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Hypothesis: The critical micelle concentration, aggregation number, shape and length of spherocylindri-
cal micelles in solutions of zwitterionic surfactants can be predicted by knowing the molecular parame-
ters and surfactant concentrations. This can be achieved by upgrading the quantitative molecular
thermodynamic model with expressions for the electrostatic interaction energy between the zwitterionic
dipoles and micellar hydrophobic cores of spherical and cylindrical shapes.
Theory: The correct prediction of the mean micellar aggregation numbers requires precise calculations of
the free energy per molecule in the micelles. New analytical expressions for the dipole electrostatic inter-
action energy are derived based on the exact solutions of the electrostatic problem for a single charge close
to a boundary of spherical and cylindrical dielectricmedia. The obtained general theory is valid for arbitrary
ratios between dielectric constants, radii of spheres and cylinders, positions, and orientations of dipoles.
Findings: Thedetailed numerical results showquantitatively the effects of themicelle curvature anddielec-
tric properties of the continuum media on the decrease of the dipole electrostatic interaction energy.
Excellent agreement was achieved between the theoretical predictions and experimental data for the crit-
ical micelle concentration, size and aggregation number of zwitterionic surfactant micelles. This study can
be extended to mixed micelles of zwitterionic and ionic surfactants in the presence of salt to interpret and
predict the synergistic effect on the rheology of solutions.
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1. Introduction

Many mixed surfactant solutions exhibit characteristic high vis-
cosity peaks and variable rheological behavior depending on their
concentration and particular composition, which are of primary
importance for the formulation and application of such composi-
tions in practice [1–5]. The viscosity changes are related to a signif-
icant increase in the micellar size and aggregation number. Large
micellar aggregates of different sizes are typically observed in
mixed surfactant solutions [6–14]. A pronounced micellar growth
is measured for simple nonionic wormlike surfactant micelles from
polyoxyethylene alkyl esters (experimental data are summarized
in Ref. [15]) and their mixtures [9] upon concentration increase
and for ionic surfactants mixed with electrolytes [14,16,17]. In con-
trast, the aggregation numbers of zwitterionic surfactant micelles
at natural pH are relatively small [18–22], even at very high con-
centrations. The zwitterionic surfactants become in an ionic form
with the change of pH and the growth of micellar size and the vis-
cosity peaks have been observed in these systems as a function of
pH and added electrolyte (salt) concentrations [23,24].

Prediction of the micellar growth versus the concentration and
composition of surfactant solution is a problem of central impor-
tance to build a product with desirable rheological characteristics
ensuring the best flow, pouring, dosing, etc. A comprehensive
review on wormlike micelles and used analytical and computa-
tional theoretical approaches can be found in Refs. [15,16,25–27].
After 1990, many authors (see the literature cited in Refs. [15–
17,25–29]) developed molecular thermodynamic approaches to
model the critical micelle concentration (CMC), shape and size of
micelles, solubilization capacity, etc., for the cases of single and
mixed surfactant solutions. The precise determination of the
molecular geometrical parameters and the free interaction energy
per molecule are key factors in achieving a quantitative explana-
tion of experimental data and making the molecular thermody-
namic approach a predictive model. While the geometrical
parameters are relatively easy to be determined precisely, the dif-
ferent interaction energy models could lead to distinct variations
in the predictions. The total free energy per molecule in a micellar
environment includes several different components, e.g. steric
repulsion, conformational energy, interfacial tension component,
etc.

In a series of preceding papers, detailed considerations have
been presented. Quantitative models have been applied to describe
precisely the interfacial tension component, fr [15], the steric
repulsion between the headgroups of surfactant molecules, fhs, by
using the repulsion term in the two-dimensional van der Waals
equation [15,26], the conformational free energy of the hydrocar-
bon chains inside the confined micellar core, fconf, by the general-
ized Semenov model [25]. As a result, an excellent quantitative
agreement between the molecular thermodynamic theory and
experimental data for the scission energy, Esc, for single component
[15] and mixed [26] nonionic surfactants wormlike micelles have
been obtained. For ionic surfactants in the presence of salt, the
effects of mutual spatial confinement of the electric double layers,
counterion binding, and ionic activity coefficients have been
included in the description of the electrostatic component of
micelle free energy, fel, to achieve a quantitative explanation of
the experimental data for scission energy Esc of wormlike micelles
in a single ionic and mixed ionic and nonionic surfactant solutions
[16,27].

