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The dynamics of thin liquid films is analyzed taking into account the dependence of the surface diffusion
coefficient of the adsorbed surfactant molecules on the density of the adsorption layer. The analysis shows
that the Gibbs elasticity disappears from the final equations describing the drainage and hydrodynamic
stability of thin liquid films. Thus from a theoretical viewpoint, no correlation between the Gibbs elasticity
and the dynamic properties of the thin foam and emulsion films is expected. This conclusion is valid also
for a variety of other dynamic processes (in a quasi-stationary regime) where the concentration Marangoni
effect is important, such as the motion of drops and bubbles in a liquid medium, and rheology of foams
and emulsions. The theory predicts that the main factors governing these processes are (i) the density of
the adsorption layer and (ii) the surface friction coefficient of the adsorbed molecules.

1. Introduction

The important role of the particle interactions for the
dynamic processes in concentrated dispersions is well
recognized. The effect of these interactions on processes
such as diffusion, sedimentation, electrophoresis, as well
as on the rheological properties of concentrated dispersions
has been intensively studied during the past decades.1-22

In particular, it was shown that the particle interactions
led to the appearance of two different types of diffusion
coefficients: the collective diffusion coefficient, DBC (usu-

ally denoted in the literature by DC), and the self-diffusion
coefficient, DBS (usually denoted by DS).23 The collective
diffusion coefficient, DBC, is defined through Fick’s law
and characterizes the propagation of a concentration front
in a nonhomogeneous suspension

where c is the number particle concentration and J is the
diffusion flux. The self-diffusion coefficient, DBS, charac-
terizes the motion of an individual (tracer) particle and
is conventionally defined by the expression

where VP is the particle velocity and t is time.
For infinitely diluted suspensions, these two coefficients

converge to a value, DB0, which is related to the hydro-
dynamic friction of the particle, âB0, by the Einstein
relation24

For spherical particles âB0 ) 6πηa (η is dynamic viscosity
of the fluid, a is particle radius), and the diffusion
coefficient is given by the Stokes-Einstein formula

For nonspherical particles and molecules, eq 1.4 can still
be applied but an effective hydrodynamic radius, aj, has
to be used.

It was rigorously shown1-21 that DBC and DBS depend
in a rather different way on the particle concentration.
Thus for a relatively diluted suspension of hard spheres,
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J ) -DBC∇c (1.1)

DBS ) 1
3 ∫0

∞
〈Vp(0)‚Vp(t)〉 dt (1.2)

DB0 ) kT/âB0 (1.3)

DB0 ) kT/6πηa (1.4)
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DBC increases2,8 while DBS decreases10,11 with the volume
fraction of the particles. An expression for DBC, valid at
an arbitrary particle concentration, was derived2,3,5 by
generalizing the Einstein approach to systems of inter-
acting particles:

where φ is the particle volume fraction, âB(φ) is the friction
coefficient, and the dimensionless mobility function,2
KB(φ), is defined as

For infinitely dilute suspensions (φ f 0), DBC tends to DB0,
because µ(φ,T) ) µ0(T) + kT ln φ and KB(φ) f 1. At finite
concentrations, KB(φ) accounts for the changes in the
hydrodynamic friction between the fluid and the particles
(created by the hydrodynamic interactions between the
particles), while the gradient of the chemical potential
gives the thermodynamic force. For suspensions of hard
spheres, Batchelor2 showed that the leading term for the
hydrodynamic interactions is KB(φ) ≈ 1 - 6.55φ, while for
the thermodynamic ones it is known25 to be

Combining these two terms together, Batchelor2 obtained
DBC ) DB0(1 + 1.45φ), which shows that neither of them
can be neglected.

The dependence of the surface diffusion coefficient on
the density of the surfactant adsorption layers has
practically remained out of the scope of the researchers
so far. We are aware of one article26 where this effect is
incorporated in the theory of foam film thinning. However,
the analysis in ref 26 has to be completed with an account
for the hydrodynamic interactions between the adsorbed
molecules. That is why in the present study we modify
the approach used in the literature for description of the
bulk diffusion and make a more comprehensive analysis
of the role of intermolecular interactions in the surface
diffusion.

The article is organized as follows. In section 2 we derive
expressions for the dependence of the surface diffusion
coefficient on the density of the surfactant adsorption
layer. In section 3 we analyze the process of liquid film
thinning. The surface mobility of the adsorbed molecules
is discussed in section 4, and the conclusions are sum-
marized in section 5. As Supporting Information (available
via Internet or upon request from the authors), we briefly
outline the theory of bulk diffusion to demonstrate the
main effects leading to the dependence of DBC on φ.

