ABSTRACT: We describe several unexpected phenomena, caused by a solid–solid phase transition (gel-to-crystal) typical for all main classes of lipid substances: phospholipids, triglycerides, diglycerides, alkanes, etc. We discovered that this transition leads to spontaneous formation of a network of nanopores, spreading across the entire lipid structure. These nanopores are spontaneously impregnated (flooded) by water when appropriate surfactants are present, thus fracturing the lipid structure at a nanoscale. As a result, spontaneous disintegration of the lipid into nanoparticles or formation of double emulsions is observed, just by cooling and heating of an initial coarse lipid-in-water dispersion around the lipid melting temperature. The process of nanoparticle formation is effective even after incorporation of medical drugs of high load, up to 50% in the lipid phase. The role of the main governing factors is clarified, the procedure is optimized, and the possibility for its scaling-up to industrially relevant amounts is demonstrated.

KEYWORDS: solid lipid nanoparticle, nanoemulsion, nanopore, polymorphic phase transition, wetting, triacylglyceride

Solid lipid nanoparticles (SLNs) have been widely studied in recent years because of their high potential for multiple applications, including controlled and localized drug release at specific cells, organs, or tissues.1–3 Nanoparticles are used also in foods, cosmetics, and home care products to encapsulate, protect, and deliver lipophilic components such as fragrances, flavors, vitamins, and biologically active lipids, for example, prostaglandins, \(\omega-3 \) fatty acids, and other unsaturated fatty acids.5–9 The products containing nanoparticles have several advantages over those containing bigger particles. They ensure better bioavailability10,11 in oral and parenteral delivery systems and better endocytosis uptake in targeted organs,12 prolonged shelf life due to better stability to particle aggregation and gravitational separation, and may be optically transparent which is important for many beverages and in some food and pharmaceutical applications.1,6,7

SLNs are obtained from oil-in-water nano- (kinetically stable) and micro (thermodynamically stable) emulsions. Two main types of preparation methods are distinguished, depending on the energy required for drop breakage: high-energy methods and low-energy methods.1,6–8 In the high-energy methods, microfluidizers, high-pressure homogenizers, and ultrasonicators are used to obtain nanosized droplets. Most of the energy introduced in these homogenizers is lost as heat and sound. Only a very small fraction of the used energy, well below 0.01%, is used for the actual drop breakage process and the related surface energy increase.13

The low-energy methods include several phase-inversion methods.1,6–8 Note that the most popular “phase inversion temperature” (PIT) method could be of high- or low-energy demand, depending on the amplitude of temperature variation needed. These later methods are system specific and are applicable to a limited number of systems. Furthermore, these methods usually require specific surfactants of rather high concentration, above ca. 10 wt \%.7

Triacylglycerols (TAGs) are of outstanding interest in this area of research, as they are the main components in SLN for pharmaceutical, cosmetics, and food applications.1,3,6–10 On the other hand, the preparation of TAG nanoparticles is a
particular challenge because TAG materials have relatively high interfacial tension and viscosity, at low polarity and water solubility. Several examples for preparation of TAG nanoparticles were published in the literature, most of them based on the usage of two or more cycles of high-pressure homogenization or sonication, preparation of microemulsions upon heating, and phase inversion. Each of these methods has drawbacks and limitations when applied to TAGs, as explained above and in the original studies.

Searching for different methods to produce lipid nanoparticles, we unexpectedly discovered several related phenomena, all caused by a gel-to-crystal (α → β) lipid phase transition. We found that this transition leads to spontaneous formation of a network of nanopores, spreading across the entire lipid structure. When the lipid is in contact with an aqueous surfactant solution, these nanopores are spontaneously impregnated by water when appropriate surfactants are present. As a result, the lipid structure bursts spontaneously into 20–100 nm nanoparticles, dispersed in the aqueous phase. This method of lipid nanoparticle formation is energy efficient and scalable and can be applied to a wide range of substances, including TAGs, phospholipids, diacylglycerols, and alkanes. The lipid could be loaded with actives of very high concentration (including drugs) without affecting the process. Thus, we have created a convenient platform for studying lipid nanoparticles, including for drug research and formulation design.

RESULTS AND DISCUSSION

Cold-Burst Phenomenon. The cold-burst process developed in the current study produces nanoparticles, starting from micrometer-sized oil emulsion droplets (e.g., of di- or triacylglycerols, phospholipids, alkanes), dispersed in aqueous solution of water-soluble and (possibly) oil-soluble surfactants with hydrophobic tails having a number of carbon atoms ≥ C12. The initial coarse emulsions can be prepared by conventional emulsification methods, such as rotor-stator homogenization, mixer agitation, and membrane emulsification or by simple hand shaking of the oil and aqueous surfactant solution closed in a container. In our experiments, we prepared the initial coarse oil-in-water emulsions either by rotor-stator homogenization or by membrane emulsification when monodisperse drops were required. The specific initial drop size is not of particular importance and can be up to a few hundreds of micrometers.

The method consists of two main steps. First, the coarse emulsion is cooled so that the dispersed drops freeze into solid lipid particles, and, then, the dispersion with solid particles is either stored at temperature below the melting point of the lipid particles or heated up slowly to temperature around the lipid melting point. In both cases we observed that the lipid particles burst into multiple submicrometer and nanometer particles if appropriate surfactants ensuring low three-phase contact angle are used; see the Main Factors section for an explanation of the role of contact angles.

