Effect of Surfactant–Bile Interactions on the Solubility of Hydrophobic Drugs in Biorelevant Dissolution Media

Zahari Vinarov,*†‡ Vladimir Katev,† Nikola Burdzhiev,‡ Slavka Tcholakova,†© and Nikolai Denkov†©

†Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria
‡Department of Organic Chemistry and Pharmacognosy, Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria
© Supporting Information

ABSTRACT: Biorelevant dissolution media (BDM) methods are commonly employed to investigate the oral absorption of poorly water-soluble drugs. Despite the significant progress in this area, the effect of commonly employed pharmaceutical excipients, such as surfactants, on the solubility of drugs in BDM has not been characterized in detail. The aim of this study is to clarify the impact of surfactant–bile interactions on drug solubility by using a set of 12 surfactants, 3 model hydrophobic drugs (fenofibrate, danazol, and progesterone) and two types of BDM (porcine bile extract and sodium taurodeoxycholate). Drug precipitation and sharp nonlinear decrease in the solubility of all studied drugs is observed when drug-loaded ionic surfactant micelles are introduced in solutions of both BDM, whereas the drugs remain solubilized in the mixtures of nonionic polysorbate surfactants + BDM. One-dimensional and diffusion-ordered 1H NMR spectroscopy show that mixed bile salt + surfactant micelles with low drug solubilization capacity are formed for the ionic surfactants. On the other hand, separate surfactant-rich and bile salt-rich micelles coexist in the nonionic polysorbate surfactant + bile salt mixtures, explaining the better drug solubility in these systems. The nonionic alcohol ethoxylate surfactants show intermediate behavior. The large dependence of the drug solubility on surfactant–bile interactions (in which the drug molecules do not play a major role per se) highlights how the complex interplay between excipients and bile salts can significantly change one of the key parameters which governs the oral absorption of poorly water-soluble drugs, viz. the drug solubility in the intestinal fluids.

KEYWORDS: bile salt–surfactant interactions, drug solubility, precipitation, biorelevant dissolution media, DOSY

INTRODUCTION

Drug solubility is one of the critical physicochemical characteristics of any new molecular entity (NME), as it provides valuable guidance about the possible issues in drug product formulation. In particular, the solubility of drugs in intestinal fluids is one of the factors that determines oral absorption. However, the high-throughput methods for solubility screening employed in lead optimization are usually based on simple buffered solutions, which can result in the underestimation or overestimation of intestinal drug solubility. The latter is especially important for lipophilic drug molecules with low solubility in water, which are estimated to account for up to 90% of NME. To solve this issue, a variety of dissolution media that contain diverse combinations of intestinal fluid components and properties (biorelevant media) have been developed. If the simulated intestinal fluid medium is chosen according to the drug physicochemical properties (weak acid/base or nonionizable), the measured drug solubility is usually in good correlation with drug solubility in human intestinal fluids. For this reason, the data for drug dissolution in biorelevant medium is used also as an input for in silico oral absorption prediction, which is an integral part of the physiologically based pharmacokinetic (PBPK) modeling. Significant effort has been devoted to clarify the main parameters controlling drug solubility in the complex environment of a simulated intestinal fluid, which usually consists of one or several bile salts, phospholipids, lipid digestion products (fatty acids and monoglycerides), inorganic salts, and buffers. Söderlind et al. found that the bile acid conjugation and the degree of hydroxylation of the steroid ring have only a minimal effect on the solubility of 24 drugs. An empirical equation which correlates Log P/D and intrinsic aqueous solubility values with the solubility ratio for sodium taurocholate was proposed by Mithani et al. and Glomme et al. to estimate intestinal drug solubility. On the other hand, Zhou et al. studied systematically the effect of 8 factors on the solubility of 13 drugs and showed that the bile salt, oleic acid, and phospholipid content played an important role for the solubility of all drug molecules studied.

Received: August 21, 2018
Revised: October 15, 2018
Accepted: October 23, 2018
Published: October 23, 2018

DOI: 10.1021/acs.molpharmaceut.8b00884
Mol. Pharmaceutics XXXX, XXX, XXX–XXX

© XXXX American Chemical Society
whereas the pH was the dominant factor for the solubility of acidic drugs.16 Grove et al. reported that increasing bile salt and phospholipid levels had a bigger effect on seocalcitol solubility than lipolysis products.19 In contrast, lipid digestion products were shown to significantly increase the solubility of fenofibrate and cinnarizine, whereas the effect of bile salts and phospholipids was much smaller.20 The solubility of danazol and griseofulvine was affected only slightly by the increasing concentration of bile salts, phospholipids and lipid digestion products.20 Despite the accumulated data, there is still no clear understanding on how the drug molecular structure and properties determine the measured drug solubility at different biorelevant media compositions.

Given the complexity of the biorelevant media itself, it is not surprising that the influence of formulation excipients on drug solubility in biorelevant media is not yet systematically studied. The effect of classical surfactants is particularly interesting, as they can interact with the colloidal aggregates in the biorelevant media21 and can impact drug solubility. Surfactants, such as polysorbates and sodium lauryl sulfate, are found in more than 100 FDA-approved oral pharmaceutical products27 which emphasizes the importance of this issue in drug development.

The physicochemical interactions in binary mixtures (surfactant + pure bile salt) have been studied extensively.23–28 Bile salts and cationic alkyltrimethylammonium bromide surfactants form mixed micelles due to strong electrostatic attraction between the oppositely charged head groups.23–25 At low electrolyte concentrations, the nonionic polysorbate surfactants and bile salts also form mixed micelles with attractive interactions, due to decreased electrostatic repulsion between the similarly charged bile salt molecules in the mixed aggregates.26–28 Different behaviors were observed for anionic surfactants, for which the nature of the interaction with the bile salts (attractive or repulsive) was found to depend on the specific molar ratio of the two components.23

Several studies highlight the effect of surfactants on the solubility of lipophilic molecules in biorelevant conditions.29–32 In the context of lipid digestion, we showed that the dissolution kinetics of lipid digestion products (such as fatty acids and mono- and diglycerides) can be significantly increased, depending on the surfactant-to-bile ratio.29 Madelung et al. studied the dissolution rate of two drugs from drug–surfactant discs and found that a low concentration of sodium lauryl sulfate had a strong impact on the rate of dissolution, while the bulk solubility was not affected.30 The addition of polyoxyethylene(4) lauryl ether (Brij 30) to sodium cholate micelles decreased the solubility of rifampicin.31 Similarly, the presence of sodium lauryl sulfate in fenofibrate immediate release tablets decreased drug solubility in a biorelevant media, composed of sodium taurocholate and lecithin, due to disruption of the bile salts–phospholipid vesicles.32 Interestingly, such an effect was not observed for poloxamer surfactants in the same study. The described results demonstrate that the surfactants used as excipients in oral pharmaceutical products can have negative, positive, or no effect on drug solubility in biorelevant media, depending on the specific composition. However, no general rules are available to predict the effect, thus slowing down the optimization of drug formulations.