2. Surface Diffusion of Uncharged Surfactant
Molecules

An expression for the concentration dependence of the
surface collective diffusion coefficient, DSC, of adsorbed
molecules can be derived by following an approach, similar
to that used previously2,5 for bulk diffusion. Note that DSC
is expected to depend strongly on the surfactant concen-
tration even at low bulk concentrations, because the

density of the molecules in the adsorption layers is
typically much higher.

Let us outline first several differences between the bulk
solutions and the interfacial adsorption layers: (i) The
adsorption layer cannot be considered as a two-dimen-
sional (2D) incompressible fluid. (ii) The surface concen-
trations, Γi, of the surfactant (i ) 1) and of the fluid (i )
0) are considered as excess quantities with respect to the
bulk concentrations and their values depend on the choice
of the dividing surface (the interfacial tension of planar
interfaces does not depend on the choice of the dividing
surface27). In the following, we work with the so-called
equimolecular surface, where the excess of the solvent
molecules is zero, i.e., Γ0 ) 0. (iii) The perturbations in the
surfactant adsorption are related to variations of the
surface tension (which is a 2D analogue of the bulk
pressure) through the Gibbs-Duhem equation for the
surface.

The thermodynamic force acting on the surfactant
molecules is given by the gradient of the surface chemical
potential µS,1

and the terminal velocity of the surfactant molecules is
calculated by equilibrating the thermodynamic and sur-
face friction forces

where âS(Γ1) is the surface friction coefficient, whose
meaning is the following: assume that surfactant mol-
ecules of density Γ1 are kept immobile by external forces,
f, in a 2D array, where the molecules have acquired
statistically averaged equilibrium positions (determined
by the intermolecular forces); assume also that the fluid
substrate moves with an average surface velocity, VS,
defined in the plane of the equimolecular dividing surface;
then each molecule feels a friction force ffr, which is equal
in magnitude (in average) to the external force, f. From
the values of f and VS, one determines âS(Γ1), eq 2.2. This
definition shows that (i) âS might strongly depend on the
density of the adsorption layer, because the adsorbed
molecules change the hydrodynamic flow distribution, see
Figure 1, and (ii) âS depends on the interactions between
the molecules indirectly (the intermolecular forces de-
termine the arrangement of the molecules in the adsorp-
tion layer). A more detailed discussion of the dependence
âS vs Γ1 is given in section 4 below.(25) Hill, T. L. In An Introduction to Statistical Thermodynamics;

Addison-Wesley: Reading, MA, 1960; section 19.3.
(26) Valkovska, D. S.; Danov K. D. J. Colloid Interface Sci. 1999,

223, 2314.
(27) Ono, S.; Kondo, S. Molecular Theory of Surface Tension in

Liquids. In Handbuch der Physik; Springer: Berlin, 1960. Vol. X.

Figure 1. Schematic presentation of the streamlining of
adsorbed surfactant molecules by a fluid substrate: (A) single
molecule; (B) dense adsorption layer. The adsorbed molecules
are considered immobile (held by fictitious external forces of an
average magnitude, f), whereas the fluid is moving with velocity
V(z). The surface velocity of the fluid, VS, is defined in the
equimolecular dividing surface, VS ≡ V(0).

fS ) -∇µS,1 (2.1)

ffr ) -âS(Γ1)VS (2.2)

DBC ) 1
(1 - φ)âB(φ)( ∂µ

∂ ln φ)T,p
) DB0

KB(φ)

(1 - φ)(∂µ/kT
∂ ln φ)T,p

(1.5)

âB(φ) ) âB0/KB(φ) (1.6)

1
1 - φ (∂µ/kT

∂ ln φ)T,p
≈ 1 + 8φ
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Combining eqs 2.1 and 2.2, and using fs ) -ffr, we derive
the following expression for the surfactant flux at the
interface in the laboratory frame of reference:

If we consider a perturbation of the surfactant adsorption
Γ1 at a fixed temperature, eq 2.3 can be written in the
form

Comparing eq 2.4 to Fick’s law for the surface flux of the
surfactant

we obtain the following expressions for the surface
diffusion coefficient DSC

where DS0 ) kT/âS0 is the surface diffusion coefficient of
an isolated adsorbed molecule, âS0 is the corresponding
friction coefficient, and KS(Γ1) is the dimensionless surface
mobility coefficient, which accounts for the variations of
the friction of a molecule in the adsorption layer, as
compared to âS0. Similar formula was derived recently in
ref 26, but the dependence of the hydrodynamic friction
on the adsorption was ignored, KS(Γ1) ) 1. As discussed
by the end of section 1, both types of factors (thermo-
dynamic and hydrodynamic) are important and neither
of them could be neglected in the general consideration.