We illustrate the observed processes with the emulsion of C12TG (trilaurin) droplets, dispersed in an aqueous solution of the non-ionic surfactants C18EO20 (1.5 wt %) and C18:1EO2 (0.5 wt %). When the aqueous dispersion containing frozen C12TG particles is stored for 1 h at 5 °C, which is well below the bulk melting temperature of C12TG, the microparticles spontaneously burst into much smaller particles which literally “disappear” when observed under the optical microscope, because the formed nanoparticles are much smaller than the wavelength of the visible light (Figure 1a–d). This process of particle bursting was observed also when we heated the same C12TG dispersion with low heating rate, between ca. 0.5 and 2 °C/min; see Figure 1e–h and Supplementary Movie 1.

As seen in Figure 1a,e, the initial frozen particles have bright colors when observed in polarized transmitted light, because of the alignment of the triglyceride molecules in the crystalline

Figure 1. Microscope images showing the spontaneous disintegration (cold-bursting) of frozen trilaurin (C12TG) particles, dispersed in aqueous surfactant solution. (a–d) C12TG particles stored for 60 min at T = 5 °C, far below the C12TG melting temperature of Tm = 46 °C. The particles spontaneously disintegrate into much smaller particles with diameter <0.4 μm. (e–h) C12TG particles observed upon heating at 2 °C/min rate. The particles first increase their volume (f,g) and then disintegrate completely at T ≈ 30 °C. The aqueous medium contains 1.5 wt % C18EO20 and 0.5 wt % C18:1EO2 as non-ionic surfactants. Scale bars, 10 μm.
lattice. Upon storage at low temperatures (Figure 1b) or upon temperature increase (although still remaining below the particles’ melting temperature) (Figure 1fg), the particles visually increase their size with time, while their colors almost disappear. The observed volume increase demonstrates that the aqueous phase penetrates into the interior of the frozen particles, see the explanations in the Mechanism section. Afterward, each micrometer particle bursts into millions of smaller particulates (Figure 1dh). As an additional example, Supplementary Movie 2 shows the spontaneous disintegration process of tripalmitin particles with an initial diameter of \(d_0 \approx 90 \, \mu m\) which burst into particulates with diameter of \(\approx 0.4 \, \mu m\) after one freeze–thaw cycle only, that is, from each initial 90 \(\mu m\) drop around 10 million individual small particles are formed at once, without any mechanical input into the system.

To clarify the capabilities of our approach for lipid nanoparticle formation, we studied more than 70 different combinations of triacylglycerols (TAGs) with chain lengths varied between 10 and 18 C atoms and of other oils, including hexadecane, dilaurin, and the phospholipid DPPC (see Supplementary Tables S1 and S2), emulsified in solutions of various non-ionic and ionic surfactants (Supplementary Table S3). Briefly, the non-ionic surfactants include alcohol ethoxylates with linearly connected ethoxy units (chemical formula \(\text{C}_n\text{EO}_m\) trade name Brij) with \(n\) varied between 12 and 18 C atoms and \(m\) varied between 2 and 50; alcohol ethoxylated surfactants with sorbitan ring in the hydrophilic head (\(\text{C}_n\text{SorbEO}_{20}\) Tween) with \(n\) varied between 12 and 18. Most of the surfactants had saturated hydrophobic tails, but we tested also surfactants with \(C_{18}\) unsaturated tails with a double bond in the middle (denoted as \(C_{18:1}\)). Two monoglyceride-diglyceride mixtures (MG-DG, denoted as SM1 and SM2) and \(C_{18}\)MG were also tested as surfactants. Two common ionic surfactants, with di

To explain the mechanism of the observed process of particle disintegration, we start with the observation that the liquid drops of TAGs cream toward the top of their emulsions, because they have lower mass density than that of the continuous water phase. However, after storing the dispersions of frozen TAG particles for a certain period (minutes to hours), we observed that these particles sank to

Table 1. Representative Results about the Efficiency of Cold-Burst Process with C14TAG Oil Drops (Initial Diameter between ca. 5 and 20 \(\mu m\)), Dispersed in Various Surfactant Solutions

<table>
<thead>
<tr>
<th>oil-soluble surfactants, wt %</th>
<th>water-soluble surfactants, concentration in wt %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no</td>
</tr>
<tr>
<td>0.1% C12EO4</td>
<td>−</td>
</tr>
<tr>
<td>0.5% C12EO4</td>
<td>−</td>
</tr>
<tr>
<td>1% C18:1EO2</td>
<td>−</td>
</tr>
<tr>
<td>0.5% SM1</td>
<td>−</td>
</tr>
</tbody>
</table>

"The sign ‘−’ means that the cold-burst process is not observed; the number of pluses increases with the efficiency of the cold-burst process; one ‘+’ means that some disintegration is observed, but it is not very efficient and many micrometer drops remain in the sample; ‘+++’ denotes very efficient cold-burst process in which all initial drops disintegrated to submicrometer entities after one cooling and heating cycle; ‘++++’ denotes intermediate behavior; ‘W/O/W’ means that cold-bursting is not observed, instead, double water-in-oil-in-water emulsion drops are formed.

