J. DISPERSION SCIENCE AND TECHNOLOGY, 18(6&7), 609-623 (1997)

MECHANICS AND THERMODYNAMICS OF INTERFACES,
THIN LIQUID FILMS AND MEMBRANES

Theodor D. Gurkov and Peter A. Kralchevsky
Laboratory of Thermodynamics and Physico-chemical Hydrodynamics
University of Sofia, Faculty of Chemistry, J. Boucher Ave. 1, Sofia 1 126, Bulgaria

ABSTRACT

First we review some recent studies devoted to the role of surface
moments (torques) in the mechanics and thermodynamics of fluid interfaces of
arbitrary shape. The presence of bending and torsion moments leads to a
difference between the mechanical and thermodynamical surface tensions and
shear stresses. Next we review recent results in the mechanics of thin liquid films
and the transition region film-Plateau border. Line and transversal tensions are
assigned as excesses on the contact line. The transversal tension accounts for the
attractive forces in the transition zone. Experiments with floating bubbles show
that the movement of the contact line can lead to non-equilibrium values of the
line tension, which can be interpreted in terms of a plastic deformation.

INTRODUCTION

This article reviews some recent developments in the field of mechanics
and thermodynamics of systems containing fluid interfaces, membranes and thin
liquid films. The connection between the mechanical and thermodynamical
approaches for description of arbitrarily shaped surfaces is investigated. The
interfacial stresses and moments (torques) can be represented as excesses, in view
of the Gibbs model which replaces the real transition region between two fluid
phases with a mathematical surface. Such a treatment opens the possibility to
invoke statistical mechanics in order to calculate the surface excesses after
adopting certain model] for the pressure distribution in the real system.

The thermodynamical theory considers the work associated with the four
independent modes of interfacial deformation - dilatation, shear, bending and
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torsion. The presence of moments leads to a difference between the mechanical
surface tensions (isotropic and deviatoric scalar invariants of the surface stress
tensor) and the thermodynamically defined interfacial dilatation and shear tensions
(1). The bending and torsion moments are related to the isotropic and deviatoric
part of the tensor of surface moments (1-3). Accounting for the subtle interrelation
between the mechanical and thermodynamical lines of consideration can be very
important for systems which exhibit low interfacial tension and/or high curvature,
such as microemulsions and biological membranes, where the surface moments
play a central role.

In thin liquid films two surfaces interact, and this constitutes the difference
with the systems containing a single surface. The interactions affect both the
pressure inside the film and the interfacial tensions on its surfaces. The smooth
transition region between the film and the Plateau border is modelled as a sharp
contact line, where the contact angle is defined. Line and transversal tensions are
assigned as excesses on the contact line (4). In equilibrium the transversal tension
can counterbalance the repulsive disjoining pressure and keep the surfaces
attached to each other (5,6). The motion of the contact line was shown to
substantially influence the properties of the film. The concept of dynamic line
tension was introduced (6,7). Experimental measurements in dynamic conditions
revealed that the line tension can deviate from its equilibrium value by orders of
magnitude (7). The effect was obtained when the film surfaces detach (advancing

meniscus), and not in the opposite case. Below we propose a physical explanation
of this effect.

MECHANICS AND THERMODYNAMICS OF A SINGLE INTERFACE
Mechanical Approach

Two main routes, mechanical and thermodynamical, exist for the
theoretical investigation of general curved interfaces of arbitrary shape. The first
route originates from the classical theory of shells and plates, reviewed in Refs.(8,
9). The surface is regarded as a two-dimensional continuum whose deformation is
described in terms of the rate-of-strain tensor and the tensor of curvature. The
independent tensorial fields of the interfacial stresses, g, and moments (torques),
M, are supposed to be defined at each point. Fig. 1 shows the physical meaning of
the components of the latter two tensors. Usually they are written in the form

g:aaaﬂoaB+auno”(") ; M:aaaB MOLB [1]
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(b)

Fig. 1. Components of the tensors of surface stresses (a) and surface moments (b).

where Greek indices take values 1,2 (summation over repeated indices is implied);
a,, a, are surface covariant base vectors and n is the running unit normal to the
surface. 0" are called transversal shear stresses.