Assuming a local thermodynamic equilibrium (which
requires a small Peclet number in the appropriate diffusion
length scale5), we have the following Gibbs-Duhem
equation for the interface

where σ is the interfacial tension. Substituting eq 2.7 into
eq 2.3 we derive

which can be written also in the following equivalent forms:

where EG ) -(∂σ/∂ ln Γ1)T is the Gibbs elasticity of the
adsorption layer. Therefore, for the surface collective
diffusion coefficient we finally derive

Equation 2.10 demonstrates again that DSC depends on
the adsorption Γ1 through two types of factors: (i) the
interactions between the adsorbed molecules, expressed
by the term EG/kTΓ1, and (ii) the change of the hydro-

dynamic surface mobility of the adsorbed molecules,
expressed by KS(Γ1).

3. Effect of Surfactant on Thin Film Drainage
and Hydrodynamic Stability

The consideration below is made for a thin liquid film
of thickness, h, which may depend on time and the local
coordinate (see Figure 2). For clarity, the analysis is made
for a film of translational symmetry (infinite in one
direction) but the main formulas are presented for circular
films as well. The consideration is made for diffusion-
controlled adsorption, when a local equilibrium between
the adsorption layer and the subsurface layer is assumed.

The drainage and the hydrodynamic stability of thin
liquid films are both analyzed by a common hydrodynamic
approach.28-32 In this section we briefly outline the key
steps of this approach and analyze how the concentration
dependence of the surfactant diffusion coefficients affects
the final results.

The surfactants influence the dynamic properties of thin
films in several ways: (1) by creating the concentration
Marangoni effect, (2) by surface viscous effects, and (3) by
changing the disjoining pressure, which accounts for the
interaction between the two film surfaces. The tangential
stress balance for the film surfaces can be written in
general terms as32

where ||Tnt|| is the jump of the bulk tangential stress on
the surface, i.e., this is the tangential force created by the
bulk solution on the surface, and ∆S is the area of the
surface element. This force is compensated by the tan-
gential surface forces (including the gradient of the surface
tension and the tangential projection of the disjoining
pressure) and the surface viscous stress. For simplicity,
in our consideration below we do not consider the surface
viscous effects, which might be important in many cases.
The viscous stresses can be incorporated into this con-
sideration in a straightforward manner, without changing
any of the main conclusions drawn in the article.32

The contribution of the surface tension gradient to the
tangential force balance, eq 3.1, is fsurf ) (∂σ/∂x)∆S. The

(28) Radoev, B. P.; Dimitrov, D. S.; Ivanov, I. B. Colloid Polym. Sci.
1974, 252, 50.

(29) Ivanov, I. B. Pure Appl. Chem. 1980, 52, 1241.
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Processes and Rheology; Butterworth Heinemann: Oxford, 1991;
Chapters III, V, and XIII.

jS ) ΓVS ) -
Γ1

âS(Γ1)
∇µS,1 (2.3)

jS ) -
Γ1

âS(Γ1)(∂µS,1

∂Γ1
)

T
∇Γ1 (2.4)

jS ) -DSC∇Γ1 (2.5)

DSC ) 1
âS(Γ1)( ∂µS,1

∂ ln Γ1
)

T
) DS0KS(Γ1)(∂µS,1/kT

∂ ln Γ1
)

T
(2.6)

∇σ ) -Γ1∇µS,1 (2.7)

jS ) 1
âS(Γ1)

∇σ (2.8)

jS ) 1
âS(Γ1)( ∂σ

∂Γ1
)

T
∇Γ1 ) - kT

âS(Γ1)

EG

kTΓ1
∇Γ1 )

-DS0KS(Γ1)
EG

kTΓ1
∇Γ1 (2.9)

DSC ) DS0KS(Γ1)
EG

kTΓ1
(2.10)

Figure 2. Schematic presentation of the profile of a thin liquid
film and the forces acting on a surface element, ∆x.

-||Tnt||∆S ) tangential surface forces +
surface viscous forces (3.1)
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contribution of the disjoining pressure to this balance can
be calculated by using the Derjaguin approximation,33

which is valid when the two surfaces are very close to
each other and their slope is small, (∂h/∂x)2 , 1. The
Derjaguin approximation states that the force acting on
a surface element is equal to Π(h(x))∆S, where Π(h) is the
disjoining pressure in an infinite planar film of thickness
h equal to the local thickness of the curved film (the
remaining parameters are the same as those of the curved
film, see Figure 2). This force is directed perpendicularly
to the x-axis, outward from the film. Note that the force
is not directed normally to the film surfaces, because
otherwise it could not compensate the variation of the
surface tension, created by the disjoining pressure, in an
equilibrium thin film.34 Note also that ∆S ) L∆x/cos(R)
≈ L∆x, where L∆x is the projection of the film area on the
x-direction and R is the slope of the film surface, tan(R)
) ∂h/∂x , 1. Thus we obtain ft ) Π(h)∆S(∂h/∂x) for the
tangential component of the force created by the disjoining
pressure, whereas the normal component of this force is
ft ) Π(h) cos(R)∆S ≈ Π(h)∆S. Combining the contributions
of the disjoining pressure and of the surface tension
gradients, we obtain the following expression for the
tangential force balance on the film surface