To check whether this cold-burst process can be scaled-up to bulk TAG dispersions and to see what the minimal achievable size is of the formed nanoparticles, we performed experiments with batch dispersions contained in glass bottles (Figure 2). Several TAG-surfactant combinations were tested, as described in Figure 2. After one cooling and heating cycle, we measured by dynamic light scattering the volume-averaged particle diameter to be 410 ± 35 nm and the number-averaged diameter to be 300 ± 55 nm for all these systems, with oil weight fraction varied between 0.1 and 20 wt % (Figure 2). After two cycles, the particle size decreased further down to 170 ± 65 nm by volume. After several freeze–thaw cycles, the minimal particle diameter obtained was between 20 and 200 nm, depending on the specific TAG-surfactant combination (Figure 2b). As expected, the samples containing ≈20 nm particles were completely transparent and those with ≈100 nm were translucent, although the initial dispersions containing micrometer particles were Milky white (Figure 2c, d).

Note that the dispersions prepared by the above procedure are kinetically stabilized. They do not form spontaneously if the TAG and the surfactant solution are mixed and stored for a long period at a temperature above the TAG melting temperature. In other words, the phase transition energy of the particle freezing is used in our procedure to create nanoparticles with excessive surface energy, proportional to the inverse particle radius.

Mechanism. To explain the mechanism of the observed process of particle disintegration, we start with the observation that the liquid drops of TAGs cream toward the top of their emulsions, because they have lower mass density than that of the continuous water phase. However, after storing the dispersions of frozen TAG particles for a certain period (minutes to hours), we observed that these particles sank to

https://dx.doi.org/10.1021/acsnano.0c02946

ACS Nano 2020, 14, 8594–8604
Figure 2. Drop diameter in bulk TAG dispersions subject to particle freeze–thaw (FT) cycles. (a) Mean drop diameter by volume, as a function of the FT cycle number, for C14TG dispersions with different particle concentrations. The initial drops with diameter $d_{\text{ini}} \approx 33 \mu m$ were dispersed in aqueous solution of the non-ionic surfactants C18EO20 and C12EO4 (3:1 w/w). The blue, black, and green points (up to 9.8 wt % oil) are obtained at 4 wt % total surfactant concentration, and the red points for 16.7 wt % oil—at 6 wt %. (b) Mean drop diameter by volume for several TAG-surfactant combinations: C16TG with $d_{\text{ini}} \approx 10 \mu m$ (purple) and C14TG with $d_{\text{ini}} \approx 33 \mu m$ (blue) dispersed in C18EO20 + C12EO4 solution (3:1 w/w); C14TG with $d_{\text{ini}} \approx 33 \mu m$ (green) dispersed in surfactant solution of C18EO20 + SM1; C14TG with $d_{\text{ini}} \approx 20 \mu m$ (red) dispersed in surfactant solution of C18EO20 + SM2. Each point is average over ≥ 3 independent experiments. (c) Picture of bottles containing C14TG particles in C18EO20 + C18MG solution, as observed initially and after 1–4 FT cycles. After the third cycle, the mean drop diameter is $\approx 66 \text{ nm}$. (d) C14TG dispersion in C18EO20 + C16EO2 surfactant solution: initial sample with $d_{\text{ini}} \approx 25 \mu m$ (left) and after 3 FT cycles with particle diameter $\approx 20 \text{ nm}$ (right).

Figure 3. Mechanisms of particle bursting and double emulsion formation. (a) SAXS and (b) WAXS signals obtained upon heating of C14TG dispersion which has been crystallized rapidly by inserting a preheated sample at 60 $^\circ C$ into a cool chamber with $T = 10 ^\circ C$. Only the α-phase is present in this sample initially. Upon heating, it quickly transforms into more stable β-phase. Curves are shifted with respect to the y-axis for clarity. The aqueous phase contains 1.5 wt % C18EO20 + 0.5 wt % C12EO4 as non-ionic surfactants, with a heating rate of 2 $^\circ C$/min. (c) Schematics of the mechanisms for the formation of nanopores, nanoparticles, and double emulsion drops; see text for further explanations.
the bottom of the container, that is, the TAG solid particles increased their mass density upon storage which became higher than that of water, see Supplementary Movie 3. A similar process of particle sinking was observed also during the observations with optical microscopy, see Supplementary Movie 4. This mass density increase after certain period of storage at low temperature is a direct indication that the molecular packing inside the frozen TAG particles changes with time, as a result of solid-state phase transition in the particle interior.

Previous structural studies revealed that TAGs form mainly three polymorphic solid phases: \(\alpha \)-phase which is the least stable and most disordered one, with the lowest melting temperature; \(\beta \)-phase which is the most ordered one; and \(\beta' \)-phase which has intermediate properties.\(^{16,21-23}\) The mass density of \(\beta \)-phase of \(\text{C}_{14}\text{TG} \) is \(1.05 \, \text{g/mL} \), while the density of the isotropic liquid phase is \(0.8722 \, \text{g/mL}. \)\(^{21}\) Therefore, the observed density change is certainly due to a solid-state \(\alpha \rightarrow \beta \) (or \(\alpha \rightarrow \beta' \)) polymorphic phase transition inside the TAG particles, as confirmed by SAXS and WAXS measurements (Figure 3a,b). Upon such transition, the TAG molecules pack better, thus increasing the particle mass density above that of water.