Therefore, the major aim of the current study is to clarify the impact of surfactant structure and surfactant-bile interactions on the solubility of hydrophobic drugs in biorelevant media. A range of 12 surfactants with different charge and hydrophobic chain length was studied. The model drug used in most experiments was fenofibrate, which was chosen because of its poor aqueous solubility and its sensitivity to biorelevant media composition.20 Two additional drugs (danazol and progesterone) were also studied to verify the main trends observed with fenofibrate. To simulate the human intestinal fluids, we used a solution of porcine bile extract which contains a mixture of bile acids, phospholipids, cholesterol, and fatty acids. Previous studies have shown good agreement between the solubility of poorly water-soluble substances measured in an in vitro model based on porcine bile extract13 and the in vivo behavior.14 The main trends observed with the bile extract were verified by comparative experiments with one of the main bile salts in the human bile, sodium taurodeoxycholate (NaTDC). The aggregate size, composition, and interactions in the most interesting bile + surfactant solutions were determined by 1H NMR DOSY experiments. In addition, the bile–surfactant interactions were assessed by comparing the critical micellar concentrations (CMCs) of the single components and the mixed systems.

MATERIALS AND METHODS

Materials. A total of 12 surfactants with different surfactant charge, headgroup type, and chain length were used to investigate the impact of surfactant structure on drug solubility in biorelevant media. The properties of the studied surfactants and the used abbreviations are summarized in Table 1. The nonionic surfactants studied were 3 polysorbates with saturated hydrophobic chains (C$_{12}$ to C$_{18}$) and one unsaturated polysorbate (C$_{18:1}$). We studied also a homologue series of anionic surfactants of the alkylsulfate type, with hydrophobic chain lengths of C$_{12}$ and C$_{14}$. Additional anionic surfactants studied were ethoxylated alkylsulfates. The cationic surfactants we studied are a homologue series of alkyl trimethylammonium bromides with hydrophobic chain lengths of C$_{14}$ and C$_{16}$. Although some of the cationic surfactants are toxic and rarely used in drug delivery, we included them in the current study to clarify the general effects of the surfactant charge.

Porcine bile extract (Sigma), which contains 50 wt % bile acids, 6 wt % phosphatidylcholine, less than 0.06 wt % Ca2+, 35 1.2 wt % cholesterol, and 6.7 wt % FA34 was used to prepare the biorelevant medium in most of the experiments. The pure bile salt sodium taurodeoxycholate (Sigma, > 95%) was used in comparative solubility experiments, as well as in the model experiments, such as 1H NMR investigations of the bile–surfactant interactions and surface tension measurements for determination of the CMCs of the mixed surfactant + bile solutions.

Most of the drug solubility experiments were performed with fenofibrate, whereas progesterone and danazol were used in several key experiments to check whether the trends observed with fenofibrate are general. All studied drugs have very low aqueous solubility (0.8 μg/mL for fenofibrate,36 1 μg/mL for danazol,37 and 10 μg/mL for progesterone38) and belong to Class II of the Biopharmaceutical classification system.39 The molecular structures and purity of fenofibrate, progesterone, and danazol are also included in Table 1.

Mobile phase solvents for HPLC analysis included methanol (HPLC grade, 99.9%) and deionized water, filtered through a 450 nm NYLON filter. All aqueous solutions and phases were prepared using deionized water from the water-purification system Elix 3 (Millipore, USA). An exception were the samples prepared via 1H NMR spectroscopy, which were prepared in D$_2$O (99.8 atom % D, TCI). 3-(Trimethylsilyl)propioni-
Table 1. Properties of the Studied Drugs and Surfactants

<table>
<thead>
<tr>
<th>Name</th>
<th>Acronym used in text</th>
<th>Supplier, purity</th>
<th>Molecular mass, g/mol</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fenofibrate</td>
<td>-</td>
<td>TCL, 98%</td>
<td>361</td>
<td></td>
</tr>
<tr>
<td>Danazol</td>
<td>-</td>
<td>AlfaAesar, 98%</td>
<td>338</td>
<td></td>
</tr>
<tr>
<td>Progesterone</td>
<td>-</td>
<td>TCL, 98%</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>Sodium taurodeoxycholate</td>
<td>NaTDC</td>
<td>Sigma, 95%</td>
<td>522</td>
<td></td>
</tr>
<tr>
<td>Sodium lauryl sulfate</td>
<td>CsSO4Na</td>
<td>Arco, 99%</td>
<td>288</td>
<td></td>
</tr>
<tr>
<td>Sodium tetradecyl sulfate</td>
<td>CsSO4Na</td>
<td>Merck, 95%</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>Sodium lauryl ethoxy-1 sulfate</td>
<td>CsEO1SO4Na</td>
<td>Stepan Co., 70%</td>
<td>332</td>
<td></td>
</tr>
<tr>
<td>Sodium lauryl ethoxy-2 sulfate</td>
<td>CsEO2SO4Na</td>
<td>Stepan Co., 70%</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td>Brij 58</td>
<td>CsEO1Ox</td>
<td>Sigma – Aldrich</td>
<td>1124</td>
<td></td>
</tr>
<tr>
<td>Tween 20</td>
<td>T20</td>
<td>Sigma – Aldrich</td>
<td>1228</td>
<td></td>
</tr>
<tr>
<td>Tween 40</td>
<td>T40</td>
<td>Sigma – Aldrich</td>
<td>1277</td>
<td></td>
</tr>
<tr>
<td>Tween 60</td>
<td>T60</td>
<td>Sigma – Aldrich</td>
<td>1309</td>
<td></td>
</tr>
<tr>
<td>Tween 80</td>
<td>T80</td>
<td>Sigma – Aldrich</td>
<td>1310</td>
<td></td>
</tr>
<tr>
<td>Tetradecyl trimethyl ammonium bromide</td>
<td>CsTAB</td>
<td>Sigma, 99%</td>
<td>336</td>
<td></td>
</tr>
<tr>
<td>Cetyl trimethyl ammonium bromide</td>
<td>CsTAB</td>
<td>Merck, 99%</td>
<td>364</td>
<td></td>
</tr>
</tbody>
</table>

2,2,3,3-^{d4} acid sodium salt (TMSP-Na, 98 atom % D, Sigma) was used as an internal standard for the samples studied via ¹H NMR spectroscopy. Sodium and potassium chlorides (99%) were obtained from Merck.