In the case of equilibrium films, when the bulk tangential
stresses are zero, the latter equation gives the known
expressions for the surface tension and the running slope
angle as functions of the disjoining pressure.34

If hydrodynamic processes occur in the film, the local
surface tension depends on both the surfactant concen-
tration (which is perturbed by the hydrodynamic flow in
the film) and the disjoining pressure. To extract the effect
of thesurfactant concentration,weassumethat thesurface
is in a local thermodynamic equilibrium, viz., the Gibbs-
Duhem equation can be used30,34

Combining eqs 3.2 and 3.3, we derive the following
expression for the jump of the bulk viscous stress

The right-hand side of eq 3.4 expresses the so-called
concentration Marongoni effect. Note that the effect of the
disjoining pressure does not appear in eq 3.4, and only the
effect of the surfactant adsorption has remained. In other
words, only the gradients of the surface tension created
by variations of Γ1 must be taken into account when
calculating the Marangoni term.

For thin films, one can calculate the gradients of the
surface tension, created by variations of Γ1, from the
equations of surfactant conservation in the film interior
and on the surface. By integrating these equations across
the film and using the equation of fluid conservation, one
obtains the following expression for the balance of
surfactant in a given small element of length dx in the
film (see Figure 2)30,31

where the z-coordinate is perpendicular to the x-axis, Vx
is the x-component of the fluid velocity in the film, and US
≡ Vx|z)h is the surface tangential velocity of the fluid at
the film surface. The terms under the time derivative
represent the total amount of surfactant on the surface
and in the bulk at point x, the other terms on the left-
hand side represent the convective fluxes on the surface
and in the bulk of the film, and the terms on the right-
hand side present the respective diffusion fluxes. For
circular films, this equation acquires the form

where r is the radial coordinate. Note that the film
thickness h ) h(x,t) or h(r,t) in eq 3.5 is a function of both
time and spatial coordinate. The equation for conservation
of the fluid is31

or

for circular films.
For very thin films, the integrals in the z-direction can

be taken under the assumption that the surfactant
concentration is almost constant across the film, i.e., equal
to the subsurface concentration, c1,S: ∫0

hc1 dz ≈ c1,Sh and
∫0

hc1Vx dz ≈ c1,S∫0
hVx dz (another approach, which is based

on expansion of the surfactant concentration in series
around the equilibrium concentration and gives equivalent
results, is presented in refs 28 and 30). Under this
assumption, eq 3.5a converts into

Then we can use eqs 1.5 and 2.6 and express the diffusion
fluxes in terms of the derivatives of the surface and bulk
chemical potentials

For diffusion-controlled adsorption, the surface and the
subsurface layers are in a local thermodynamic equilib-
rium (µ1,S ) µ1), and we derive (see also eq 3.3)

(33) Derjaguin, B. V.; Churaev, N. V.; Muller, V. M. In Surface Forces;
Nauka: Moscow, 1986; Chapter 2 [in Russian].

(34) Ivanov, I. B.; Kralchevsky, P. A. In Thin Liquid Films; Ivanov,
I. B., Ed.; Marcel Dekker: New York, 1988.

-||Tnt|| ) ∂σ
∂x

+ Π ∂h
∂x

(3.2)

dσ ) -Γ1 dµ1,S - Π dh (3.3)

||Tnt|| ) Γ1

∂µ1,S

∂x
(3.4)

∂

∂t
(Γ1 + ∫0

h
c1 dz) + ∂

∂x
(Γ1US + ∫0

h
c1Vx dz) )

∂

∂x(DSC

∂Γ1

∂x
+ ∫0

h
DBC

∂c1

∂x
dz) (3.5a)

∂

∂t
(Γ1 + ∫0

h
c1 dz) + 1

r
∂

∂r
(rΓ1US + r∫0

h
c1Vr dz) )

1
r

∂

∂r(rDSC

∂Γ1

∂r
+ r∫0

h
DBC

∂c1

∂r
dz) (3.5b)

∂h
∂t

) ∂

∂x
(∫0

h
Vx dx)

∂h
∂t

) 1
r

∂

∂r
(r∫0

h
Vr dz) (3.6)

∂

∂t
(Γ1 + c1,Sh) + ∂

∂x
(Γ1US + c1,S∫0

h
Vx dz) )