The polymorphic transitions \(\alpha \rightarrow \beta \) (or \(\alpha \rightarrow \beta' \)) can occur in two different ways:\(^{22}\) if the sample is stored for a long period at temperatures below the melting temperature of the \(\alpha \)-phase, then a solid–solid (SS) state transition, \(\alpha \rightarrow \beta \) (or \(\beta' \)), may occur. Alternatively, if the temperature of the sample is
increased above the melting temperature of the α-phase, but still kept below the melting temperature of the β (or β') phase, then the so-called "melt-mediated (MM) transition" $\alpha \to \beta$ (or β') occurs. These two options explain why we could observe particle disintegration while using either of the two protocols, at a fixed temperature below the melting point of the lipid or upon slow heating up to melting of the lipid particles.

To explain the mechanism of particle bursting, we refer to several studies which reported the formation of nanovoids at the grain boundaries between the crystal domains in the frozen TAG phases. The formation of these nanovoids causes the so-called "negative pressure effect", resulting from the local contraction of the nanocrystallites in the course of the solid-state polymorphic transitions. In other words, the polymorph transitions lead to formation of a nanoporous internal structure in the lipid phase, containing nanosized crystalline β-domains which are separated by nanovoids.

Combining this structural information with our observations, we reveal the following mechanism of spontaneous nanoparticle formation in the cold-burst method (Figure 3c). Upon rapid freezing, the triglyceride droplets crystallize into more ordered crystalline β-form, because this is the phase with the lowest nucleation energy. When the sample is stored at a low temperature for a certain period or upon slow heating, $\alpha \to \beta$ polymorphic transition takes place, possibly passing through the intermediate β'-phase. Thus, the TAG molecules rearrange into more ordered crystalline β-domains, with nanovoids separating them. These nanovoids form a continuous three-dimensional (3D) porous network inside the lipid particles and have a "negative pressure" which sucks aqueous phase into the particle interior, where the surfactant solution fills the nanoporous structure between the crystalline lipid domains of the frozen particles and creates repulsion between these domains. We observe this process via the microscope as fading of the particle color, combined with an increase of the particle volume. When appropriate surfactants ensuring low contact angles are used, the water penetration leads to complete separation of the nanocrystalline domains into numerous small individual particles (Figure 3c, upper series of the final two schematics).

Alternatively, if the surfactant is unable to stabilize the crystalline domains against their coalescence in the moment of lipid melting, the water which has penetrated into the lipid porous structure remains captured (trapped) in the form of water droplets inside the bigger oily drop, thus forming water-in-oil-in-water (W/O/W) double emulsion; see Figure 3c (lower series of the final two images) and Supplementary Movie 5.

Main Factors. Based on the mechanism described above, we explain now the role of the main factors affecting the observed particle bursting and the strategies for its optimization.

Role of Surfactant Type and Three-Phase Contact angle. We observed under the microscope that the aqueous phase always penetrated into the frozen particles upon $\alpha \to \beta$ phase transition, no matter what the surfactant molecular structure was and in which phase (oil and/or water) the surfactants were initially dissolved or dispersed. However, depending on the specific oil-surfactant combination, the particle dispersions behaved differently. Most efficient particle disintegration was observed when both oil-soluble and water-soluble surfactants were both present in the aqueous phase. The oil-soluble surfactant could be predispersed as surfactant particles with limited solubility in the aqueous phase or could be completely solubilized (incorporated) inside the micelles of the water-soluble surfactant. Alternatively, the oil-soluble surfactant could be dissolved in the oily phase.

Note that the commercially available non-ionic alcohol ethoxylated surfactants (e.g., of Tween, Brij, Span or Lutensol series) are mixtures of molecules with different numbers of ethoxy units, that is, they usually contain certain fractions of oil-soluble and water-soluble components. Therefore, if a water-soluble surfactant is used at sufficiently high concentration, no separate oil-soluble surfactant is needed; the latter is already present in the commercial surfactant. Similarly, if oil-soluble surfactant is used in high concentrations, it can contain a water-soluble fraction which could lead to cold-bursting; see Figure 4c–g, for example.

Our experiments showed that the key physicochemical parameter which determines whether the particle disintegrates into nanoparticles or, alternatively, double emulsion drops are formed (Figure 3c) is the ability of the aqueous surfactant solution to wet the crystalline domains of the frozen lipid and to stabilize them against coalescence upon lipid melting. To quantify this property, we measured the three-phase contact angles, θ, for drops of aqueous surfactant solutions, placed on top of a solid tricaprin (C14TG) layer which mimicked the frozen lipid domains; see Methods section.

The contact angle for drops of pure water, placed on frozen C14TG substrate, was $\theta \approx 109 \pm 4^\circ$ for C14TG crystallized in α-phase and $\theta \approx 99 \pm 7^\circ$ for C14TG crystallized in β-phase, in agreement with the literature data, obtained by a similar method. Such high values, $\theta > 90^\circ$, reflect the hydrophobic nature of the lipid C14TG surface. In the presence of surfactants, the difference between the contact angles, measured on α- and β-phases of C14TG, is even bigger, while preserving the trend that the contact angle on the β-phase is always smaller as compared to that on the respective α-phase (Figure 4a). In other words, the $\alpha \to \beta$ transition makes the lipid crystals more hydrophilic.