When considering zwitterionic surfactant micelles, the total
free energy per molecule must include the dipole component, fdip,
arising from the dipole–dipole repulsive interactions between
zwitterionic polar headgroups, as well. Many authors used the
spherical and cylindrical electrical capacitor models proposed in
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Ref. [30] to calculate fdip. Applying the respective expressions for
fdip [30], one predicts that the mean aggregation number of zwitte-
rionic surfactant micelles (e.g. for dodecyldimethylamine oxide
and betaine) considerably increases with the rise of surfactant con-
centration, which contradicts with the experimental observations.
Note that the scission energy, Esc, is equal to the number of mole-
cules in the spherical endcaps with radius Rs multiplied by the free
energy difference of the molecule in the spherical endcaps and
cylindrical environment with radius Rc (Fig. 1a). An error of 0.1
kBT leads to the enormous error of 10 kBT in the scission energy
for typical numbers of 100 molecules in the spherical endcaps of
spherocylindrical micelles. The main assumption in the capacitor
model is that the molecular dipole length, d, is much larger than
the lateral distances between dipoles (surfactant headgroups) at
the micelle surface. The relationship between these distances is
exactly the opposite for typical geometrical micellar parameters
and the capacitor model fails down (see Section 4).

The charges q and � q of an individual dipole close to the
boundary between micellar hydrophobic core with dielectric con-
stant, en, and the surrounding water phase with dielectric constant,
e, interact with their image charges in the nonpolar micellar core
phase (Fig. 1b). As a result, a repulsive dipole free energy per zwit-
terionic surfactant molecule, ud, arises. In the case of a planar
dividing surface and arbitrary positions and orientations of the
dipole with closest distances to the surface, s1 and s2, and dipole
length, d, the classical formula for the interaction energy,uo

d, reads
[31]:
uo
d

kBT
¼ ð1� 2aÞz2c ½

LB
2s1

þ LB
2s2

� 2LB

ðd2 þ 4s1s2Þ
1=2� ð1Þ

Here: e is the elementary charge; T is the absolute temperature;
kB is the Boltzmann constant; zc � q/e is the charge valence; e0 is
the dielectric permittivity of vacuum; a accounts for the ratio
between the dielectric constants; LB is the Bjerrum length:
LB � e2

4pe0ekBT
; a � en

eþ en
< 1 ð2Þ

Note that the interaction energy,uo
d, depends on the dipole

parameters but it does not account in any way for the finite size
or the shape of an aggregate of dipoles, i.e. the micelles. Because
of the confined space of the micellar core, the repulsive interaction
energy of a molecule in the micelle, ud, depends on the micelle
shape and becomes lower thanuo

d.
The exact solution to the mathematical problem for the electro-

static potential distribution of a single charge close to an interface
between two dielectric phases is reported in the literature for:
spheres [32]; ellipsoids [33]; cylinders [34,35]. The respective elec-
trostatic problems for spherical and cylindrical core–shell
nanoparticles are solved in Refs. [36,37]. Using a formal analogy
between electrostatics and magnetostatics, these results are also
applied in the literature [38,39] for magnetically polarizable
spheres and cylinders. Due to the wide practical and theoretical
applications of the considered models, the general solutions to
the problem of an individual charge located inside or outside
dielectric spheres or cylinders are briefly presented in Section 2.
Applying the superposition principle, analytical expressions for
the dipole free energy are derived and illustrated numerically in
Section 3 for different system parameters. The molecular thermo-
dynamic theory upgrade for zwitterion surfactant micelles is pre-
sented in Section 4 and the obtained results are used for a
quantitative explanation of experimental data. The general conclu-
sions are summarized in Section 5.



Fig. 1. (a) Sketch of spherocylindrical micelle from zwitterionic surfactants: Rs and Rc are the radii of the micellar hydrocarbon core in the regions of the endcaps and the
cylindrical part. (b) Dipole surfactant head group with dipole length d, immersed in a dielectric phase with permittivity e, resides close to the micellar hydrocarbon core with
dielectric constant en.
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2. Electrostatic potential of a single charge in spherical and
cylindrical dielectric media

Below we present the problem of an individual charge located
inside or outside a dielectric sphere and a cylinder. For simplicity,
the phase with dielectric constant en is from now on referred to as
the nonpolar phase and that with e in which the charge is resided –
as the dielectric phase or water.

In the case of a spherical dividing interface (with radius Rs and
center O) between two dielectric media having dielectric constants
e (the aqueous phase) and en (the nonpolar phase), one should con-
sider two possible configurations (Fig. 2): a) a nonpolar sphere in
the water (Fig. 2a); b) a nonpolar phase surrounding water. The
position of the charge can be outside the sphere at distance
Rs + s from the center (Fig. 2a) when the nonpolar phase is inside
the sphere. When the nonpolar phase is outside the sphere, the dis-
tance between the charge and center O is Rs–s (Fig. 2b). The exact
solutions to the electrostatic problems in spherical coordinates
with radial coordinate r and polar angle h are described in the lit-
erature [32]. Below, we summarize these solutions and apply them
to calculate the respective expressions for the electrostatic interac-
tion energies between the charge and nonpolar phase.

