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| RESUME |

ABSTRACT

Nous avons obtenu de nouvelles
équations constitutives pour les flux de
diffusion et de chaleur ainsi que pour
les viscosités de cisaillement et de dila-
tation a laide de la théorie Onsager
pour la fonction de dissipation des ex-
cédents de surface. La contrainte de
dilatation dépend de la diffusion de
surfactant, des réactions chimiques a
linterface et de I'adsorption de contre-
jons des phases. On procede a des
expériences de mesure de la dilatation
et de la détente en surface avec une
solution de surfactants ayant une
masse moléculaire élevée. Les
données sont interprétées au moyen
des équations rhéologiques proposées
et on obtient des résultats concemant
'élasticité Gibbs et la viscosité de
dilatation interfaciale.

Une nouvelle méthode permettant de
déterminer la viscosité de cisaillement
des monocouches de surfactants a
faible masse moléculaire est décrite.
Cette méthode est basée sur la
mesure du coefficient de trainée dune
sphére d'un millimétre, attachée a
linterface. On compare les prévisions
théoriques avec les  données
expérimentales.

New constitutive equations for the
surface diffusion and heat fluxes, shear
and dilatational viscosities are obtained
using the Onsager theory for the
surface-excess dissipation function.
The dilatational part of the constitutive
relation contains contributions of the
surfactant diffusion, interfacial chemical
reactions and the adsorption of
counter-ions from the bulk-phases.
Experiments with solution of high-
molecular mass surfactants consisting
of surface expansion and stress
relaxation measurement are carried
out. The data are interpreted by means
of the proposed rheological equations
and results for the Gibbs elasticity and
interfacial dilatational viscosity are
obtained.

A new method for determination of the
shear viscosity of low-molecular
surfactant monolayers is described.
The method is based on the
measurement of the drag coefficient of
a millimetre sized sphere, attached to
the interface. The  theoretical
predictions, are tested against
experimental data.




2-2-152/01

INTERFACIAL RHEOLOGY AND EMULSION STABILITY

1. Introduction

The short-term stability of concentrated emulsions depends on the rate of drainage of the lig-
uid out of the gaps (films) between the droplets (1,2). On the other hand, the long-term emulsion
stability is determined by the thermodynamic stability of the films formed between the emulsion
droplets (3,4). In both cases the interfacial elasticity and viscosity play an important role (5). The
interfacial rheology is described in terms of postulated constitutive relations for the surface stress
tensor (like the Boussinesq-Scriven and Marangoni laws) as well as for the diffusion and thermal
fluxes (say, the Fick's law). Several semi-empirical models for the dilatational interfacial viscous
stress are used in literature: linear dependence upon the rate-of-strain (5); linear dependence on the
rate of relative deformation of adsorption monolayer (6); a complex Maxwell rheological model
(7). Thus the experimental results (obtained e.g. by the surface wave or expanding drop method)
are treated using various rheological models. Therefore, it is sometimes difficult to find a connec-
tion between data for the interfacial viscosity reported by different authors who apply different
models. Our purpose below is to investigate how a general interfacial constitutive relation has to
look like, starting from first principles.

We present a theoretical study of the non-linear thermodynamics of a mixture of surfactants in
the presence of chemical reactions. In particular, we consider the case of an adsorbed profein,
which can exist at the interface in two conformations, denoted as components B and C; the chemi-
cal reaction of the conformational change, B <> C, is taken into account. The Onsager theory for
the surface-excess dissipation function is applied in order to obtain phenomenological relations for
the surface diffusion and heat fluxes, and for the surface stress tensor. The latter involves the sur-
face shear and dilatational viscosities. Experimental techniques for determining the dilatational and
shear interfacial viscosities (with low molecular weight surfactants) are discussed briefly.

2. Mass, Momentum, and Energy Transport Equations in Bulk and Surface Phases

In order to keep the equations simpler we consider a mixture of two components, denoted by
subscripts ,,a* and ,,6“, in the bulk phase. The equations for conservation of the total mass and the
mass of the individual components in the continuous three-dimensional media can be written in the
following form (1,4,5)

) op, . .
5&)— ;t +V-(pav+]a)=0 , W+V-(pbv+jb)=0 , [1]

where p, and p, are the densities of the species 4 and B, p=p, +p, is the liquid mass density,
v, and v, are the velocities of the components, v = (pava + Pb"b)/P is the mass-average veloc-

+V-(pv)=0 , Ops

ity, jo=—1l = pa(va - v) is the flux density vector relative to v.
The momentum transport equation in the bulk phase reads

2

ot

In Eq. [2] the bulk pressure tensor P may be decomposed as P = pl + T, where p is the thermody-

namic pressure, 1 is the unit tensor, and T is the viscous stress tensor. For non-polar fluids the vis-

cous stress tensor is symmetric (5).
The balance equation of total energy per unit mass, u, in the bulk phase is