Tensor analysis and differential geometry can be applied in a
straightforward manner to derive the interfacial balances of linear and angular
momentum. General considerations can be found in Refs.(3, 8, 9). Here we will
only mention the results for the case of quasistatic processes (negligible angular
acceleration), when 0o and Mg are symmetric surface tensors which are both
diagonal in the basis of principal curvatures. In these conditions the normal
projection of the angular momentum balance is identically satisfied (3), and the
tangential projection reads (3, 8-10):

oM = _pP g 2]

(the comma denotes covariant derivative). Obviously, the transversal shear
resultants are connected with the presence of moments which are not constant
along the surface. As discussed in Ref.(3), specific kind of viscous friction in the
surface can also provide a contribution in 0. The normal and tangential
projections of the linear momentum balance have the following form (3, 8-10):

bop 0™ -M*P.ag =P, - P, 3]
o™ g+ g MPY 4 =0 [4]

Here bgg is the curvature tensor, and Py-P; is the pressure difference across the
interface. Eq.[3] is the generalised Laplace equation, valid in the presence of
moments. On spherical fluid interfaces M* op = 0, due to the symmetry ; the
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curvature tensor is isotropic, bag = Haeg (aqp are components of the metric tensor,
and H is the mean curvature, H = %2 @"" by, ). Then Eq.[3] reduces to

2Ho = P” - PI [5]

with o being the scalar isotropic tension, o=V auy .

For a complete mechanical description of the surface one needs to specify
expressions for the stresses and moments. This is usually done by postulating
some constitutive relations between stress and strain, which pertain to a particular
model for the rheological behaviour of the interface. For example, Scriven (11)
proposed that the phase boundary between two liquids be treated as a two-
dimensional fluid with intrinsic dilatational and shear viscosities. His constitutive
relation for the surface stress tensor, g, is complemented in Ref. (3) with a
constitutive relation for the tensor of the surface moments, M.

Thermodynamical Approach and Its Connection with Mechanics

The general thermodynamics of systems containing surfaces (and lines)
originates from Gibbs (12). The bulk phases in the idealised system are considered
homogeneous up to the sharp mathematical boundaries. Excesses of all extensive
properties (such are the internal energy, U, the free energy, F, the entropy, S, the
number of molecules of the i-th component, N;, etc.) are ascribed to those
boundaries. The latter are considered as separate phases and fundamental
equations are formulated for them. The work for mechanical deformation is also
taken into account. As far as the surface rate-of-strain tensor and the curvature
tensor are two-dimensional, each of them has two independent scalar invariants.
Therefore, one may distinguish exactly four independent modes of surface
deformation: dilatation, shear, bending and torsion provide separate contributions
to the mechanical work per unit area, 6w’ (1, 2):

w® =y 8a+{ 8B+ BSH+0O 8D (6]

This equation is valid locally, at each point of the surface. Sat is the relative
dilatation of an element dA, 8o = 8(dA)/dA ; 8B is connected with the deviatoric
part of the rate-of-strain tensor (2) and characterises shear. H and D are the mean
and deviatoric curvatures:

1 1

with ¢, ¢, being the two principal curvatures at a certain point. The coefficients y
and § have the meaning of thermodynamic interfacial tension and shearing
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tension, respectively. B and © represent the bending and torsion moments (2). The
basic idea of the local thermodynamic description, which is due to Gibbs (12), is
to apply the fundamental equation of a uniform surface phase locally, i.e. for each
elementary portion, dA, of the curved interface:

3dUY=T8ds*)+Y B, a(dNis)+(6w‘)dA (7]

i
Here T and y; are temperature and chemical potentials; dU’, dS° and dN;’ denote
the excess surface internal energy, entropy and number of molecules of the i-th
component, belonging to the elementary parcel dA; the symbol "8" denotes

infinitesimal variation due to the occurrence of a thermodynamic process in the
system. Then one obtains (5)

8(dU%) = 8’ dA) = (Bu® + u*8a)dA [8]
where u' is the surface density of U’. Similarly, one can derive
8(ds’)=(8s° +s°80)dA ; 8(dN;)=(8T; +I;50)dA [9]

with s* and T’ being the surface densities of S° and N;’. The substitution of Egs.
[6], [8] and [9] into Eq.[7], after some transformations, yields

S

80° =—s"8T - T T; 8; +(y - ©°)8a+ (8B + BSH +© 8D [10]
i

where ©’ =u’-Ts’-F p,;T; is the density of the surface excess grand
i

thermodynamic potential.

