilibrium. Note that the equi-
librium separation, s = s*, is larger for the heavier particles.

More transparent interpretation of these effects is possible,
if we consider the behavior of the lateral capillary force, F,,
acting on the floating particle. In Figs. 8a and 8b, F, is plotted
as a function of the separation, s, for the same configurations
and parameters as in the previous plots for AW, Figs. 7a and
7b. It is seen in Fig. 8a (for fixed contact angle at the wall}
that when approaching the wall, the floating particle meets
a force barrier due to its weight {the particle is heavy and
the weight force is dominant ). However, at 5 = s* the particle
weight force is exactly counterbalanced by the attractive im-
age force and the particle buovancy, and F, is zero—cf. Eq.

a [ 3 = B9 (fixed contact angle) |
Fe [Nl x107
201 PHg =1 3.5 g/em3
pcu=8.9 g/em?
cu. Hg pti=5.4g/cm3
1.0 : e
0.0 — ------ ----------------- s
A 4 = 72.4 mN/m
a0l Ap=1.0g/cm3
’ A2 = 500 um
oz =70°
20, ‘ ;'n 10.0 15.0 200
. . 0 s/Re '® X

[5.25]. Below s = s* the capillary image force dominates
and the result is an attraction between the particle and the
wall.

The situation, considered in Fig. 8b (fixed contact line at
the wall) is just the opposite. Since H < 0 and the particle
is heavy (), < 0), the particle weight tends to bring the
particle closer to the wall. However, the capillary image and
the buoyancy force in this case are repulsive and at some
separation, s = s* counterbalance the weight force, giving
a stable equilibrium. In this case the magnitude of the equi-
librium separation, s*, is of the order of several millimeters
and is a measurable quantity. The value of s* depends on
the particle geometrical and material parameters, R,, p2, o2,
etc. This fact provides a possibility for experimentat verifi-
cation of the theoretical predictions by measuring of the par-
ticle equilibrium position. Besides, the other parameters (
v) can be controlled during the experiment. Such experiment

b
H = - 50 um {fixed contact line)
Fi [Nl x107  H=-50um |
20 P
P ¥ = 72.4 mN/m
Ap=1.0g/cm3
1oy Az = 500 um
0.0 . s
1.0}
: Cu Hg
200 5.0 T00 15.0 200

s/A2

FIG, 8. Plot of the capillary force, F;, as a function of the particle-wall separation, s, for three different particle mass densities: (a) for fixed contact

angle at the wall, and {b) for fixed contact line at the wall.
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a
;
Fi [N] E: 10 [az = 89° (fixed contact angle )
~\________9u
0.0 freseeeerermreems e e e
1.0}
s = 52 MQ
201 By =500 pm
¥ =72.4 mN/m
Ap=1.0g/cm3
-3.0 : - - : ;
30 60 90 120 150 180
o2 [deg]

b
Fr INIx107 H = - 50 um {fixed eontact line )|
8.0¢
s=5R2
Az =500 um
201 y=724mN/m
Ap =1.0 g/om3 Hg
1‘0 i /
0.0 bomeremmm e
. ———Cu
_1 .0 i L L " L ——
0 30 &0 90 120 150 180
oz [deg]

FI1G. 9. Lateral capillary force, F,, as a function of the particle contact angle, a; for a fixed particle-wall separation, § = 2.5R,: (a} in the case of fixed
contact angle at the wall { @, = const), and (b) in the case of fixed contact line at the wall { = const). The two curves correspond to particle mass density

p: = 8.9 and 13.5 g/cm’, respectively.

is provided in the second part of this study, where data for
submillimeter copper particles and mercury droplets are ob-
tained and interpreted.

The dependence of the lateral capitlary force, F;, on the
particle contact angle, s, is illustrated in Figs. 9a and 9b
for fixed values of the other parameters: particle radius, R,
and mass density, p», particle—wall separation, s, etc. The
two curves correspond to different particle mass densities.
One sees that F, is weakly dependent on «;.

Figures 10a and 10b illustrate the dependence of the cap-
illary interaction energy, AW, on the particle radius, R;, for
a fixed particle-wall separation, s = 5R;. It is seen that in
both cases {«; = const, Fig. 10a, and H = const, Fig. 10b)
the increase of the particle size leads to a change in the type
of interaction: from repulsion to attraction in Fig. 10a and
from attraction to repulsion in Fig. 10b. The interpretation

a
AW/KT x10°%9 [ oy = 89° {tixed contact angle} |
150

Ti

Ap=1.0g/cm3
100 v =724 mN/m
ag=70°

§=25R>

Cu

5.0

0.0 et

-5.0

O

250 500 750

Rz [um]

is connected with the strong dependence of the image term
in Eq. [B.6] and Eq. [B.9] on the particle radius, Q3 o
RS, whereas the other two terms depend more weakly on
R,. The conclusion is that the effect of capillary image force
is pronouncedly expressed only for comparatively large par-
ticles of high mass density which cause sufficient interfacial
deformation,

Note that the energy of particle-wall capillary interaction
is of the order of 104 T for the particles considered (kT is
the thermal energy ). Moreover, the capillary interactions in
such system can dominate over the van der Waals, the elec-
frostatic, and other interactions.