Such contact angle measurements allowed us to clarify that the intensive disintegration process is typically observed for systems in which $\theta \lesssim 50^\circ$ for substrates in β-phase. Examples for such systems are C14TG particles dispersed in aqueous solution containing 1.5 wt % C18EO20 + 0.5 wt % C12EO4, C14TG in 1.5 wt % C18EO20 + 1 wt % C18:1EO7, and C14TG in 0.5 wt % C12SorbEO20 + 0.5 wt % C12Sorb.

In contrast, for the systems with $\theta \gtrsim 100^\circ$, double emulsion drops are typically formed when the oil-soluble surfactant was present in the oily phase. Examples for such system are the C14TG particles, containing predissolved surfactant C12EO4 (introduced in the C14TG phase before preparing the lipid dispersion) when its concentration is below ca. 5 wt %.

Interestingly, varying only the concentration of C12EO4 in the C14TG particles, we could switch the system behavior between the above two extremes. Double emulsion drops were formed at low C12EO4 concentrations in the oil phase, Figure 4b,c. When the C12EO4 concentration in the oil phase was increased up to 10 wt %, an intensive drop disintegration was observed (Figure 4e,f). This switch in behavior is also explained with changes in the three-phase contact angle: for water drops placed on C14TG + 0.5 wt % C12EO4 substrate, $\theta \approx 110^\circ$, whereas $\theta \approx 15^\circ$ for C14TG + 10 wt % C12EO4 substrate (Figure 4d,g), thus confirming that the contact angle is the key factor.
Therefore, one can tune the temperatures at which the phenomena of interest would occur by selecting an individual TAG or TAG mixtures with appropriate chain lengths. The role of the surfactant chain length in the studied phenomena is less clear. We performed series of experiments in which we varied the chain length of the water-soluble surfactants in mixtures with given oil-soluble surfactant and vice versa. However, so far no clear trend was observed about the effect of surfactant chain length on the efficiency of the cold-burst method, see Supplementary Table S4.

\[\theta \approx 110^\circ \]

It would be very useful to reveal the effects of the chain lengths of the TAGs and of the surfactants inducing the cold-burst phenomenon or double emulsion formation. The TAGs with longer saturated chains have higher melting temperatures and a higher temperature of \(\alpha \rightarrow \beta \) polymorphic phase transitions.\(^{21}\) Therefore, one can tune the temperatures at which the phenomena of interest would occur by selecting an individual TAG or TAG mixtures with appropriate chain lengths. The role of the surfactant chain length in the studied phenomena is less clear. We performed series of experiments in which we varied the chain length of the water-soluble surfactants in mixtures with given oil-soluble surfactant and vice versa. However, so far no clear trend was observed about the effect of surfactant chain length on the efficiency of the cold-burst method, see Supplementary Table S4.

\[\theta \approx 110^\circ \]

It would be very useful to reveal the effects of the chain lengths of the TAGs and of the surfactants inducing the cold-burst phenomenon or double emulsion formation. The TAGs with longer saturated chains have higher melting temperatures and a higher temperature of \(\alpha \rightarrow \beta \) polymorphic phase transitions.\(^{21}\) Therefore, one can tune the temperatures at which the phenomena of interest would occur by selecting an individual TAG or TAG mixtures with appropriate chain lengths. The role of the surfactant chain length in the studied phenomena is less clear. We performed series of experiments in which we varied the chain length of the water-soluble surfactants in mixtures with given oil-soluble surfactant and vice versa. However, so far no clear trend was observed about the effect of surfactant chain length on the efficiency of the cold-burst method, see Supplementary Table S4.

\[\theta \approx 110^\circ \]
In the other extreme, experiments with preformed micrometer-sized monocrystals of C_{12}TG β-phase, dispersed in the same surfactant solution, 1.5 wt % C_{12}EO_{20} + 0.5 wt % C_{12}EO_{6}, showed no disintegration into smaller particles (Figure S) because the β-phase is thermodynamically stable upon temperature variations below the lipid melting point.

The protocol of heating also affects the efficiency of particle disintegration, especially for larger in size initial particles. When the phase transition occurs entirely in the solid-state without intermediate melting, α → β, the aqueous phase has more time to penetrate in between the crystalline domains. Thus, lower heating rates provide a longer penetration time for the aqueous phase and lead to more efficient particle disintegration. In contrast, the melt-mediated transition which occurs at higher heating rate, α → β, gives a much shorter time for water penetration and may result in larger final particles.

The most efficient disintegration was observed in a specially designed protocol, in which the frozen lipid particles were slowly heated up to a given temperature of storage, T_{st} < T_{m}, and then stored at this temperature for a period of ca. several hours. When the latter protocol for nanoparticle formation is used, the specific value of T_{st} controls the rate of particle bursting (Figure 6b–g). Also, longer storage times at T_{st} are needed for the bigger particles, due to the larger penetration “depths” which should be overcame by the aqueous surfactant solution for such particles. DSC measurements confirmed that the particle disintegration observed at T_{st} < T_{m} does not include any crystal melting, viz. the particles disintegrate while being entirely in a solid state—the same melting enthalpy was measured in experiments with and without storing the samples at temperature T_{st} (Figure 6a).