∂

∂x(DSC

∂Γ1

∂x
+ DBCh

∂c1,S

∂x ) (3.7)

∂

∂t
(Γ1 + c1,Sh) + ∂

∂x
(Γ1US + c1,S∫0

h
Vx dz) )

∂

∂x(Γ1

âS

∂µ1,S

∂x
+

hc1,S

(1 - φ1,S)âB

∂µ1

∂x ) (3.8)
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Two approximations, commonly used in the literature at
this stage, are as follows:30 (i) the deviations of the
surfactant adsorption and concentration from their equi-
librium values are small, and (ii) the time derivatives of
the adsorption, Γ1, and of the subsurface concentration
are negligible, that is, the convection fluxes are compen-
sated by the diffusion ones (so-called “quasi-stationary
regime” of film thinning). Under these assumptions we
obtain (see also eq 3.6)

where Γ1,eq and c1,eq are the respective equilibrium values
of the adsorption and of the bulk surfactant concentration.
In the case of a circular film, the x-derivatives in eq 3.10
must be replaced by derivatives with respect to the radial
coordinate, r. From eq 3.10, we can express the surface
force acting on the interface, which is needed for calculat-
ing the jump of the tangential stress in eq 3.2

The comparison of eqs 3.2, 3.4, and 3.11 shows that we
succeeded in expressing the concentration Marangoni
effect through the surface velocity, US, and the equilibrium
properties of the surfactant solution.

Under the same assumptions (small deviation from
equilibrium and quasi-stationary regime of film thinning)
an equivalent formula was derived earlier,29,30 which
includes the collective diffusion coefficients of the sur-
factant

Expression 3.12 has been used by Ivanov and co-work-
ers29,30 to solve a variety of problems concerning the
drainage and the hydrodynamic stability of thin liquid
films. The continuity eq 3.6, the Navies-Stokes equation
in the lubrication approximation, and eqs 3.2 and 3.12
with the respective boundary conditions (which depend
on the specific problem under consideration) were used to
determine the fluid velocity, the pressure distribution in
the film, and its profile, i.e., to solve the entire hydro-
dynamic problem. Just for example, Radoev et al.28 found
that the drainage velocity, VDR ≡ -dh/dt, of a planar foam
film in the presence of water-soluble surfactant can be

expressed by the formula

where

and

The coefficients b and hs account for the influence of the
bulk and surface diffusion on the film thinning rate; ha
accounts for the surface activity of the surfactant. The
Reynolds velocity of thinning, VRe, of a circular planar
film between two tangentially immobile surfaces is given
by the expression

where R is the film radius and Pc is the capillary pressure
film meniscus. Therefore, the effect of the surfactant on
the velocity of film thinning is expressed by EG, DBC, DSC,
ha, and Π. Note, however, that the dependence of the
surface and bulk diffusion coefficients on the surfactant
concentration has not been taken into account in refs 28-
32.

The comparison of eqs 3.11 and 3.12 shows that the
dependence of the diffusion coefficients on the surfactant
concentration (eqs 1.5 and 2.10) leads to the disappearance
of the Gibbs elasticity in the tangential stress balance
(Marangoni effect)sEG is replaced by the term kTΓ1,eq in
eq 3.11. The actual reason for this result is DSC is also
proportional to the Gibbs elasticity (eq 2.10). Similarly,
the term (∂c1/∂Γ1)eq is replaced by c1,eq/Γ1,eq, due to the
concentration dependence of DBC. On the other side, note
the different definitions of the diffusion coefficients
entering eqs 3.11 and 3.12. The diffusion coefficients in
eq 3.11 are the “single molecule” diffusion coefficients,
DB0 and DS0, which do not depend on the surfactant
concentration. On the contrary, the diffusion coefficients
in eq 3.12 are the full collective diffusion coefficients, which
depend on the surfactant concentration.

One can see that eq 3.11 can be formally derived from
eq 3.12 by the substitutions:

Therefore, all known equations for the thin film dynamics
and stability, obtained under the same assumptions,28-30

remain valid if the substitutions, eqs 3.15, are made and
the proper definitions of the diffusion coefficients are used.
For instance, the coefficients accounting for the effect of
surfactant on the rate of film thinning, eq 3.13, acquire
the form

∂

∂t
(Γ1 + c1,Sh) + ∂

∂x
(Γ1US + c1,S∫0

h
Vx dz) )

- ∂

∂x{(DS0KS(Γ1) + DB0

KB(φ1)
1 - φ1

h
c1,S

Γ1
) 1
kT(∂σ

∂x
+ Π dh

dx)}
(3.9)

Γ1,eqUS )