Let us consider now fluid interfaces composed of chemical components
which are soluble in (and equilibrated with) the adjacent bulk phases. If a new
piece of area is created at constant T, y; , B, H and D, this does not correspond to
any change of the physical state of the interface. In such a case (dw*/da)=0
and from Eq.[10] one realises that ¥ = «’. Then Eq.[10] reduces to a generalised
form of the Gibbs adsorption equation. It is now evident that the bending and
torsion moments, B and ©, are connected with the curvature dependence of the
interfacial tension.

The mechanical and thermodynamical approaches are two alternative (but
complementary) routes for description of interfaces and membranes of arbitrary
shape. It is very important to find the connection between them, that is, to
establish relations between the thermodynamically defined tensions and moments,
Y, {, B, © (Eq.[6]), and the mechanical tensors of stresses and moments, g, M.
This was done in Ref.(1) by direct calculation of &w' in terms of purely
mechanical quantities. The following results were obtained (1):
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1 1 1 1

=0+—BH+-OD ; =N+—BD+—-0OH 11

Y > 5 =1 5 5 [t
1 1

c=5(01+02) ; n=5(ol—62) {12]

B=M,+M, ; ©=M, -M, [13]

In the basis of principal curvatures the scalars 0, 03, M;, M, are the eigenvalues
of the tensors ¢ and M, respectively. Thus, ¢ and 7 are isotropic and deviatoric
- tensions; B and © are isotropic (bending) and deviatoric (torsion) moments.

What is remarkable in Eq.[11] is that the mechanical tensions, &, 1, do not
coincide with the thermodynamical ones, y and ¢ In particular, this leads to
ambiguity in defining what is called "fluid interface". It could be either { = 0 (no
work for shear), or n = O (isotropic surface stresses) - see more extended
discussion in Ref.(3). In the case of a spherical surface of radius @ we have B =
2M;=2M,,D =0, H = -1/a and then Eqgs.[5] and [11] yield

B 2Y B
Yy=o-— ; P -P,="T4+ > [14]
2a rn- o, 22

In principle, bending moment exists on any physical boundary between
two phases (much as it is for the interfacial tension), and may depend on
curvature. Theoretical studies were devoted to calculation of the contributions of
different intermolecular interactions in B. In Ref.(13) the role of the van der Waals
interactions between pure water and hydrocarbon phases was investigated. For a
plane interface it was found that the van der Waals contribution in the bending
moment, B"™, is of the order of 5 x10"'' N, and tends to bend around the phase
which has larger Hamaker constant (the oil). Electrostatic effects, due to
adsorption of ionic surfactants, were shown to influence the bending moment
considerably (14). The Stern layer and the diffuse part of the double electric layer
provide comparable contributions, both in the range 1-2 x10™!' N, having the same
sign as B"". We can now estimate the order of magnitude of different terms in
Eqgs.[14]. Let us examine the particularly important case of microemulsions.
Typical size of the microemulsion droplets is a=~10+20 nm, and the interfacial
tension is ultralow, ¥=10 dyn/cm. Then, with B=5+10 x10""' N one obtains that
B/2a amounts up to several dynes/cm. In other words, B/2a >> vy and in the
generalised Laplace equation [14] the leading term is that with the bending
moment. In contrast to Yy, ¢ is not small. We come to the conclusion that in

 systems of high curvature and low 7 the distinction between the thermodynamical
and the mechanical tension is of paramount significance. The biological
membranes represent another example of such systems.



INTERFACES AND THIN LIQUID FILMS 615

Recently, the bending moment and the two Helfrich curvature elastic
constants have been connected with AV-potential across an interface (15). The
charge distribution in the system was modelled to be as in a molecular capacitor;
this is an appropriate model for zwitterionic surfactants or lipids as well as for
electric double layer at high salt concentration or at low surface potential.