(pv)+V-(pvv+P)=O . 2]




[ 2-2-152/02 |

Z o)+ v (puv +a+P-v)=0 [3)

(Ref. 5). The quantity u is defined to be a sum of the mechanical and the internal energy. The heat

flux vector is q, and P-v is the flux of energy due to the mechanical work. From the fundamental

thermodynamic equation of Gibbs (1) and from Eq. [3] one finds the bulk phase entropy balance:
By .

o 1
E(Ps)+V-(pSV+JV)=5v ;Y =?q—“?aja—?lb , [4]

where T is the temperature, s is the entropy per unit mass, ., and 1, are the bulk chemical poten-

tials of the two components, and J” is the entropy flux. The rate of entropy production, § , is

calculated to be
v =) v - v(5
V= T+V| |- q-V| E2 ., -V EL ],
§ T +VTqVTJa 7 )b (5]

The Onsager theory provides well known relations between the thermodynamic fluxes and the
forces in Eq. [5] (with the bulk laws of diffusion and heat transfer, and Newtonian theology).

At an interface Egs. [1]-[3] require specification of bulk diffusion and heat fluxes, as well as
kinematic, dynamic and energy conditions. We consider macro-scale material fluid interfaces, at
which the kinematic boundary conditions are (i) equal material velocities of the bulk and the sur-
face; (ii) zero normal velocity to the interface (it is assumed here that no exchange of mass occurs
between the interface and contiguous bulk fluid).

Let us now consider a mixture of three components in the surface phase: solvent (4), surfac-
tant (B) (present also in the bulk), and surfactant (C), which is insoluble in the volume phases and
is a product of a chemical reaction at the interface. For example, such is the case of a surface active
protein B which may change its conformation to a final form C. Then, the equations of interfacial
species transport read (5)

aps . P TA ap; - ;
V(v it) =0l DV pive i) = Ryv g

ap; : op’

_agti"'vs '(pi‘v‘t +]i)=Rc s ?'*—Vs '(psvt)zo ’ [6]

where V_ is the surface gradient operator; the surface-excess species mass densities are defined by
Pa = M,L,, pj = My, and p; = M,T, (T,, I, and T, are the adsorptions of 4, B and C, M,,
M, and M, are the molar masses); p° is the surface-excess mass density; v, is the surface ve-

locity, which is equal to the tangential component of the bulk velocity at the interface; R,=-R, is
the species production rate due to the surface chemical reaction. The surface diffusion fluxes are

defined by the expressions jj = pf,(vb —v)T s Je = pi(vc —v)T s da= —(ji + jj). Eqgs. [6] provide the
boundary condition imposed upon the normal component of the bulk-phase species flux at the in-

terface, ;' =—j;°.
The equation of momentum transport (without external surface forces) is:

%(psvt)+ Vs '(psvTvT +Ps) =n-P”, - 71

where P? is the interfacial pressure tensor and n is the unit normal to the mathematical surface. A
general decomposition of P* may be made in terms of static and viscous parts: P° =—cI° +T*,
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where I° is the two-dimensional idemfactor, & is the interfacial tension and T is the surface vis-
cous stress tensor. Eq. [7] provides the boundary condition imposed upon the normal component of

the contiguous bulk-phase pressure tensor n-P™ at the interface.

The balance equation of total surface energy per unit mass, u®, reads (5)

g;(p‘u’)+vs -(psu““vI +q° +P° -vt) =¢” +n-P¥ v, (8]
which is a counterpart of Eq. [3]. In Eq. [8] q° is the surface heat flux, and ¢" =n-q” is the
normal component of the contiguous bulk-phase heat flux. The term in the right hand side of Eq.
[8] is the flux of the total energy from the bulk phase. The respective equation for the surface in-
ternal energy may be derived from Eq. [8]. Then, using the fundamental thermodynamic Gibbs
equation (1), one ends up with the two-dimensional analogue of the bulk entropy balance:

1 oy Mo s By

e A T—V;J';S +§° . (9]

;—t(pss“)+ v, -(p‘s““vt +JS) =

In Eq. [9] s° is the surface entropy per unit mass, 7" is the temperature in the contiguous bulk
phase, and p**, u}® are the chemical potentials of solvent (4) and surfactant (B) in the bulk. The
surface entropy flux, J°, is defined by the expression T°3° =q° —pjj; —nii; —uejs. The tem-
perature and the chemical potentials per unit mass in the interfacial phase are T, p;, py, and pg.

For the rate of entropy production per unit area of the material surface, §°, we derive:

s Ve g VT - Vs(ui —ui) e Vs(ui —ui) g

§ = b -
Ts (Ts)2 TS Ts
_( 1 _L) vs_MR _(Pi‘}li _“ES“MZSJJ-VS [10]
VS T8 T b TS TS b s

The Onsager theory provides necessary relations between the thermodynamic fluxes and the
forces.