Drug Solubility Determination. The equilibrium drug solubility at constant bile extract and surfactant concentration was determined by weighing fenofibrate (15 mg) and surfactant (50 mg) in a glass bottle and then adding 10 mL of freshly prepared solution of 10 mM bile extract, 137 mM NaCl, and 10 mM KCl. For the experiments at different bile-to-surfactant ratios and constant bile salt + surfactant total concentration, the following procedure was used: separate solutions of 10 mM bile extract, NaTDC, and surfactant in electrolyte (137 mM NaCl and 10 mM KCl) were prepared by stirring for 1 h at T = 37 °C, and then the required surfactant-to-bile ratio was obtained by mixing the appropriate volumes of these solutions in a glass bottle with preweighed drug (the total volume was constant at 10 mL). The concentrations of fenofibrate (1.5 mg/mL), danazol (1.5 mg/mL), and progesterone (10 mg/mL) used in all of the experiments were in large excess of the aqueous solubility of the drugs. The concentrations of the electrolytes were in the range of physiological Na⁺ and K⁺ concentrations in the human small intestine⁴⁰ and the pH of the bile extract + surfactant mixtures was 6.0 ± 0.3.

The aqueous drug suspensions obtained by these procedures were stirred on a magnetic stirrer at 400 rpm for 24 h at 37 °C. After this period of incubation, the suspension was filtered through a 200 nm NYLON syringe filter to eliminate all undissolved particles. Finally, the concentration of the solubilized drug in the obtained clear aqueous phase was determined by HPLC (see Supporting Information for experimental details). Every step of the procedure (including filtration) was performed at T = 37 °C.

The drug solubilization efficiency was assessed by the measured solubility enhancement (SE), defined as SE = C/C₀, where C is the drug solubility in the surfactant, bile, or surfactant + bile solution, and C₀ is the intrinsic aqueous drug solubility.

Determination of CMC. The CMCs of the individual surfactants, NaTDC, and their mixtures were determined from the surface tension isotherms of the respective solutions. The surface tension at different surfactant or surfactant + NaTDC concentrations was measured on a K-100 instrument (Kruss, Germany) via the Wilhelmy plate method at T = 37 °C.

Study of Aggregate Size and Bile Salt–Surfactant Interactions by ¹H NMR Spectroscopy. NMR spectra were obtained on a Bruker Avance III HD 500 spectrometer (Rheinstetten, Germany). A Bruker broadband high-resolution probe (Observe) fitted with an actively shielded single axis Z-gradient was used. Experiments were conducted at T = 37 °C. The studied samples were prepared as described in the Drug Solubility Determination section, except that deuterium oxide (99.8 atom % D) was used instead of water to dissolve the surfactants and/or the bile salt (NaTDC). TMSP-Na-2,2,3,3-^{d4} was added to each sample as the internal standard (0 ppm) prior to measurement. The resolution of the obtained spectra is 0.001 ppm, and the standard error in the determination of the chemical shifts is <0.002 ppm. An LED experiment using bipolar gradients (ledbpgp2s) was used to obtain 2D DOSY spectra. The diffusion dimension was sampled in 64 steps by variation of the gradient pulse strength G in a linear ramp in the range from 5 to 70 or 90% (depending on the sample) of the maximum gradient output of the gradient unit (0.5 T/m). The diffusion delay (Δ) and gradient pulse length (δ) measurement parameters were optimized in order to collect representative relaxation spectra which allow proper data analysis and determination of the molecular diffusion coefficient. For most of the samples, diffusion delay Δ = 100 ms and gradient pulse length δ/2 = 2 ms were used. The diffusion coefficient was extracted from regression fitting of the decay in peak intensity as a function of gradient pulse strength, and the aggregate size was calculated by using the Stokes–Einstein equation, D = (kT)/(6πηr), where D is the diffusion coefficient, k is the Boltzmann constant, T is the absolute temperature, η is the viscosity of the medium, and r is the aggregate radius. The Topspin 3.5 p/7 software package (Bruker) was used for spectrum collection and data analysis.

EXPERIMENTAL RESULTS

The fenofibrate solubility in surfactant, bile, and bile + surfactant solutions at constant surfactant and bile concentrations is presented in the Fenofibrate Solubility at Constant Surfactant Concentration.
and Bile Extract Concentration section. The effect of surfactant-to-bile ratio on the solubility of several hydrophobic drugs is described in the Effect of Bile-to-Surfactant Ratio on Drug Solubility section. Porcine bile extract was used as a bile salt source for the experiments in the Fenofoibrate Solubility at Constant Surfactant and Bile Extract Concentration and Effect of Bile-to-Surfactant Ratio on Drug Solubility sections. Experiments with mixtures of surfactant and a single bile salt (NaTDC) were performed to check whether the observed general trends in solubility are due to surfactant–bile salt interactions (Bile Extract vs Sodium Taurodeoxycholate: Effect on Fenofoibrate Solubility section). The mixed CMCs of the surfactant and NaTDC mixtures were determined in the Determination of CMC in Mixed NaTDC + Surfactant Solutions section. The composition and properties of the micelles, as well as the interactions between NaTDC and the surfactants, were studied by 1H NMR spectroscopy (Investigation of Micelle Size, Composition, and Intramicellar Interactions by NMR section).

Fenofoibrate Solubility at Constant Surfactant and Bile Extract Concentration. The SE of fenofoibrate in solutions of 0.5 wt % surfactant + 10 mM bile extract is presented in Figure 1.