7. CONCLUSIONS

In this study we consider theoretically the capillary inter-
action between a submillimeter particle attached to a fluid

b

AW/kT;Q“ 0-'° [ H = - 50 um (fixed contact line)

0.0 : T

oz =70°
-10.0} § = 2.5A2
y=724mNim  HI 57 '
Ap =1.0 g/cm? Ti

250 Rs [“.m] 560

-15.0

0 750

FIG. 10. Capillary interaction encrgy, AW, as a function of the particle radius, R», for a given particle-wall separation, s = 5 Ry: (a) in the case of
fixed contact angle at the wall (@, = const), and {b) in the case of fixed contact line at the wall (/7 = const). The three curves correspond to different

mass densities of the particle.
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interface and a vertical planar wall. Two specific realistic
cases are analyzed in detail: (a) constant three-phase contact
angle along the wall surface (see Fig. 2) and (b) fixed contact
line along the wail (Fig. 3). The main new results can be
summarized as follows;

o It is shown that the meniscus deformation, created by
a particle floating in a vicinity of a wall, leads to the ap-
pearance of a capillary force exerted on the particle. This
force is attractive in case (a) and repulsive in case (b)}—see
Section 2 and Fig. 1. Since this force is similar in several
aspects to the image forces in electrostatics, we call it “cap-
illary image force.”

o The interplay of the capillary image force, gravity, and
buoyancy (Archimedes) force can lead to a nonmonotonic
net interaction between the particle and the wall. In partic-
ular, in case (a) one can observe a maximum in the curve
of the interaction energy, AW, vs distance, s, which corre-
sponds to attraction at small distances and repulsion at large
separations. More interesting is case (b) where a minimum
in the dependence AW (s) can exist. Thus an equilibrium
stable position of the particle can be observed.

¢ The shape of the particle three-phase contact ling was
determined {Section 3), which is necessary for calculation
of the interaction energy and force. The latter were calculated
by following two alternative general approaches (the ener-
getical and force approaches, respectively) proposed in Ref.
{13). The numerical agreement of the results stemming from
these two approaches is very good, which is an additional
support of the self-consistency of the used approximations.

+ For not-too-small separations simpler and shorter
asvmptotic expressions for the interaction energy and force
are derived—see Eqs. {5.25] and [ B.6] for case (a) and Eqgs.
[5.26] and [B.9] for case (b). The numerical comparison
of the exact and the asymptotic expressions performed in
Section 6 (see Figs. 7 and 8) shows a very good agreement,
except for the region of smali particle-wall separation.

Some of the predictions of this study are experimentally
observed and quantitatively verified in the second part of
this work, Ref, (17).

APPENDIX I. DERIVATION OF EXPRESSIONS
FOR A4, AND J

(a) Uniformly Valid Expression for AA,,

Eq. [3.4] in Ref. (16) gives an asymptotic expression for
AA,, which is valid at small particle—wall separations:

AAdy = 27027 (1 — ga), (qa)’ < L. [A.1]

On the other hand, for large separations, (ga)? = 1, by sub-
stituting Eq. [3.15] with “+4” into Eq. [4.5] one obtains

AA, = 4sz Ko(gVy? + sP)dy
0

[A.2]

® tdt
= 4sz Ko(qt)*“v—tz—_——sz-

The integral in Eq. {A.2] can be solved analytically (see Ref.
(24)); the result reads :
Adw =27 'e ™, (ga)*= 1. [A.3]
For large separations, (ga}? = 1, between small particles,
{gr:)?* <€ 1, one has s = a—see Eq. [3.11]. Then by com-
paring Eqgs. [A.1] and [A.3] one obtains Eq. {4.6], which
can be used for all values of the particle-wall separation.
Note that all expressions for AA,, discussed above are per-
tinent to the case of fixed contact angle at the wall, when
the boundary condition [2.5] holds. In the alternative case
of fixed contact line at the wall {i.e., Eq. [2.8] holds) AA,,
is identically zero.
Concerning integral J defined by Eq. [4.15], one can write

J=J +J, [A.4]

where
Jk=_§c di{§+ &)p-Vale, k=1, 2. [A.5]

(b) Unijormly Valid Expression for J,

Let us first consider the case of fixed contact angle at the
wall. In this case from Eq. [3.5] one obtains

uw-Vilo =0, (oncontour ). [A.6]

Hence
J; =0 (fixed contact angle at the wall). [A.7]

Let us proceed with the case of fixed contact line at the
wall. Equations [3.7] and [A.5] yield

Jl = —2H . d[u-V“fo.

{A8]

On the other hand, for (gs)? = 1 from Eq. [3.15] (with *“="")
and Eq. [3.16] one obtains

3%

B ==
K 11§b|x0 ax

=0

K\ (gVs? + y?).