Control of Particle Size in the Cold-Burst Method. From the experimental results presented above, we could conclude that the particle size can be tuned in a relatively wide range by varying: (1) the number of cooling–heating cycles applied to the specific sample; (2) surfactant-to-oil ratio, because a certain amount of surfactant is needed to cover the increased surface of the formed smaller particles with dense surfactant adsorption layer; and (3) the specific surfactant(s) used for a given oil. As illustrative examples of these trends, one can use the experimental data shown in Figure 2a,b which illustrate the effects of these factors: Particles with a diameter around 400 nm are obtained usually after one cycle, while smaller particles are obtained after the second and third cycles, depending on the specific oil-surfactant combination studied and on the surfactant concentration used.

The amount of water-soluble surfactant needed to cover the nanoparticle surface could be estimated approximately by adapting an approach, developed years ago for description of the drop size in the so-called “surfactant-poor regime” in a turbulent emulsification.\(^{30,31}\) This approach provides the following explicit equation, relating the particle size with the surfactant concentration and oil volume fraction, in the systems for which the particle size is limited by the available surfactant:

\[
d_{52} \approx \frac{6\Phi \Gamma_M}{(1 - \Phi) C_s} \tag{1}
\]

where \(d_{52}\) is the mean surface-volume diameter, \(\Phi\) is the particle volume fraction, \(C_s\) is the initial concentration of the water-soluble surfactant in the aqueous phase, and \(\Gamma_M\) is the surfactant adsorption in the dense adsorption monolayer which is typically \(\approx 2–3\) mg/m\(^2\) for low-molecular mass surfactants like those used in the current study. Taking \(\Gamma_M \approx 3\) mg/m\(^2\) as a reasonable value for our systems, we estimate that \(C_s \geq 20\) kg/m\(^3\) = 2 wt % is needed for particles with \(d_{52} \approx 100\) nm and \(\Phi \approx 10\%\). These estimates are in reasonable agreement with our experimental results in which we had to use a surfactant concentration in the range between 1 and 6 wt % to obtain particles in the range of 100 nm or smaller.

The contribution of the oil-soluble surfactant in the particle size is more difficult to assess, as these surfactants could participate in mixed adsorption layers, thus reducing the needed concentration of water-soluble surfactant to form a dense adsorption layer. However, a big fraction of the oil-soluble surfactant could remain dissolved in the oil drop interior without participating in the mixed adsorption layer. Furthermore, if the oil-soluble surfactant has higher surface activity, it could displace the water-soluble surfactant from the adsorption layer and act as demulsifier, instead of assisting particle stabilization.

Method Versatility and Applicability. Our experiments revealed that the process of nanoparticle formation, described above, is applicable to a wide range of TAG-surfactant combinations; see Tables 1, S4, and S5. In this way, we prepared nanoparticle suspensions with all monoacid TAGs with chain lengths varied between 10 and 18 carbon atoms. Also, increasing the temperature above the TAG melting point allowed us to obtain nanoemulsions.

We tested successfully various TAG-surfactant combinations which are (potentially) applicable in different industries. For example, TAG particles, stabilized by C_{12}SorbEO_{20} and mono-and/or diglycerides (surfactant mixture SM1 or SM2), are applicable in food and beverage products. Particles, stabilized by C_{12}EO_{20} and C_{12}EO_{6}, can be used as delivery vehicles for tumor targeting drug delivery, as these surfactants are known to overcome the multidrug resistance in cancer.\(^{12–13,35}\) SLNs of 20–30 nm, similar to those obtained in the current study, were shown to have the longest blood circulation half-life and higher tumor accumulation.\(^{12–13,35}\)

We performed also experiments with TAG mixtures to show that the cold-bursting process is not limited to individual substances, but it is also observed with mixtures. TAGs with chain lengths between 12 and 16 C atoms were chosen as these are the triglycerides commonly found in plant oils and animal fats. For example, we observed spontaneous particle bursting for the binary mixture C_{12}TG + C_{14}TG (1:1 w/w) dispersed in aqueous solution of 1.5 wt % C_{12}EO_{20} + 1 wt % SM2 as well as in various other surfactants; see Supplementary Movie 6 and Supplementary Table S5. The particles of the triple mixture C_{12}TG + C_{14}TG + C_{16}TG (1:1:1 w/w/w), dispersed in aqueous solution of 1.5 wt % C_{14}EO_{20} + 0.5 wt % SM1, also burst efficiently. These latter results are important from the viewpoint of practical applications, because most industrially relevant substances are mixtures of lipid molecules with different chain lengths. In particular, TAG mixtures are preferred for SLN preparation in the drug delivery systems, because polymorph transitions in pure TAGs may cause expulsion of the incorporated drug molecules, thus leading to drug precipitation in the aqueous phase and a significant decrease of the drug load.\(^{5,6}\)

To test the applicability of the cold-bursting method to other classes of lipid substances, we performed similar experiments with aqueous dispersions of \(\alpha,\alpha\prime\)-dilauryl glyceride.
(C\textsubscript{12}DG, diglyceride), dipalmitoylphosphatidylcholine (DPPC, phospholipid), and hexadecane (C\textsubscript{16} alkane). The tested diglyceride and phospholipid systems showed very similar behavior to that observed with the TAG systems, see Supplementary Movie 7. We obtained nanoparticles even after one cooling—heating cycle which showed that the method is very efficient for diglycerides and phospholipids. With alkanes, a similar process of particle disintegration was observed, but a larger number of cooling—heating cycles was needed to obtain small nanoparticles.