![Figure 1](image_url)

Figure 1. Fenofoibrate SE, as a function of surfactant type, in aqueous (blue triangles) or in biorelevant (red circles) medium. Surfactant concentration is 0.5 wt %, and the concentration of bile extract in the biorelevant medium is 10 mM. Both the aqueous and the biorelevant medium contain 137 mM NaCl and 10 mM KCl. The results are presented as mean ± SD for $n = 3$–6 (the error bars can be smaller than the symbols). For $n = 2$, both experimental points are plotted.

The experimental data in surfactant-only solutions (no bile extract) is also presented for comparison. For the cationic and most of the anionic surfactants, fenofoibrate SE decreased very strongly in biorelevant medium. For example, the SE for C$_{12}$SO$_4$Na decreased from ≈ 200 in the absence of bile, to ≈ 60 in biorelevant medium. Such an effect was not observed for the nonionic surfactants, which had similar SE, both in the absence and in the presence of bile. The highest SE in biorelevant medium was measured for T80 (SE = 92), whereas all other surfactants had lower SE, in the range of 45–70.

In the absence of bile extract, the main reason for the different extent of fenofoibrate solubilization by ionic surfactants on one side, and nonionic surfactant on the other side, is their different molecular mass. The ionic surfactants are in the range of 300–400 g/mol, whereas the nonionics are above 1000 g/mol; hence, as the comparison is made at constant weight concentration, the molar concentration of all ionic surfactants is 2 to 3 times higher than the nonionics. The effect of the surfactant structure on fenofoibrate solubilization in the absence of bile extract was analyzed in detail in our previous work, which showed that the micellar solubilization capacity is higher for surfactants with a longer hydrophobic chain length and sulfate headgroup.44

Effect of Bile-to-Surfactant Ratio on Drug Solubility.

Experiments at constant total molar concentration of bile + surfactant (10 mM) and different bile-to-surfactant ratios were performed to clarify better the role of bile–surfactant interactions on drug solubility. Four surfactants with different headgroup types and charges were studied, Tween 20 (nonionic), C$_{16}$EO$_{20}$ (nonionic), C$_{12}$SO$_4$Na (anionic), and C$_{14}$TAB (cationic). For Tween 20, the fenofoibrate solubility decreased linearly with increasing the molar fraction of bile extract, $f_{\text{bile}} = C_{\text{bile}} / (C_{\text{bile}} + C_{\text{surf}})$, see Figure 2A.

![Figure 2A](image_url)

Figure 2. (A) SE of fenofoibrate and (B) fenofoibrate solubility in the surfactant + bile extract mixtures, scaled with the solubility in surfactant-only solutions, S / S_{surf}. The results are presented as a function of the molar fraction of bile salts in the surfactant + bile extract mixtures. The studied surfactants are C$_{14}$TAB (green triangles), Tween 20 (red circles), C$_{12}$SO$_4$Na (blue squares), and C$_{16}$EO$_{20}$ (pink stars). The total surfactant + bile concentration is fixed at 10 mM. All samples contain 137 mM NaCl and 10 mM KCl. The pH of the bile + surfactant mixtures was 6.0 ± 0.3. The results are presented as mean ± SD for $n = 3$–6 (the error bars can be smaller than the symbols). For $n = 2$, both experimental points are plotted.

In contrast, the presence of even a small fraction of bile ($f_{\text{bile}} = 0.2$) in the mixture resulted in a pronounced decrease in fenofoibrate SE for the charged C$_{14}$TAB and C$_{12}$SO$_4$Na surfactants: SE decreased from ≈ 110 for the surfactant-only systems to SE = 40 (for C$_{14}$TAB + bile) and to SE = 25 (for C$_{12}$SO$_4$Na + bile), at $f_{\text{bile}} = 0.2$. Further increase of f_{bile} had no significant effect on fenofoibrate solubility in C$_{12}$SO$_4$Na + bile mixtures, whereas a shallow minimum was observed in the...
C₁₄TAB + bile solution at f₄₅ = 0.5. The nonionic C₁₂EO₂₀ displayed an intermediate behavior; the decrease in SE upon addition of bile was smaller than that of the ionic surfactants but bigger than that of Tween 20.

These different regimes of drug solubilization can be observed even more clearly when the results are scaled with the drug solubility in surfactant-only solutions, S/Sₘₛᵤₙₐₑ where S is fenofibrate solubility in each bile extract + surfactant mixture, and Sₘₛᵤₙₐₑ is the solubility in the solution of the respective surfactant in the absence of bile (viz. at f₄₅ = 0), see Figure 2B.

To gain more insight on the mechanisms that govern these trends, additional experiments at low surfactant concentrations in the absence of bile were performed. In Figure 3, the SE of fenofibrate in surfactant-only solutions is compared with the SE measured in the mixed bile + surfactant solutions. The results are plotted as a function of the concentration of surfactant in each solution, omitting the bile salts, which are present in the mixed bile extract + surfactant solutions. In agreement with the results described in the previous paragraph, the presence of bile had a minor effect on the fenofibrate solubility in Tween 20 solutions, whereas a very strong decrease was observed for C₁₂SO₄Na and C₁₄TAB at the same surfactant concentration. For example, the fenofibrate SE measured in a solution of 6 mM C₁₂SO₄Na was SE = 53, compared to only SE = 11 for a solution which contains 6 mM C₁₂SO₄Na, but it is in the presence of the 4 mM bile extract. The effect for C₁₄TAB was of similar magnitude: fenofibrate SE = 61 was measured for 6 mM C₁₄TAB, compared to SE = 14 for 6 mM C₁₄TAB + 4 mM bile extract. Therefore, the presence of bile extract in solutions of C₁₂SO₄Na and C₁₄TAB significantly decreases fenofibrate solubilization.

Experiments with two additional hydrophobic drugs (danazol and progesterone) were performed to clarify whether the observed effects of surfactant type are valid also for drugs with different molecular structures. The solubilities of danazol and progesterone in bile + surfactant mixtures at different bile-to-surfactant ratios were measured and compared with fenofibrate. To account for the different solubilities of the drugs in the surfactant micelles, the results were again scaled with the drug solubility in the surfactant-only system (S/Sₘₛᵤₙₐₑ), see Figure 4.

The presence of a minimal fraction of bile extract in the solution (f₄₅ = 0.2) very strongly decreased the drug solubility for all studied drugs in the solutions of cationic C₉TAB and anionic C₁₂SO₄Na surfactants. In contrast, a linear decrease of the drug solubility with the increase of bile extract fraction was observed in solutions containing the nonionic surfactant Tween 20 for fenofibrate and danazol. The solubility of progesterone also linearly decreased from f₄₅ = 0−0.6; however, further increase of the bile extract fraction had a small effect on progesterone solubility.