[A.9]

s
= 2(] —_—
7=
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From Eqs. [A.8] and [ A.9] one obtains

=i :4Hf dy%
0 ax

x=0

* Ki(gt)dt

The last integral in Eq. [A.10] can be solved (see Ref. (24))
to yield

= 8H(2gs [A.10]

J, = —2rHQ,e™* (fixed contact line at the wall). [A.11]

Formally, we derived Eq. [A.11] for g5 = 1. However, for
{gs)? < 1, Eq. [A.11] gives the correct limit (J, = —27H(Q,)
obtained by substituting Eq. [2.39] from Ref. (13) with Q,
= —(), into Eq. [A.8]. Hence one can use Eq. [A.11] for
the whole range of particle—wall separations.

(¢) Uniformiy Valid Expression for J;

In keeping with Egs. [3.2] and [A.5] one can write
Jy = —fc dl(§ + {1)u-Vulo- [A.12]
2

Since u = e,, having in mind Eqs. [2.6],[2.11], and [3.46],
one can transform Eq. [A.12] to read

Jy = 27000, — i difie -V
2

:ZTFQghg‘l‘%f dl‘fl [A13}
R Ja
By using polar coordinates

x=s+rcose, 0=<¢=<2r [A.14)

and accounting for Eqs, [3.6] and [3.8], one can represent
the integral in Eq. [A.13],

T R L
Cy 14

= 2zryde ®[1 + O(g*r3)], [A.15]

where ¢ is the azimuthal angle which provides a parametri-
zation of the circumference C; and

for fixed contact angle

) [A.16]
H for fixed contact line.

[q"tan ¥

The combination of Eqs. [A.4], [A.7] (or [A.11]), [A.13],
[A.15], and [ A.16] gives the uniform expressions for .J, Eqs.
[4.16]-[4.17].

APPENDIX 11, ASYMPTOTIC EXPRESSION FOR AW

The tangential component of the capillary force exerted
on the particle is

[B.1]

where t is the running unit tangent to the generatrix, {, (x),
of the nondisturbed meniscus at the wall; d/ is elementary
length along the generatrix, because of the small meniscus
siope di = ds/cos ¢ = ds, where ds is clement along the x
axis.
According to Eq. [6.3]in Ref. (11), for a floating particle
one can write
dy; | r dr, dQ,
B g _ s
ds 2R,— by ds ds

ds

1 h
X[1+O0@’RD] = (Wz)zgag2 [1+ O(g?RD)]. [B.2]

Equation [B.2] will help us to carry out the differentiation
in Eq. [B.1].

Let us first consider the case of fixed contact angle at the
wall. In this case from Egs. [4.7], [4.16], [4.22]-[4.24],
and [B.2], one derives

dAW,, dh
FA r*y[—(qrz)zihcos o —df + tan ¥,
2 dhy\ 5 2p2
XA 20 + grs 7 e”®([1 + O(g°R3)] [B.3]
daw,, 1
o T"‘Y{[Qz — = (gr2)*hy + (gr2) Racos sz]
' 2

dh 1 dh
X 753 — tan 1{/,(Q2 + 3 qr3 72’:?2)8@

+ g(r.tan llne“”)z][l + O(¢*R%)] [B4]

DYy ey D211 4 0(RY]. (B
ds ds

Finally, a substitution of Egs. [4.23] and [B.3]-[B.5] along
with Eq. [5.23] into Eq. [B.1] leads to Eq. [5.25], i.e., the
energetical and force approaches give identical asymptotic
expressions,

To find an approximate expression for AW one can in-
tegrate Eq. [ 5.25] with constant (» (which is reasonable when
|| = | tol—see Eq. [3.50] and the comment after it):
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AW = —W‘Y[Q%Kn(zqs) + 20 'tan ¢ e7%
1
+ 2 (rytan xble'“)z] X[1+ O(g*R3)], rn<s [B6]

Note that for small particle-wall separations or very small
particles, Eq. [B.6] is not accurate and one should use for
calculations the more general expressions Egs. [4.7] and
[4.22]-14.24]).

Let us proceed with the case of fixed contact line at the
wall. The analogues of Egs. [B.3] and {B.4] now read

dAWw,, dh
e ~v(gr2)* Rycos o d—; {1+ 0(4*R3)] [B.7)
dAW,, 1
A W‘Y[[Qz — 5 {(gr2)*h; + (gr2)* Racos az]
A 2
dhs 1 2dm\
X ta Q2+24'r2 ds)e

+ q(qrzHe‘”)Z}[l + O(¢’R3)]. [BS8]

Equation [B.5] is valid also in the present case of fixed con-
tact line at the wall. Finally, a substitution of Eqgs. [4.23],
[B.5], [B.7], and [B.8] along with Egs. [3.36] and [3.39]
into Eq. [B.1] leads to Eq. [ 5.26 ] —again the energetical and
force approaches give the same result. Hence, we have agree-
ment between the energetical and force approaches with re-
spect to the asymptotic expressions for F,.

By integrating Eq. [5.26] at fixed €, one obtains an ap-
proximated expression for AW

AW = —xy[-Q3Ko(2gs) + 20,He™

+ 1(rgHe )1 X [1 + O(¢*RD], r. € 5. [B.9]
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