-(DS0KS(Γ1,eq) + DB0

KB(φ1,eq)
1 - φ1,eq

h
c1,eq

Γ1,eq
) 1
kT(∂σ

∂x
+ Π dh

dx)
(3.10)

-(∂σ
∂x

+ Π dh
dx) )

USkTΓ1,eq

(DS0KS(Γ1,eq) + DB0

KB(φ1,eq)
1 - φ1,eq

h
c1,eq

Γ1,eq
)

)

USΓ1,eq

( 1
âS(Γ1,eq)

+
hc1,eq

(1 - φ1,eq)âB(φ1,eq)Γ1,eq
)

(3.11)

- (∂σ
∂x

+ Π dh
dx) )

USEG

[DSC + DBCh(∂c1

∂Γ1
)

eq
]

(3.12)

VDR

VRe
) 1 + b +

hs

h
(3.13)

b ≡ 3ηDBC/haEG

hs ≡ 6ηDSC/EG

ha ≡ ∂Γ1,eq/∂c1,eq

VRe )
2h3(Pc - Π)

3ηR2
(3.14)

DBC f DB0

KB(φ1)

(1 - φ1)
, DSC f DS0KS(Γ1) (3.15a)

EG f kTΓ1, ∂c1/∂Γ1 f c1/Γ1 (3.15b)

b ≡ 3ηDB0KB(φ1)

hakTΓ1,eq(1 - φ1)
(3.16)
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Note also that b, hs, and ha are expected to be
independent of the solvent viscosity, η, because Db0 and
DS0 are inversely proportional to η.

Let us mention here that the film can be considered in
a local equilibrium if the Peclet number Pe ) hVx/DB ∼
RVDR/DB , 1. For typical values (R ∼ 1 mm, VDR ∼ 1 nm/s,
DB ∼ 10-9 m2/s), one estimates Pe ∼ 10-3, which shows
that the diffusion is fast enough to ensure a local
equilibrium in the thinning film.

The main conclusion from the above analysis is that
the Gibbs elasticity and the term ∂Γ1/∂c1 disappear from
the expressions describing the film dynamics. Since the
surfactant solutions are diluted in most cases, the bulk
factor, KB(φ1)/(1 - φ1), can be typically taken as unity.
Thus the main physicochemical quantities governing the
drainage and the hydrodynamic stability of thin films are
the surfactant adsorption, Γ1, and the surface mobility
factor KS(Γ1).

The above conclusion remains valid for single interfaces
as wellsthe Gibbs elasticity will disappear from the
equations describing the concentration Marangoni effect
(in a quasi-stationary regime), because the gradient of
the surface tension, which is the driving force for the
surface diffusion, and the surface collective diffusion
coefficient are both linearly proportional to EG. Addition-
ally, for single interfaces the hydrodynamic problem
requires one to find the surfactant distribution in the
vicinity of the interface. For this purpose one can use a
model profile for the surfactant concentration35-37 or a
concentration boundary layer.36

Note that the quasi-stationary approximation might
be inadequate for description of some dynamic processes,
i.e., the time derivatives cannot be neglected in the
equation describing the surfactant balance on the surface
(see, e.g., eq 3.9). The analysis of such systems is much
more complex, and one cannot predict in advance whether
the Gibbs elasticity will cancel out from the final equations
as in the quasi-stationary model.

4. Discussion of the Surface Friction Function,
âS(Γ1)

The analysis performed above shows that the function
âS(Γ1) plays an important role in the dynamics of interfaces
and thin liquid films. Nevertheless, we are not aware of
any study where this function has been investigated
theoretically or experimentally. That is why in this section
we briefly discuss the expected qualitative behavior of
âS(Γ1) and suggest some (imaginary at the present)
experiments for its determination. Since âS(Γ1) )
âS0/KS(Γ1), we first consider the friction coefficient of a
single (isolated) adsorbed molecule, âS0; the influence of
the other adsorbed molecules on the friction coefficient,
expressed by the function KS(Γ1), is discussed afterward
(see Figure 1).

At least in principle, âS0 can be determined by available
experimental techniques in a straightforward manner.
Since âS0 is related to the surface diffusion coefficient by

the Einstein relation

any method for measuring the surface diffusivity of
adsorbed molecules should provide the necessary infor-
mation, if very diluted adsorption layers are studied (such
that the interactions between the adsorbed molecules are
negligible). This could be, for instance, the so-called FRAP
method17,38 (fluorescence recovery after photobleaching)
if its sensitivity is high enough. On the other hand, the
value of âS0 could be roughly estimated (within the correct
order of magnitude) from the bulk diffusion coefficient or
from the dimensions of the molecule. If one assumes that
the bulk and surface diffusion coefficients, DS0 and DB0,
do not differ very much (which is probably correct), then
one can estimate âS0 from eq 4.1. Alternatively, one can
assume that the diffusivity of the adsorbed molecule is
similar to that of a sphere or disk of similar dimensions,
placed on the surface.39,40 For typical surfactants of low
molecular mass, one may expect âS0 ∼ 10-11 N‚s/m.