Bile Extract vs Sodium Taurodeoxycholate: Effect on Fenofibrate Solubility. All experiments presented so far were performed with porcine bile extract, which is a mixture of bile salts and other surface-active substances, such as phospholipids, fatty acids, and cholesterol. To check whether the observed strong effects on drug solubility are due mainly to the interactions between the surfactants and the bile salts, fenofibrate solubility was studied also in binary mixtures of surfactants with a single bile salt, NaTDC, which is one of the principal taurine-conjugated bile salts in human bile.⁴²

A very good agreement between the results from the experiments with porcine bile extract and NaTDC was obtained for C₁₂SO₄Na, C₁₄TAB, and Tween 20, see Figure 5. All major trends observed with the bile extract were reproduced very well with the single bile salt. Small differences were observed only at high fractions of bile (f₄₅ > 0.5). For all systems studied, fenofibrate SE was slightly higher for the mixtures surfactant + porcine bile extract, compared to the mixtures surfactant + NaTDC. The latter is due to the presence of additional surface-active components in the bile extract (phospholipids and fatty acids).⁴³,⁴⁴ Also, the shallow minimum in fenofibrate SE observed around f₄₅ = 0.5 for the bile extract + C₁₄TAB mixtures was even more pronounced for NaTDC + C₁₄TAB: fenofibrate solubility could not be measured at f₄₅ = 0.5 and 0.6, as it was below the limit of detection of the HPLC method (3

Figure 3. Fenofibrate SE as a function of the concentration of (A) Tween 20, (B) C₁₂SO₄Na, and (C) C₁₄TAB surfactants in the presence of surfactant only (red circles) or in mixed solutions of surfactant + bile extract (blue triangles). The total surfactant + bile concentration is fixed at 10 mM for the mixed surfactant + bile solutions (blue triangles). All samples contain 137 mM NaCl and 10 mM KCl. The pH of the bile + surfactant mixtures was 6.0 ± 0.3. The results for the bile + surfactant mixtures are presented as mean ± SD for n = 3–6 (the error bars can be smaller than the symbols), whereas for n = 2, both experimental points are plotted. The results for the surfactant-only solutions are from single experiments.
Determination of CMC in Mixed NaTDC + Surfactant Solutions. The good reproducibility of the main trends in fenofibrate SE when the porcine bile extract was replaced by pure NaTDC provided an opportunity to study in more detail the surfactant–bile salt interactions, which play such an important role in drug solubility in biorelevant media. One of the classic approaches to assess these interactions is to measure the CMC of the mixed NaTDC + surfactant solutions and check if there is a minimum in the CMC, compared to the CMC of the individual amphiphiles.

The CMCs of the individual surfactants, NaTDC, and the binary surfactant + NaTDC mixtures at a ratio of 1:1, as determined from the surface tension isotherms (see Figure S1 in the Supporting Information), are compared in Figure 6. One sees, that the mixtures of NaTDC + charged surfactants displayed a pronounced minimum in the CMC, whereas a shallow minimum was observed for the nonionic polysorbate surfactant + NaTDC mixture. The observed pronounced minima in the mixtures of NaTDC and ionic surfactants indicate a strong attraction between the molecules of the two components (NaTDC and surfactant), irrespectively of the

µg/mL. Formation of liquid droplets was visually observed in these samples.

Figure 4. Drug solubility in mixtures of (A) Tween 20 + bile, (B) \(C_{12}\text{SO}_4\text{Na} + \text{bile}\), and (C) \(C_{14}\text{TAB} + \text{bile}\). The drug solubility is scaled with the solubility in surfactant-only solutions, \(S/S_{surf}\), and the results are presented as a function of the molar fraction of the bile salts in the surfactant + bile extract mixtures. The results are obtained with the drugs progesterone (green triangles), fenofibrate (red circles), and danazol (blue squares). The total surfactant + bile concentration is fixed at 10 mM. All samples contain 137 mM NaCl and 10 mM KCl. The pH of the bile + surfactant mixtures was 6.0 ± 0.3.

Figure 5. Fenofibrate SE as a function of the molar fraction of bile salts in surfactant + bile mixtures for (A) Tween 20, (B) \(C_{12}\text{SO}_4\text{Na}\), and (C) \(C_{14}\text{TAB}\) surfactants. The bile salts source is porcine bile extract (red circles) or NaTDC (green triangles). The total surfactant + bile concentration is fixed at 10 mM. All samples contain 137 mM NaCl and 10 mM KCl. The error bars can be smaller than the symbols. The results for the bile + surfactant mixtures are presented as mean ± SD for \(n = 3\)–\(6\) (the error bars can be smaller than the symbols), whereas for \(n = 2\), both experimental points are plotted. The results for the NaTDC + surfactant mixtures are from single experiments.
experiments were performed at a total concentration of 10 mM, Tween 60, C16EO20, and their 1:1 mixtures with NaTDC. The studied by 1H NMR spectroscopy. Disulffate colloidal aggregates in surfactant and NaTDC solutions were investigated by DOSY. The output from a DOSY experiment can be presented as a 2D map in which each spot is characterized by the 1H chemical shift and the diffusion coefficient of the respective molecule. As most of the surfactant and NaTDC molecules are incorporated within micellar aggregates (due to the low CMC values and, hence, low concentration of the free monomers), the size and the composition of the aggregates formed in the respective solutions can be determined.

The results obtained for the mixture of Tween 20 and NaTDC after solubilization of fenofibrate are presented in Figure 7. One sees that all 1H signals corresponding to Tween 20 molecules are characterized with one diffusion coefficient, which is different from the diffusion coefficient associated with the signals for the NaTDC molecules. Therefore, the majority of Tween 20 and NaTDC molecules are not present in the same (mixed) aggregates. Instead, these molecular species are incorporated in separate colloidal aggregates with different sizes.