To check whether this procedure can be used for obtaining nanoparticles loaded with bioactive molecules, we performed experiments with TAGs in which model medical drugs (progesterone or fenofibrate) were predissolved in high concentrations. We observed that the process of particle disintegration remained unaffected for up to \(\approx 30 \) wt % of drug content. The efficiency of the process and the lipid particle size were the same when compared to the drug-free TAGs; see Figure 7. At 50 wt % drug loading, the particle bursting was still rather intensive but its efficacy was somewhat lower. Along with the prevailing nanoparticles, we observed a small fraction of residual micrometer-sized particles after the first cooling—heating cycle.

CONCLUSIONS

In conclusion, we discovered a simple method for the preparation of SLNs and nanoemulsion droplets. Particles and drops with mean volume diameters in the range between 20 and 200 nm can be prepared on-demand, using appropriate surfactants ensuring low contact angles and one to several cooling—heating cycles below/around the melting temperature of the lipid. The mean size of the particles can be controlled in wide range by the selection of surfactants and their concentration and by the number of cooling—heating cycles employed. Alternatively, one can select surfactants with high contact angles which lead to the formation of a double W/O/W emulsion. We show that both processes result from the formation of a 3D network of nanoparticles in the lipid structure, triggered by an \(\alpha \rightarrow \beta \) polymorphic phase transition which is typical for many lipid substances. We show that, indeed, this approach can be applied to different classes of lipid substances and their mixtures. The method can be used for the preparation of SLNs, loaded with useful actives of very high concentration, such as medical drugs, magnetic nanoparticles, fluorescent molecules, etc., which are all of high interest for theranostic applications. The method can be used to generate lipid particles of direct interest to the pharmaceutical, cosmetic, food, and beverage industries.

METHODS

Materials. The producers and the properties of the studied triacylglycerides (TAGs) are summarized in Supplementary Table 1 and those of the other lipophilic substances in Supplementary Table 2. All substances were used as received. The TAG mixtures were prepared by mixing two or more substances in a molten liquid state, at the desired weight ratio.

The chemical structures and the specifications of the used surfactants are presented in Supplementary Table 3. Several very efficient and more complex in composition surfactant mixtures are denoted in the text as follows. Surfactant mixture 1 (SM1) is a mixture of monoacylglycerides C\textsubscript{16}MG:C\textsubscript{18}MG:C\textsubscript{18:1}MG in a 55:40:5 weight ratio. Surfactant mixture 2 (SM2) contains both mono- and diacylglycerides in a ratio MG:DG = 70:30 with saturated alkyl chains C\textsubscript{16}C\textsubscript{18} = 45:55. All surfactants were used as received. The aqueous phases were prepared with deionized water with resistivity >18 M\textOmega\cdot cm, purified by Elx 3 module (Millipore).

Sample Preparation. The initial coarse oil-in-water emulsions, containing micrometer-sized drops, were prepared either by rotor-stator homogenization with Ultra Turrax (IKA, Germany) or by membrane emulsification with (SPG) glass membranes when monodisperse drops were required.

Microscopy Observations. For microscope observations, a specimen of the studied emulsion was placed inside a glass capillary with a length of 50 mm and rectangular cross-section: width of 1 mm or 2 mm and height of 0.1 mm. This capillary was enclosed within a custom-made cooling chamber made of aluminum, with cut windows for optical observations. The chamber temperature was controlled by a cryo-thermostat (JULABO CF30). The temperature in the chamber was measured with a calibrated thermo-couple probe with an accuracy of \(\pm 0.2 \) °C. The thermo-probe was inserted in one of the orifices of the thermostating chamber and mounted at a position where a capillary with the emulsion sample would be normally placed for microscope observations. In the neighboring orifices, the actual capillaries with the emulsion samples were placed. The correct measurement of the temperature was ensured by calibrating the thermo-couple with a precise mercury thermometer in the range of temperatures measured. In control experiments, we heated the dispersions containing lipid microparticles until their melting was observed. We always observed the melting process at temperatures very close, within \(\pm 0.2 \) °C, to the reported melting temperature of the bulk oil, \(T_m \).

The optical observations were performed with an AxioImager.M2m microscope (Zeiss, Germany). We used transmitted, cross-polarized white light, with an included \(\lambda \)-compensator plate situated after the sample and before the analyzer, at 45° with respect to both the analyzer and the polarizer. Under these conditions, the liquid background and the fluid objects have a typical magenta color, whereas the frozen birefringent areas appear brighter and may have intense colors.

Drop Size Measurement. The initial drop size was determined from microscopy images, captured in transmitted light with long-focus objectives of magnification \(\times 10, \times 20, \times 50, \) or \(\times 100 \). The mean size of the droplets obtained after one or several freeze—thaw cycles was
determined by dynamic light scattering (DLS) on 4700C instrument (Malvern Instruments, U.K.), equipped with a solid state laser, operating at 514 nm. Multimodal software was used for analysis of the autocorrelation function of the scattered light. The results shown in Figure 2a are averaged from at least 3 measurements at scattering angles of 90°. The results shown in Figure 2b represent averaged results of several samples with the same chemical composition, but with different oil weight fractions; no significant effect of the oil volume fraction was observed up to ca. 20 vol %. As an example, the blue curve in Figure 2b summarizes the results measured with all samples shown in Figure 2a.