The effect of the interfacial bending moment (or the spontaneous
curvature, Hy = -B/(4k,), see Ref. 3 or 15) was found to be important for the
interaction between integral proteins incorporated in lipid membranes (16).
Kralchevsky et al. (16) have demonstrated that both the hydrocarbon interior of
the lipid bilayer and its surfaces (the head regions) contribute to the bending
elastic moduli. The role of the curvature energy for the stability of microemulsions
was discussed in Ref.(17). It was established that the process of droplet fusion
passes through a series of states in which the surfactant layer has to adopt high
positive curvature (opposite to that on the spherical drop surface). This is
associated with a free energy barrier, and consequently, the bending properties
turn out to be directly related to the rate of coalescence (17). The flocculation of
deformed emulsion drops is also influenced by the curvature effects. In Ref.(18) it
was proven that the thin liquid film formation between two droplets of
submicrometer size can be accompanied with energy changes of the order of
dozens of kT due to flattening of the surfaces (bending deformation). Yet another
case when the flexural properties and the moments are important is the case of a
fluid interface of low tension (G), corrugated by fluctuation capillary waves - see
Ref.(3) for details.

COUPLE OF INTERACTING FLUID INTERFACES (THIN FILM)

A liquid film is designated as "thin" if the intermolecular interactions are
significant, so as to modify the properties of the film interior and its surfaces, and
render them different from those corresponding to a large (bulk) phase. Two
model approaches, called "membrane” and "detailed”, can be applied for
description of such films - for reviews see e.g. Refs.(5, 6, 19). The models are
illustrated in Fig. 2 for the case of plane-parallel geometry. In the membrane
approach a single surface of zero thickness is thought to represent the whole film.
The film tension, yf, is defined as the work for increase of the film area (19). In
the detailed approach an idealised system comprises the two film surfaces and the
liquid interior, regarded as separate phases (in a thermodynamical sense). The
surface tensions of the film, o”, are in principle different from those referring to
large (bulk) phases, o' The excess pressure inside the real film, taken with
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a
Plateau p
border

Fig. 2. Sketch of the membrane (right side) and detailed (left side) models of a
thin liquid film.

respect to that in the meniscus, P, is called disjoining pressure, IT (20). In
equilibrium, for flat films

MM=P =P -P, [15]
where P, is the capillary pressure - cf. Fig. 2. This equation follows from the fact
that the pressure should be equal on both sides of a plane interface, i.e. P, = P; +
I1. Physically, the disjoining pressure expresses the surface force per unit area.
Depending on the specific system, surface forces of various origin can be
operative: van der Waals, electrostatic, steric, oscillatory structural, hydrophobic,
hydration, etc. (6, 20). It should be noted that two alternative and equivalent
approaches exist for description of the surface forces in the thin films: "disjoining
pressure"” and "body force" approach, the latter being due to Felderhof (see Ref.(5)
for discussion).

Connection between the membrane and detailed approaches (for plane-
parallel films) is established by the relation (21)

v/ =20 +11n [16]

where h is the thickness. This can be readily obtained by making the balance of
lateral forces acting on a plate of unit width and height k, placed normally to the
film at -h/2 < z < h/2 (Fig. 2). A counterpart of Eq.[16] for spherically curved
films was derived in Ref.(5).

,. From a macroscopic point of view, the actual smooth transition region
between the film and the Plateau border is regarded as a sharp contact line. In
Fig.2 this is the line of intersection of the film surfaces with the extrapolated
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meniscus surfaces. The extrapolation means that the interaction between the two
meniscus interfaces is neglected, i.e. a model system is considered in which IT is
zero outside the film of thickness h. The real shape of the surfaces, with account
for the continuous variations of I1 and o in the film-meniscus transition region,
was investigated in Ref.(4). The contact angle, o, is defined (19) at the
mathematical contact line in the idealised system (Fig.2). This approach of
representing the transition zone film-meniscus as a sharp line requires introducing
additional excess quantities in order to ensure that the conditions for equivalence
between the real and idealised systems be satisfied. Such excess quantities are the
line and transversal tensions, X and t (4, 5). The tangential and normal
projections of the force balance at each point of the contact line of radius r; (in a
plane system of rotational symmetry, Fig. 2) read (4, 5)

0f+-x—=0"cosa ; 't=olsina (171

el

From Eq.[17] it is evident that due to line tension the contact angle, o, may
depend on the film radius, r;;. o and T (Eq.[17]) originate from the integral effect
of the long-range attractive surface forces acting in the transition region between

the film and the Plateau border. Micromechanical expression for T was proposed
in Ref.(4),