To determine accurately the diffusion coefficient and, hence, the size of the aggregates, regression analysis of the 1H peak intensity decay with increasing gradient strength was used (see the Materials and Methods section for more details). The aggregate size in surfactant + NaTDC mixtures after fenofibrate solubilization is presented in Figure 8A. In the solution of C12SO4Na + NaTDC, both the surfactant and the bile salt were present in micelles with a diameter of 4.1 ± 0.3 nm. In contrast, in the Tween 20 + NaTDC solution, the nonionic surfactant molecules were incorporated in micelles with d = 6.7 ± 0.2 nm, compared to d = 4.4 ± 0.7 nm for the micelles composed of bile salt molecules. Similar behavior was observed also in the other mixtures of NaTDC + nonionic surfactants (Tween 60 and C16EO20): in all cases, the nonionic surfactant and the NaTDC molecules were not incorporated in the same micellar aggregates. Instead, NaTDC formed micelles with diameters between 4 and 6 nm, whereas the nonionic surfactants formed bigger micelles with diameters ranging from 7 to 9 nm.

The micelle size in solutions of the individual surfactants were also measured, see Figure 8B. The diameter of the NaTDC-only micelles is 2.8 ± 0.2 nm, which is significantly smaller than the size of NaTDC aggregates measured in the NaTDC + surfactant mixtures (d4% = 4–6 nm). In contrast, the size of the micelles measured in solutions of the individual nonionic surfactants was bigger than the size of the aggregates in which the corresponding molecules were found in the NaTDC + surfactant mixtures. For example, the size of Tween 20-only micelles was 9.1 ± 0.9 nm, compared to 6.7 ± 0.2 nm for the same molecules in the mixed Tween 20 + NaTDC solution. A similar effect was observed also for Tween 60 and C16EO20. These results are discussed in the Discussion section below, after presenting the complete set of experimental data.

Comparison of the size of the empty and drug-loaded micelles showed that fenofibrate solubilization has no significant effect on the diameter of C12SO4Na micelles (d = 3.6 nm), see Figure S2 in the Supporting Information. The diameter of NaTDC and Tween 20 micelles increased slightly after solubilization of fenofibrate, from 2.6 to 2.8 for NaTDC and from 8.1 to 9.1 for Tween 20.

Figure 6. CMCs as a function of the molar fraction of NaTDC in surfactant + NaTDC mixtures for (A) C12SO4Na, (B) C14TAB, and (C) Tween 20. The black lines represent the calculated mixed CMC of the surfactant + NaTDC mixtures when ideal mixing is assumed. All samples contain 137 mM NaCl and 10 mM KCl. The results are obtained from surface tension isotherms, measured at T = 37 °C.

Intramicellar Interactions by NMR. The properties of the colloidal aggregates in surfactant and NaTDC solutions were studied by 1H NMR spectroscopy. Diffusion-ordered NMR spectroscopy (DOSY) allowed simultaneous determination of micelle size and molecular composition, whereas the shift of the peak positions in the standard one-dimensional NMR spectra was used as a tool to investigate the interactions between the surfactant and NaTDC molecules inside the mixed micelles. This approach was used for solutions of C12SO4Na, Tween 20, Tween 60, C16EO20, and their 1:1 mixtures with NaTDC. The experiments were performed at a total concentration of 10 mM, similarly to the solubility measurements. The peaks in the 1H NMR spectrum of NaTDC and fenofibrate were assigned to their respective atoms on the basis of literature data and simulated 1H NMR spectra (ChemBioDraw Ultra 11.0 software, Cambridge soft).

Micelle Size and Composition As Determined via DOSY. The output from a DOSY experiment can be presented as a 2D map in which each spot is characterized by the 1H chemical shift and the diffusion coefficient of the respective molecule. As most of the surfactant and NaTDC molecules are incorporated within micellar aggregates (due to the low CMC values and, hence, low concentration of the free monomers), the size and the composition of the aggregates formed in the respective solutions can be determined.
Interactions between NaTDC, Surfactant, and Fenofobrate Molecules Studied via Chemical Shifts and NOESY. The precise location of the 1H peaks in the NMR spectra of a given molecule can be significantly influenced by other groups (viz. molecules) which are located close by. This results in a shift of the 1H NMR spectrum toward smaller or bigger ppm values due to the "shielding" or "de-shielding" action on the studied 1H nuclei, exerted by the atoms of the neighboring molecule. The so-called "shielding" is explained with higher electron density around the respective 1H nuclei due to presence of nearby electron-donating groups, whereas "de-shielding" occurs when the electron density around the nucleus is reduced due to electron-withdrawing groups. Hence, spatial proximity and interactions between the molecules can be assessed when the chemical shifts in a reference sample are compared to the chemical shifts in the sample of interest.

The change in the chemical shifts of NaTDC and surfactant molecules in their mixed solutions were calculated as $\Delta = \delta_{mix} - \delta_{ref}$, where δ_{mix} is the chemical shift of a molecule in the mixed NaTDC + surfactant solutions, and δ_{ref} is the chemical shift measured in a solution of the same molecules in D$_2$O.

The biggest changes in the NMR spectrum were observed for NaTDC molecules in the presence of the anionic C$_{12}$SO$_4$Na (Table 2). For example, the NaTDC triplet at C-25 (next to the amido group) was transformed into a doublet of triplets in the presence of C$_{12}$SO$_4$Na. Such an effect was not observed in any of the NaTDC + nonionic surfactant mixtures. Furthermore, the NaTDC protons at C-26 experienced significant positive shifts (>0.020 ppm) in the mixed C$_{12}$SO$_4$Na + NaTDC solutions, whereas the shift was either much smaller (at C-1 and C-21) or in the opposite direction (negative shift at C-26) in all nonionic surfactants + NaTDC solutions. All nonionic surfactants induced a negative shift of the protons at C-18 and C-14, whereas such an effect was not observed for C$_{12}$SO$_4$Na.

The changes in the proton chemical shifts of surfactant molecules induced by NaTDC were relatively small (<0.015 ppm), see Table S1 in the Supporting Information. In general, the protons of the anionic C$_{12}$SO$_4$Na surfactant molecules experienced negative shifts, whereas positive shifts were observed for all nonionic surfactants.

To further investigate the significant interactions observed in the mixed NaTDC + C$_{12}$SO$_4$Na solution (viz. peak splitting), NOESY experiments were performed. This NMR technique is used to identify protons that are in close proximity, at less than 0.5 nm. However, the results showed that there are no protons in NaTDC that are closer than 0.5 nm to any of the protons in C$_{12}$SO$_4$Na.