3. Onsager Theory for Two-Dimensional Continua

From thermodynamic viewpoint, the rate of entropy production is the surface dissipation
function and is positive for all values of the thermodynamic forces. Then, each scalar product of
the tensors, vectors and scalars in Eq. [10] must be positive. *

The deviatoric part of the surface-excess viscous stress tensor may be written in the form

TS—-I—(IS:TS)I’=—Esh-[Ds—~12~(Is:D*)Is], Ds=—12—[str-ls+I“-(stT)T , [

2

where D* is the surface rate-of-strain tensor and E,, is the interfacial shear viscosity tensor. In the
case of isotropic interface the trace of E,, defines the interfacial shear viscosity, ng,.

In the frames of the Onsager’s theory, the surface thermodynamic fluxes in Eq. [10] are repre-
sented as linear superpositions of surface thermodynamic forces:

s T o) Ve k)
Qo1 = ~Lyq (T")z— bq Ts " teq TS >
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Vles-ug) L vs(usons)

v Tt
v —= - Ly, s [12]

J'Z=‘qu( sz_
)

vrt L Valks-ns) L vi(es-ng)

Ly, e

TS

.5 w
J o= —L —
cq (Ts)z be Ts cc TS

c

The phenomenological matrix of coefficients, L, includes the surface heat transfer coefficient, the
thermo-diffusion coefficients of the surfactant species, and the surface diffusion coefficients.
Therefore: (i) the surface heat transfer flux may be expressed as a sum of a heat transfer due to the
surface temperature gradient and molecular diffusive heat fluxes; (ii) the surface species flux is a
sum of the surface thermal diffusive flux and the molecular diffusive fluxes.

The phenomenological relations for the isotropic part of the surface-excess viscous stress ten-
sor and for the scalar quantities in Eq. [10] read

5.5 Jiad e $_ .8 Vs _ v
LAl e e Ly B ) —Lza(“b be _Bs b | [13.)
2 TS TVS TS TS TS TVS
Ic 1 1 I s _ ., vs _ s
vs ___vq - gec 2 e s _ sV [ys ¢ ce | Bb P-a__l.lb “ M,
7= T$ o LQ‘I(Tvs Ts) Ts [(pb P’a) (”c “‘a)] _qu T$ v [13-2]

LCC . LCC S _ 8 vs _ v
Rb=_ia_L;‘;'_(1 __1,)__:r_(u;_“;)_(pg_p;)]_z,g;(“b Ha _Fo ”"] [13.3]

TS TVS TJ TS TS TVS
Foas 1 1 e S _ .8 Vs, vs
vs _ _fvd o yec _ _ord|f s sy _[,s .. cc| Hp ~ 1 Ry — 1
Iy = s a qu(Tvs T’) 7S [(“b lla) (P'c “a)] Lz 75 - v 1. [13.4]

Therein, & =dIn(84)/dt =V v, is the rate of total deformation of the interfacial area 54. The
relations [13] show that the surface deformation, the difference between the subsurface and surface
temperature (in the case of surface heat sources), and the chemical potential differences (with re-
spect to the solvent) are the main factors for the deviation from equilibrium.

In order to make our conclusions simpler, we consider Egs. [13.1] and [13.3] in the particular
case of isothermal processes. Then, in the absence of surface chemical reactions, the type of the
rheological relation for the dilatational viscous stress depends on the adsorption kinetics. For diffu-
sion-controlled adsorption the equilibrium isotherm may be used, which is equivalent to

rp —ug =p}’ —pg . For barrier-controlled adsorption the stage of surfactant transfer from the sub-
surface to the surface is much slower than the diffusion. The adsorption barrier can be due to steric
hindrance, electrostatic repulsion or conformational changes accompanying the adsorption of the
molecules. Then, the difference between the chemical potentials is determined by the difference
between the rate of surfactant adsorption and desorption. Consequently, the Boussinesq-Scriven
law is not adequate for description of the relation between the surface viscous stress and the ther-
modynamic forces. The same situation realises in the presence of surface chemical reactions, when
the additional phenomenological equation [13.3] for the surface species production rate, R,, closes
the problem.