Experiments with Bulk Samples. The drop size evolution in bulk emulsions was studied with 10 or 20 mL samples, placed in glass containers. These samples were first cooled for 3 h in a refrigerator at a temperature of 5 °C to achieve complete oil drop freezing, followed by melting of the emulsion drops by placing the glass bottles in a thermostat and heating them at 1.5 °C/min rate. The drop size distribution was determined by DLS measurements after each freeze—thaw cycle. These emulsion samples were inspected also by optical microscopy to check whether micrometer drops had remained undetected by the DLS measurements; no such drops were seen in any of the samples reported.

DSC Experiments. The DSC experiments were performed on Discovery DSC 250 apparatus (TA Instruments, USA). The studied sample of individual TAG, mixture of TAGs, or TAG emulsion was weighted and placed into a DSC pan (Tzero pan, TA Instruments). Hermetic lid and Tzero sample press (Tzero hermetic lid, TA Instruments) were used to seal the DSC pan before measurements. The samples were cooled and heated with fixed rate, varied between 0.5 and 10 K/min. The DSC curves upon both cooling and heating were recorded. The integration of the DSC curves was performed using the build-in functions of the TRIOS data analysis software (TA Instruments).

SAXS/WAXS Experiments. SAXS/WAXS measurements were performed using the Austrian SAXS beamline at Elettra Synchrotron, Trieste, Italy. The WAXS signal was recorded using a Pilatus 100k detector and the SAXS signal using a Pilatus 1M detector. The working energy was 8 keV (λ ≈ 1.55 Å). The samples were inserted into cylindrical borosilicate capillaries, which were placed into a thermostatting chamber, similar to the one used for microscopy observations.

Contact Angle Measurements. Three-phase contact angle measurements were performed by placing a drop of the tested surfactant solution onto a solid lipid substrate and observing the profile of the formed sessile drop with DSA10 apparatus, Krüss, Germany. The lipid substrates were prepared by the following procedure: First, microscope slides were washed in alcoholic KOH solution of 1.5 wt % C18EO20 + 1 wt % C18:1EO2 (AVI) surfactants and then hydrophobized by interacting with hexamethyldisilazane.

Further information about the properties and producers of the chemical compounds (lipids and surfactants) used in this study, extended table of results with C16TG and table with results for selected TAG mixtures is available at https://pubs.acs.org/doi/10.1021/acs.nano.0c02946.

ASSOCIATED CONTENT

- Supporting Information
 - Information about the properties and producers of the chemical compounds (lipids and surfactants) used in this study, extended table of results with C16TG and table with results for selected TAG mixtures
 - Movie 1: Cold-burst process observed upon heating of trimyristin (C14TG) particles dispersed in aqueous solution of 1.5 wt % C14EO20 + 0.5 wt % C18:1EO2 surfactants (AVI)
 - Movie 2: Cold-burst process observed upon heating at 1.1°C/min of C14TG particles, dispersed in aqueous solution of 1.5 wt % C14EO20 + 1 wt % C18:1EO2 (AVI)
 - Movie 3: Observation of the behavior of TAG-in-water dispersions added slowly (drop by drop) into bottles with aqueous surfactant solution, T ≈ 20 °C (AVI)
 - Movie 4: Microscope observations of C14TG particles dispersed in 1.5 wt % C14EO20 aqueous surfactant solution (AVI)
 - Movie 5: Microscope observations during heating of C14TG particles, containing 1 wt % pre-dissolved C14EO2 and dispersed in water (AVI)
 - Movie 6: Cold-burst process observed with mixed triglyceride particles (AVI)
 - Movie 7: Particle bursting observed upon heating of diglyceride particles of C12DG, dispersed in aqueous surfactant solution of 0.5 wt % SDS + 0.5 wt % C12EO4 (AVI)

AUTHOR INFORMATION

Corresponding Author

Nikolai Denkov — Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; orcid.org/0000-0003-1188-7635; Email: nd@lcpe.uni-sofia.bg

Authors

- Diana Cholakova — Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; orcid.org/0000-0001-6654-6418
- Desislava Glushkova — Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; orcid.org/0000-0001-6077-7338
- Slavka Tcholakova — Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; orcid.org/0000-0001-8091-7529

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acs.nano.0c02946

Author Contributions

- D.C. discovered the main phenomena described in this paper.
- D.C. and S.T. designed the study. D.G. and D.C. performed the experiments and summarized the results. D.C. analyzed the results and prepared the first draft of the manuscript. D.C., S.T., and N.D. clarified the mechanisms. N.D. edited and prepared the final draft of the manuscript. S.T. read critically the manuscript and suggested improvements. All authors participated in discussions and critically read the final manuscript.

Notes

- The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The SAXS/WAXS measurements performed in Elettra Synchrotron, Italy (project no. 201192017, proposer D.C.) were supported by the project CALIPSOplus under grant agreement 730872 from the EU Framework Program for Research and Innovation Horizon 2020. The authors are especially grateful to Dr. Heinz Amenschi (Elettra Synchrotron) for the very
valuable assistance during these measurements. The authors thank Mrs. Mila Temelska (Sofia University) for performing the contact angle measurements. This study was partially funded by the proof-of-concept grant ShipShape (no. 766656). The work of N.D. was partially funded by the Bulgarian Ministry of Education and Science, under the National Research Program “VIHREN”, project ROTA-Active (no. KP-06-DV-4/16.12.2019). The study falls under the umbrella of COST action CA17120 “Chemobionics” funded by the Horizon 2020 program.

REFERENCES