To determine the function KS(Γ1) is a much more difficult
task. Qualitatively, one may expect that KS(Γ1) is a
monotonically decreasing function of Γ1, because the
hydrodynamic friction should increase with the density
of the adsorption layer. At high surface densities, KS(Γ1)
should tend to zero, because only aqueous molecules
participating in the hydration shells of the surfactant
heads remain in the adsorption layer (these molecules
are much less mobile than the molecules in free water).
This limit corresponds to tangentially immobile surfaces
(cf. eq 3.10).

The rigorous theoretical approach to determine KS(Γ1)
would require solving the hydrodynamic problem for the
streaming of the fluid along a 2D array of immobile
adsorbed molecules, whose mutual positions reflect the
intermolecular interactions. This is a formidable theoreti-
cal task. The experimental determination of KS(Γ1) is also
difficult, because the surface diffusion in a nonhomoge-
neous adsorption layer is always accompanied by surface
convection (created by gradients of σ). Hence the inter-
pretation of data obtained by any experimental method,
based on measuring the surfactant transport along the
surface, should explicitly separate the effects of the surface
convection and diffusion.

To illustrate this difficulty, let us describe an imaginary
experiment that would give the values of âS(Γ1). The
experiment consists of the following: (1) The velocity of
a surface longitudinal wave created by small gradients of
Γ1 is measured. Since the adsorption perturbation causes
a gradient of surface tension, ∇ σ, the wave velocity in the
laboratory frame of reference would depend both on the
diffusion and convection on the surface. (2) To extract the
convective contribution to the wave propagation, one
should determine independently the velocity of the fluid
in theequimoleculardividingsurface, e.g., by laserDoppler
anemometry (more precisely, the fluid velocity in a set of
points close to the surface should be measured and
extrapolated toward the equimolecular dividing surface).
The difference between the velocity of the fluid in the
surface layer and the averaged surfactant velocity would
give the contribution of the surface diffusion in the overall

(35) Van Voorst Vader, F.; Erkelens, Th. F.; van den Tempel, M.
Trans. Faraday Soc. 1964, 60, 1170.

(36) Joost, P. Dynamic Surface Phenomena; VSP BV: Zeist, The
Netherlands, 1999; Chapter 4.

(37) Kralchevsky, P. A.; Radkov, Y.; Denkov N. D. J. Colloid Interface
Sci. 1993, 161, 361.

(38) Clark, D. C. In Application of State-of-the-Art Fluorescence and
Interferometric Techniques to Study Coalescence in Food Dispersions:
Characterization of Food: Emerging Methods; Gaonkar, A. G., Ed.;
Elsevier Science: Amsterdam, 1995; Chapter II.

(39) Hughes, B. D.; Pailthorpe, B. A.; White, L. P. J. Fluid Mech.
1981, 110, 349.

(40) Danov, K.; Aust, R.; Durst, F.; Lange, U. J. Colloid Interface Sci.
1995, 175, 36.

DS0 ) kT/âS0 (4.1)
hs ≡ 6ηDS0KS(Γ1,eq)

kTΓ1,eq

ha ≡ Γ1,eq/c1,eq
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surface transport of surfactant. (3) Finally, from ∇σ
(supposedly known) one can calculate the friction co-
efficient (see eq 2.8). Obviously, the above “direct” experi-
ment is rather complex, and we do not know whether the
availableexperimental setups have thenecessaryaccuracy
to give reliable results. We describe this experiment in
detail only because it demonstrates rather well the possible
difficulties and clarifies some of the concepts related to
the surface friction functions.

A more plausible approach for determination of KS(Γ1)
would be to measure directly the surface tension σ(x,t)
during a dynamic process, related to a surface transfer of
surfactant in a container of well-defined geometry (e.g.,
Langmuir trough36,41,42), and to calculate the velocity of
the fluid in the substrate by solving the Navier-Stokes
equations. Calculations of this type typically require some
model assumptions to be made for solving the hydrody-
namic problem, and only a rigorous analysis combined
with comparison to real experimental data would clarify
whether this approach is feasible. It is worth mentioning
that such measurements, σ(x,t), were performed already
by Panaiotov et al.41,42 in a Langmuir trough for other
purposes. However, the surface diffusion was neglected
in refs 41 and 42, because it is probably a second-order
effect for the specific problem considered there.