The fenofobrate molecules solubilized in the bile and surfactant micelles can be considered as a probe which could provide additional information about the properties of the micelles. Several proton peaks associated with the aromatic structure of fenofobrate were detected, and the change of their chemical shifts under different conditions was evaluated (see Figure S3 and Table S2 in the Supporting Information). The biggest changes in the chemical shifts of fenofobrate aromatic protons were measured for the C$_{12}$SO$_4$Na + NaTDC mixture (when compared to C$_{12}$SO$_4$Na-only solution), whereas the effects were much smaller for the Tween 20 and 60 surfactants. Intermediate behavior was observed for the C$_{16}$EO$_{20}$ system.

DISCUSSION

The experimental results obtained in the current study (see Figures 1–4) show clearly that the extent of drug SE in simple aqueous solutions of the studied surfactants can be much higher than that measured for the same drug + surfactant system, but in biorelevant media. The drug molecular structure did not have a significant effect on the observed trends, which were the same for the two types of steroidal drugs (danazol and progesterone) and one nonsteroidal drug (fenofobrate). Comparison between the results obtained with porcine bile extract and with a single bile salt (NaTDC) demonstrated that bile salts are the main component in the biorelevant media which governs the drug solubility, whereas the other surface active components present in the bile extract (6% phospholipids and 7% fatty acids) have only a minor effect on the solubilization of the studied set of drug molecules (Figure S). Hence, the interactions between the...
Solubilization of Feno

C mixtures, (green triangles) micelles coexist in the binary 1:1 surfactant + NaTDC DOSY NMR. (A) Surfactant-rich (blue squares) and NaTDC-rich micelles were identiﬁed separately in the solution, or these are, in fact, mixed micelles. The measured change in the chemical shifts of the 1H NMR spectrum of NaTDC in the mixed NaTDC + C12SO4Na solution (see Table 2) provides evidence that the surfactant and bile salt molecules are incorporated in the same aggregates. In particular, the transformation of a triplet to doublet of triplets at C-25 and the signiﬁcant downﬁeld shift at C-26 of NaTDC both demonstrate that the presence of C12SO4Na changes profoundly the environment of the NaTDC molecules in the micelles, which could only occur when mixed micelles are formed. The downﬁeld shift and the peak splitting are most likely caused by spatial proximity of the hydrophilic tauro-moiety of NaTDC and the sulfate headgroup of C12SO4Na. However, since both headgroups are similarly charged, the electrostatic repulsion prevents them from being in very close contact, as evidenced also by the NOESY spectra. Most likely, the sulfate group of C12SO4Na is close to the amido-group of NaTDC, which causes the observed changes at C-25 and C-26 of the 1H NMR spectrum of NaTDC. Increased penetration of water between the bile salt and the surfactant head groups in the mixed micelles is also possible, but cannot account for the observed effects: the NMR spectrum at submicellar concentration of NaTDC (1 mM), where its molecules are fully hydrated, shows only a slight positive shift at C-25 and C-26 (see Figure S4 in the Supporting Information).

The signiﬁcant changes in the chemical shifts of fenofibrate aromatic protons when NaTDC is mixed with C12SO4Na are due to the changed environment of the solubilized fenofibrate in the micelles. These shifts also support the explanation that mixed micelles are formed in this system. The pronounced minimum in the CMC of the ionic surfactant + NaTDC mixtures (Figure 6) provides additional evidence for the formation of mixed micelles with a strong attraction between the NaTDC and C12SO4Na molecules.23 We can thus conclude that the ionic surfactants and bile salts form mixed micelles with low solubilization capacity for hydrophobic drugs.

The speciﬁc effect of surfactant charge (positive or negative) was minor and was manifested mainly as a shallow minimum in the drug solubility around f bile = 0.5 for the mixtures of cationic surfactants and the bile salts are the key factors which govern the drug solubility in these complex mixtures.

The signiﬁcant decrease in drug solubility for the ionic surfactant + bile mixtures can be explained by the formation of mixed micelles with low drug solubilization capacity. The latter hypothesis is supported by the direct measurement of the micelle size and composition by 1H DOSY, which showed that the NaTDC and C12SO4Na molecules are present in aggregates with the same size (d1/2 ≈ 4 nm) in the mixed NaTDC + C12SO4Na solution (Figure 8). However, the question stands whether NaTDC and C12SO4Na micelles with the same size coexist separately in the solution, or these are, in fact, mixed micelles. The measured change in the chemical shifts of the 1H NMR spectrum of NaTDC in the mixed NaTDC + C12SO4Na solution (see Table 2) provides evidence that the surfactant and bile salt molecules are incorporated in the same aggregates. In particular, the transformation of a triplet to doublet of triplets at C-25 and the signiﬁcant downﬁeld shift at C-26 of NaTDC both demonstrate that the presence of C12SO4Na changes profoundly the environment of the NaTDC molecules in the micelles, which could only occur when mixed micelles are formed. The downﬁeld shift and the peak splitting are most likely caused by spatial proximity of the hydrophilic tauro-moiety of NaTDC and the sulfate headgroup of C12SO4Na. However, since both headgroups are similarly charged, the electrostatic repulsion prevents them from being in very close contact, as evidenced also by the NOESY spectra. Most likely, the sulfate group of C12SO4Na is close to the amido-group of NaTDC, which causes the observed changes at C-25 and C-26 of the 1H NMR spectrum of NaTDC. Increased penetration of water between the bile salt and the surfactant head groups in the mixed micelles is also possible, but cannot account for the observed effects: the NMR spectrum at submicellar concentration of NaTDC (1 mM), where its molecules are fully hydrated, shows only a slight positive shift at C-25 and C-26 (see Figure S4 in the Supporting Information).

The signiﬁcant changes in the chemical shifts of fenofibrate aromatic protons when NaTDC is mixed with C12SO4Na are due to the changed environment of the solubilized fenofibrate in the micelles. These shifts also support the explanation that mixed micelles are formed in this system. The pronounced minimum in the CMC of the ionic surfactant + NaTDC mixtures (Figure 6) provides additional evidence for the formation of mixed micelles with a strong attraction between the NaTDC and C12SO4Na molecules.23 We can thus conclude that the ionic surfactants and bile salts form mixed micelles with low solubilization capacity for hydrophobic drugs.