X
t=— f[n"d-n(x)]xdx (18]
Te1 0

where IT“ corresponds to the idealised system, that is, IT' = P, for 0 < x < r
and IT" = 0 for x > re; (Fig. 2). The running radial coordinate is x, and x = xp at
the point where the real profile coincides with the idealised one (xg > r.;). I1(x) is
the real continuous dependence of the disjoining pressure. Thus, T takes into
account the interaction between the two contact lines in the detailed model - Fig.2.
Since at equilibrium IT is repulsive (I1 > 0, Eq.[15]), there are only two reasons
that can cause the film surfaces to stay attached to each other: (i) existence of
external force, such as for example buoyancy, which presses a drop or bubble
against a surface; (ii) positive 7, applied at the contact line, counterbalancing IT,
see e.g. Ref. (6). Equation analogous to [18] was derived in Ref.(4) for the line

tension: ,
x real model
-~ B . 2 . 2
K _ i (csm (p] _(osm tp] (19]

Mo xcos@ Xcos P

Here ¢ is the running slope of the respective meniscus profiles. Eq.[19] was
utilized in Ref.(22) to calculate X for emulsion films; negative K of the order of
10" N were obtained.
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It should be noted that the width of the transition region between a thin
liquid film and Plateaun border is usually very small - below 1 pm (23). That is the
reason why the optical measurements, e.g. by interferometric techniques (7), do
not give information for the real transition zone. Instead, one obtains the meniscus
profile away from the transition region and extrapolates to find the macroscopic
contact angle, o, as mentioned above. Measurements of contact angle, film and
line tension were presented in Refs.(7, 24) for the case of an air bubble sticking to

a liquid/ air interface. A black thin liquid film formed at the top of the bubble. The
" system contained ionic surfactant (sodium dodecylsulfate) and inorganic
electrolyte (NaCl). The experimental cell used in Ref.(7) allowed measurements
with shrinking, expanding, and quiescent ("stopped") bubbles. Thus, the impact of
the motion of the contact line was investigated. It was established that slowly
shrinking bubbles exhibit non-equilibrium (dynamic) contact angles. This
corresponds to detachment of the two film surfaces (advancing meniscus). On the
other hand, the contact angle remains constant and equal to the equilibrium one in
the case of receding meniscus (expanding bubble); in other words, a typical
contact angle hysteresis is observed, see Ref. (25) for details. The data allowed
independent calculation of the film tension, 7, and line tension, k (in the
membrane approach).

By regulation of the pressure inside the experimental cell initially
shrinking bubbles were stopped at a fixed size. In those conditions both the film
and the line tension, y’ and x, showed relaxation with time. }/ finally reached its
equilibrium value and x tended to zero (within the experimental accuracy).
Dynamic values of k about (-5)+(-10) x10® N were measured. The equilibrium
line tension, as predicted by the theory (22, 23, 26), is an extremely small quantity
(of the order of 107!+107"3 N), so it usually turns out to be below the threshold of
the experimental accuracy. On the other hand, the dynamic line tension can be
several orders of magnitude larger. This finding clarifies the problem about the
large values of x determined experimentally (24), which brought about an ardent
discussion in the literature, see Ref. (25) for a critical review.

Estimates of the viscous friction which accompanies the motion in the
contact zone showed that the viscous effects can hardly be responsible for the
observed non-equilibrium behaviour at such small flow rates. That is the reason
why we will now check the possible role of plastic effects connected with the
detachment of the film surfaces in the case of shrinking bubbles.

According to the concepts of rheology, an ideal plastic body is
characterised by the following relationship between the rate of change, x, of the
dynamic variable, x, and the applied tension, T (see Fig. 3a and Refs. (27), (28)):

x=0 for t<71* T=1*=const for x#0 [20]
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Fig. 3. Shrinking of a contact line as a plastic deformation: (a) relation between
the rate of strain, x, and the applied stress, T; (b) detachment of the two film
surfaces in front of an advancing meniscus.

where 1* is the "yield stress”, i.e. the minimum applied tension needed for the
plastic deformation to occur.