4. Methods for Determination of the Dilatational and Shear Surface Viscosities
The basis of the interfacial rheology is the constitutive relation for the interfacial pressure ten-
sor, P*. From the definition of P* (Section 2) and from Eq. [11] there follows




2-2-152/05

1
P’ = —(o+14); —2113;,[])5 _Elsvs 'v'r) s [14])

with 14, being the dilatational interfacial viscous stress, measured in processes of isotropic expan-
sion (compression) of the surface. Such processes take place in the maximum bubble pressure
method, the oscillating bubble method, the pulsed drop method, and the drop expanding method
(1,5,6). In all these cases the system possesses simple spherical symmetry. Then, Eq. [14] together
with the normal projection of Eq. [7] yields o(r) +t (1) = R(t)( P - pz)/ 2, where p, and p, are
the pressures inside and outside the droplet or bubble, and R is its radius. For small deformations
depends linearly on the local strain and one can write

do

oI” or do ‘
=o,+Ebe, +ESe,, g,=——2, g, =——=%, E”s—( J , ECE—[ J , [15
o=0, GEp T LGE,» Ep rb €, l_,c G dlnrb . G dlnrc N [ ]

where o, is the equilibrium interfacial tension, €, and €, express the relative dilatation of the ad-

sorption monolayers of compenents B and C, and Eg , EC are the respective Gibbs elasticities.
For isothermal isotropic process, from Egs. [13.3] and [13.4] we can calculate the differences be-

tween the chemical potentials as functions of R,, ;2 and the total deformation of the interfacial
area. Using the equation of interfacial species transport [6], written in the form

Ry+j)° = pf,(d —-£ b) and R+ = pﬁ(o‘t —éc) , we derive an expression for the dilatational sur-

face viscous stress: t,;; = n‘fdd+nf§é » +N%E,, where the parameters n3, nJ, and ng represent
true surface dilatational viscosities (in contrast to the apparent viscosities due to additional dissi-
pation processes, as introduced for example in the experimental methods with surface waves). In
fact, utilizing the measured pressure inside the expanding droplet (bubble) and its radius, one can
write

. . .1
Egey + EGec + 036+ ngéy + 1= [ROAP(O) - RO)Ap(0)] . dp=pi—p, . [16]

In addition, & can also be determined experimentally, from the recorded expansion of the droplet
(bubble). However, for soluble surfactants it is very difficult to measure the local deformations di-
rectly, and then the theoretical treatment developed in Ref. 6 may be applied. It should be noted
that for low molecular weight surfactants the viscous term in Eq. [16] is usually negligible. The
diffusion relaxation of the local deformation is predominant, instead of a real surface viscous fric-
tion. Therefore, from such a relaxation process one can determine the diffusion relaxation time,
rather than a true surface dilatational viscosity.

Eq. [16] can be used to interpret results from expansion-relaxation experiments. In principle,
by fitting data for the interfacial dilatation one can obtain values for the Gibbs elasticity, the diffu-
sion relaxation time, and the dilatational surface viscosity. The latter quantity is accessible only for
high molecular weight surfactants and proteins, due to the limited accuracy of the aforementioned
experimental techniques. Sometimes, the surface dilatational viscosities can be determined also for
low molecular weight anionic surfactants, but in the presence of multivalent counterions (like Ca®*
or AI**), which link neighboring surfactant headgroups together.

A typical experiment, described in Ref. 6, consists of the following three stages: (i) initial for-
mation of a saturated surfactant adsorption layer at the interface, keeping the drop area constant for
several hours; (ii) fast expansion of the adsorption layer by increasing the drop area for several
seconds; (iii) relaxation of the expanded adsorption layer under constant drop area. Experimental
data for bovine serum albumin (BSA) at decane-water interface (6) have shown that the pH and the
ionic strength influence the rheological properties of the protein: both the surface elasticity and the
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relaxation time increase with rising pH; the interfacial dilatational viscosity exhibits a maximum at
pH=6. A similar peak of the interfacial shear viscosity of BSA at pH=6 has been observed by Gra-
ham and Phillips (8) at petroleum ether/ water interface.

A new method for measuring low surface shear viscosities is described in Refs. (9,10). This
method is based on recording the sliding of a small spherical particle down an inclined capillary
meniscus formed in the vicinity of a vertical plate. The theory of the method employs accurate ex-
pressions for the capillary force exerted on the floating particle (11,12), which is counterbalanced
by the hydrodynamic drag force (13). The experiment (10) gives values of the drag coefficient
which are in good quantitative agreement with the hydrodynamic theory for pure liquids (13). The
addition of surfactant strongly increases the drag coefficient. The latter effect is used to measure

the surface viscosity (1, 2107 Pa.m.s) of low molecular weight surfactants, like SDS or Brij. In
such systems the values of 1, are not accessible by most of the conventional methods (e.g., deep-
channel and disk surface viscometers, knife-edge viscometers).

5. Conclusions

This work offers a general result for the rate of entropy production on an interface covered by
surfactant mixture, in the presence of surface chemical reaction. The Onsager theory is applied to
obtain phenomenological relations for the surface diffusion and heat fluxes, shear and dilatational
viscosities, production rate of the components. Rigorous expression for the dilatational surface vis-
cous stress answers the question how to account for the “true” interfacial viscous effects (which are
due to energy dissipation) in the rheology of surfactant adsorption layers.
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