The speciﬁc effect of surfactant charge (positive or negative) was minor and was manifested mainly as a shallow minimum in the drug solubility around f bile = 0.5 for the mixtures of cationic

Figure 8. Diameter of the drug-loaded micelles, as determined by 1H DOSY NMR. (A) Surfactant-rich (blue squares) and NaTDC-rich (green triangles) micelles coexist in the binary 1:1 surfactant + NaTDC mixtures, C NaTDC = 10 mM. (B) Micelle size in individual surfactant solutions, C = 10 mM (red circles). The different molecular species in the micelles were identiﬁed by their characteristic 1H NMR spectrum peaks. Regression analysis of the decay of at least two characteristic, nonoverlapping 1H NMR peaks per molecule was used to determine the average micelle diameter (±3σ, n = 3–6). All samples contain 137 mM NaCl and 10 mM KCl. All solutions are studied after solubilization of fenofibrate at T = 37 °C and are measured at the same temperature.

Table 2. Change in the Chemical Shifts of 1H Peaks of NaTDC Molecules in Surfactant + NaTDC Mixed Solutions, after Solubilization of Fenofibrate

<table>
<thead>
<tr>
<th>NaTDC carbon number</th>
<th>change in the chemical shifts of NaTDC molecules (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C12SO4 Na</td>
</tr>
<tr>
<td>1</td>
<td>+0.021</td>
</tr>
<tr>
<td>14-b</td>
<td>overlap</td>
</tr>
<tr>
<td>18</td>
<td>no shift</td>
</tr>
<tr>
<td>21</td>
<td>+0.023</td>
</tr>
<tr>
<td>25 (triplet)</td>
<td>peak splitting (triplet → doublet of triplets)</td>
</tr>
<tr>
<td>26 (triplet)</td>
<td>+0.030</td>
</tr>
</tbody>
</table>

The total surfactant + NaTDC concentration is 10 mM at a ratio of 1:1. The reference ppm values used for the calculation of the change in the chemical shifts were determined from the solution of NaTDC (at C = 10 mM) after fenofibrate solubilization. Shifts bigger than 0.001 ppm are considered as signiﬁcant.
Drug-loaded micelles solutions

Figure 9. Illustration of the model experiment, aimed to clarify the effect of the biorelevant medium (and of the bile salts present in it) on the solubilization capacity of the surfactant micelles. Drug-loaded micelles of surfactants and bile salts were prepared separately and then mixed at an 1:1 ratio. The solution of Tween 20 + bile remains clear, whereas precipitation is observed in the mixtures of bile salts with ionic surfactants. Counterions are not displayed in order to improve the clarity of the illustration.
CONCLUSIONS

The effect of surfactants on the solubility of poorly water-soluble drugs in biorelevant dissolution media was studied in surfactant, bile, and bile + surfactant solutions at different bile and surfactant concentrations, mimicking those in the human intestinal tract. The role of bile salt–surfactant interactions on drug solubility was confirmed by experiments with mixtures of surfactant and a single bile salt (NaTDC). NMR spectroscopy provided additional information about the micelle size and intramicellar interactions between the surfactant and bile salt molecules. The main conclusions of the study are summarized as follows:

- Addition of bile salts to ionic surfactant solutions leads to drug precipitation due to the formation of mixed bile + surfactant micelles with drug low solubilization capacity. In contrast, the drug remains solubilized in nonionic surfactant + bile salt mixtures.
- The different behaviors of the mixed nonionic surfactant + bile solutions are due to the formation of separate surfactant-rich and bile salt-rich micelles, as evidenced by 1H DOSY.
- Strong interactions between the headgroup of the alkylsulfate surfactant and the amido group of NaTDC explain the formation of mixed micelles for these similarly charged surfactants.
- Electrostatic attraction between the oppositely charged trimethylammonium bromide surfactant and the bile salts drives the formation of ionic liquids at ratios close 1:1 and of mixed micelles at the other ratios.

An essential conclusion of the study is that drug solubility is affected very significantly by specific bile–surfactant interactions, in which the drug molecules do not play a major role per se. Hence, the similar effects, demonstrated in the current study with fenofibrate, danazol, and progesterone, should be valid for other poorly water-soluble drugs, as long as the drug solubilization has a small effect on the properties of the mixed surfactant + bile micelles.

The large impact of surfactant–bile interactions on the drug solubility highlights the role of the complex interplay between commonly employed pharmaceutical excipients and the typical components of the human intestinal fluids. These interactions can significantly change one of the key parameters which governs the oral absorption of poorly water-soluble drugs. The obtained mechanistic understanding could be implemented in existing oral absorption simulators and PBPK models, with the aim to improve the in silico predictions and to facilitate the early drug development.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.molpharmaceut.8b00884.

1H NMR chemical shifts of fenofibrate solubilized in surfactant and NaTDC micelles; determination of micelle size by DOSY; change in the 1H chemical shifts of surfactant molecules in surfactant + NaTDC solutions; change in the chemical shifts of fenofibrate aromatic protons in surfactant + NaTDC mixtures; determination of the diffusion coefficient and aggregate size from different 1H signals in a DOSY spectrum; 1H NMR spectra of fenofibrate after solubilization in surfactant, NaTDC, and NaTDC + surfactant solutions; 1H NMR spectra of NaTDC at concentration above CMC, below CMC, and in mixture with C12SO4Na; diameters of the empty and drug-loaded micelles of NaTDC, C12SO4Na, and Tween 20; fit of the 1H peak intensity decay with increasing gradient strength; surface tension isotherms used for CMC determination; pH of bile extract + surfactant and NaTDC + surfactant mixtures (PDF)

AUTHOR INFORMATION

Corresponding Author
*Phone: (+359-2) 962.5310; Fax: (+359-2) 962.5643; E-mail: ZV@LCPE.UNI-SOFIA.BG.

ORCID

Zahari Vinarov: 0000-0003-1857-1840
Slavka Tcholakova: 0000-0001-8091-7529
Nikolai Denkov: 0000-0003-1118-7635

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Miss Denitsa Radeva and Miss Petra Dobreva for their help with several of the drug solubility experiments. The discussions with Dr. Svetoslav Anachkov are gratefully acknowledged. The work was supported by the Operational Programme “Science and Education for Smart Growth” 2014-2020, cofinanced by the European Union through the European Structural and Investment Funds, Grant BG05M2OP001-1.002-0012-C01 “Sustainable utilization of bio-resources and waste of medicinal and aromatic plants for innovative bioactive products”.

REFERENCES