In our case the plastic deformation corresponds to the detachment of the
two initially attached surfactant monolayers (the two film surfaces) during the
advance of the contact line (Fig. 3b). The dynamic variable x can be chosen to be
the number of surfactant molecules belonging to the two attached film surfaces; ©
should be the transversal tension, which opposes the detachment of the film
surfaces at the contact line. t* is to be identified with the constant value acquired
by the transversal tension in the process of meniscus advance. To check whether
the latter process can be really interpreted as a plastic deformation we consider the
force balance along the normal to the film surface at the contact line (Fig 3b):

o'sin(0 - wc) = crsin((pc -0) + —‘S-sine [21]
rC
here 0, @ and . are angles measured experimentally in Ref.(24), Fig. 4 therein; r,
and x are the contact line radius and the line tension in the membrane approach. In
accordance with the hypothesis for plastic deformation, from Eqgs.[20] and [21]
one obtains that the following relationships should be satisfied in the case of
advancing meniscus:

osin(0 - \yc) = T* = const [22]
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csin((pc -0) + -:j(-sine = T* = const [23]
c
Eq.[22] predicts that (6-y,) must be constant. As demonstrated in Fig.4, the last
prediction is very well satisfied by our experimental data from Ref.(24), Fig. 4
therein. The values of t* determined from Fig. 4 are 3.6 and 4.4 mN/m for the
SDS solutions with 0.25 and 0.32 M added NaCl.

It is commonly believed that the contact angle hysteresis originates
predominantly from roughness or chemical heterogeneity of the substratum when
the latter is solid. From theoretical point of view, the possibility for existence of
hysteresis on smooth homogeneous surfaces was investigated in Refs.(29). The
central result reported there was that the disjoining pressure isotherm in the thin
liquid film explicitly determines not only the equilibrium value of the contact
angle, but also the advancing and the receding angles. In other words, the
hysteresis is explained solely in terms of the intermolecular interactions in the
film. It was experimentally confirmed in Ref.(25) that hysteresis can actually take
place in the case of liquid boundaries. In the present work this phenomenon is
attributed to strong short-range attraction between the two film surfaces. It is
operative with ionic surfactant at high electrolyte content, and can be due to the
discreteness of the surface charges (30), and to ionic correlations (31). Grimson et
al. (30) discuss the situation when the two opposing interfaces of the film bear a
lattice mosaic configuration of positive and negative charges of equal number.
Then, attractive electrostatic interaction was found to exist. Moreover, the energy
associated with the charge discreteness had been shown to bring into agreement
measured and calculated interaction energies of Newton black films stabilised by
sodium dodecylsulfate (30). Results of other authors (31) have demonstrated that
the interplay between the effects of the finite size of the ions and the electrostatic
pair correlation also lead to attraction at small film thickness. In our case the
attraction causes the two surfactant monolayers to stick firmly to each other. Their
detachment is accompanied by significant local alterations of the interfacial shapes
and tensions in the real dynamic transition zone, which contributes (cf. Eq.[19]) to
large (10" N) values of the dynamic line tension.

The comparatively large values of the film tension, ¥, measured with
shrinking bubbles (7, 24), can be attributed to the stretching of the film at the first
stage of the process, T < T*, when the detachment of the surfaces has not yet been
started because the contact angle is still smaller than the advancing angle. The
cause of this stretching is the fact that as the bubble diminishes the pressure inside
increases and, correspondingly, the film curvature also increases at almost fixed
contact line radius r.. This process resembles the stretching of the interface in the
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Fig. 4. Angle (6-y.) vs. the equatorial bubble radius, R, for shrinking bubbles
formed in 0.05 wt.% aqueous solution of SDS with 0.25 and 0.32 M added NaCl.

known "maximum bubble pressure method" for dynamic surface tension
measurement (32).

The above hypothesis about the origin of the measured large dynamic
values of the film and line tension is supported also by the fact that the effect is
observed only with advancing (but never with receding) menisci. Moreover, if one
carries out the same experiment, but with a nonionic surfactant, rather than with
SDS, no detectable line tension is found out (33). This is related to the absence of
strong short-range attraction between the two nonionic surfactant adsorption
monolayers, as indicated by the small contact angle which is not subjected to
hysteresis in this case (33).
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