Another promising experimental approach is to develop
further the procedure, suggested by Manev et al.43 and
used by Valkovska and Danov,26 for calculating the surface
diffusion coefficient from experimental data for the rate
of thinning of foam films, eqs 3.13 and 3.14. Experiments
at various surfactant concentrations could provide the
necessary information for âS(Γ1), if the adsorption isotherm
Γ1(c1) and the disjoining pressure isotherm Π are known.

Let us note at the end that although the functions
âS(Γ1) and KS(Γ1) are monotonic, the dependence of the
collective diffusion coefficient, DSC, might be a nonmono-
tonic function of Γ1, because it includes also a contribution
from the Gibbs elasticity, EG (see eq 2.10), which has a
different functional dependence (theoretically, EG is
calculated from the surface equation of state of the
adsorption layer, whereas experimentally EG is deter-
mined from surface tension isotherms). Similar nonmono-
tonic dependence of the bulk diffusion coefficient, DBC, on
the volume fraction of suspended particles was predicted
in various studies.15,16,21

6. Conclusions
Following an approach, similar to that used for de-

scription of the bulk diffusion in concentrated suspensions,
we have derived expressions for the surface collective
diffusion coefficient, DSC, of adsorbed molecules, eqs 2.6
and 2.10. It is shown that DSC depends on the density of
the adsorption layer, Γ1, via two types of factors: (i) the
interactions between the adsorbed molecules, which lead

to a thermodynamic factor EG/kTΓ1, where EG is the Gibbs
elasticity of the adsorption layer, and (ii) the hydrodynamic
interactions between the adsorbed molecules, which can
be expressed by the hydrodynamic mobility factor KS(Γ1);
see Figure 1.

An analysis of the role of surface diffusion in the
dynamics of film thinning and rupture is performed, taking
into account the concentration dependence of the bulk
and surface diffusion coefficients. A new expression is
derived, eq 3.11, which relates the surface stress with the
surface velocity. This expression can be used to solve a
variety of particular problems following a standard
procedure, developed earlier by Ivanov and co-workers.29,30

The analysis shows that the final results remain func-
tionally the same, if the material parameters, which
account for the surfactant properties, are properly
modifiedssee eqs 3.13, 3.15, and 3.16.

The most interesting conclusion from the study is that
the Gibbs elasticity, EG, disappears from the tangential
stress balance describing the concentration Marangoni
effect (eq 3.4), if the concentration dependence of the
surface diffusion coefficient is taken into account (and the
process can be considered as quasi-stationary); see eq 3.11.
The actual reason for this result is that the gradient of
Γ1 (which is the driving force for the surface diffusion)
and the surface collective diffusion coefficient are both
linearly proportional to EG. Instead of EG, a thermo-
dynamic term kTΓ1 appears in the final equations; see,
e.g., eq 3.16. Thus from a theoretical viewpoint, no direct
correlation between the Gibbs elasticity and the dynamic
properties of thin foam and emulsion films is expected.
This conclusion is not limited to the processes in thin liquid
films and is valid also for a variety of other dynamic
processes, which are driven by the concentration Ma-
rangoni effectsmotion of drops and bubbles in a fluid,
rheology of emulsions and foams, etc. In addition, if
diffusion-controlled adsorption is assumed, the so-called
adsorption thickness, ha ) ∂c1/∂Γ1, is replaced by the term
c1/Γ1 in the final equations, due to the concentration
dependence of the bulk diffusion coefficient.

The surface mobility factor, KS(Γ1), is expected to play
an important role even at low bulk concentrations of
surfactant (when the bulk mobility factor KB ≈ 1), because
the surfactant molecules are typically much more densely
packed in theadsorption layer than in thebulk.Theoretical
estimates or experimental measurement of KS(Γ1) are,
therefore, important to quantify the effect of surfactants
on the film dynamics and stability; see section 4.

Acknowledgment. The authors are grateful to the
Inco-Copernicus program for the financial support of this
research (Project IC15CT980911). The authors are in-
debted to Professor I. B. Ivanov for the useful discussions.

Supporting Information Available: Bulk diffusion
of uncharged surfactant molecules (derivation of eq 1.5). This
material is available free of charge via the Internet at
http://pubs.acs.org.

LA001214X

(41) Panaiotov, I.; Dimitrov, D. S.; Ivanova, M. G. J. Colloid Interface
Sci. 1979, 69, 318.

(42) Bois, A. G.; Panaiotov, I. J. Colloid Interface Sci. 1995, 170, 25.
(43) Manev, E. D.; Sazdanova, S. V.; Vassilieff, C. S.; Ivanov, I. B.

Ann. Univ. Sofia, Fac. Chem. 1976/1977, 71 (2), 5.

1156 Langmuir, Vol. 17, No. 4, 2001 Stoyanov and Denkov