The distance between the charge and an arbitrary point A(r,h) is
denoted by rA. The general solutions are presented as series with
respect to the Legendre polynomials, Pn(cosh), where n = 0, 1, 2,
. . . [40], with coefficients depending on the radial coordinate, r.
The detailed solutions are presented and discussed in Appendix
B. For positions of charges outside the sphere (Fig. 2a), the exact solu-
tion of the considered problem for the electrostatic potential in the
outer dielectric phase, u, reads [32]:

u ¼ q
4pe0eRs

½Rs

rA
þ ð1� 2aÞSoutð sRs

;
r � Rs

Rs
; hÞ� for r P Rs ð3Þ
Fig. 2. Charge q is placed in water and the dividing surface between the dielectric media i
the distance from the charge to the center is Rs + s; b) the nonpolar phase is outside th
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Here the function Sout accounts for the induced electrostatic
potential of the nonpolar sphere. The values of Sout for arbitrary
radial, r, and polar, h, coordinates are calculated from the following
expression (see Appendix B):

Soutð sRs
;
r�Rs

Rs
;hÞ �

X1
n¼1

n
nþ1� a

ð1þ s
Rs
Þ
�n�1

ð1þ r�Rs

Rs
Þ
�n�1

PnðcoshÞ

ð4Þ
In the opposite case of a charge inside the dielectric sphere, the

respective exact analytical expression for the electrostatic poten-
tial in the dielectric phase, u, is [32]:

u ¼ q
4pe0eRs

½Rs

rA
þ e� en

en
þ ð1� 2aÞSinnð sRs

;
Rs � r
Rs

; hÞ� for r

6 Rs ð5Þ
where the function Sinn is defined as:

Sinnð sRs
;
Rs � r
Rs

; hÞ �
X1
n¼1

nþ 1
nþ a

ð1� s
Rs
Þ
n
ð1� Rs � r

Rs
Þ
n

Pnðcos hÞ ð6Þ

Note that Sinn = 0 for r = 0 and hence, the induced electrostatic
potential at the sphere center is not equal to zero, see the second
term in the right-hand side of Eq. (5). The convergence of series
in Eqs. (4) and (6) is very slow for small values of s/Rs. Simple ana-
lytical interpolations are derived and summarized in Appendix B
for precise numerical calculations.

The electrostatic interaction energy, uc, between the charge and
the nonpolar phase is equal to the charge, q, multiplied by the
induced electrostatic potential at the respective charge position,
r = Rs ± s and h = 0, see Eqs. (3), (5), (B10) and (B23). In the case
of planar dividing surfaces and arbitrary positions of the charge,
the classical formula,uo

c ¼ ð1� 2aÞz2ckBTLB=ð2sÞ, for the interaction
s a sphere with radius Rs and center O: a) the nonpolar phase is inside the sphere and
e sphere and the distance from the charge to the center is Rs–s.
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energy between the charge and nonpolar phase can be used [31].
The Bjerrum length, LB, for water at 25 �C is 7.1 Å and even for large
values of s = 3.5 Å andz2c ¼ 1, the scaling factor z2cLB=ð2sÞ in the
expression for uo

c is equal to 1, which gives a interaction energy
of about 1 kBT. The difference between the interaction
energies,uc � uo

c , accounts for the curvature effect of the sphere.
In fact, for fixed charge positions (fixed value of s), this difference
depends only on the sphere radius, Rs, and the ratio between
dielectric constants, a, see Eqs. (B32) and (B38). The value of
1 � 2a is positive for en < e and the interaction energy is repulsive;
1 � 2a is negative for en > e, which corresponds to attraction; at
en = e, in fact, there is no boundary, according to Eq. (2) a = 0.5
and there is no contribution from the interface as it should be.

The calculated values of the interaction energy differ-
ence,uc � uo

c , scaled with z2ckBTLB=ð2sÞ for different sphere radii (s/
Rs) and ratios between dielectric constants a are summarized in
Fig. B2 and B4 for a charge outside the sphere and for the outer
nonpolar phase, respectively. The general conclusion is that the
magnitude of the interaction energy difference increases both with
the decrease of sphere radii (an increase of s/Rs) and with the
increase of the difference between dielectric constants (an increase
of |1 � 2a|). Because of the nonzero values of the induced electro-
static potential at the sphere center for a charge inside the sphere,
see Eq. (5), the electrostatic interactions are much stronger when
the dielectric constant of the outer nonpolar phase is lower than
that of the inner dielectric phase (cf. Figs. B2 and B4).

In the case of cylindrical geometry, the dividing surface
between the dielectric phases is a cylinder with radius Rc. In a
cylindrical coordinate system Oq/z with axis of revolution Oz
and radial and polar coordinates q and /, the position of the charge
can be outside the cylinder with charge coordinates q = Rc + s, / = 0,
and z = 0 (Fig. 3a), when the nonpolar phase is inside the cylinder.
In the opposite case (the dielectric phase is inside the cylinder), the
charge coordinates are q = Rc–s, / = 0, and z = 0 (Fig. 3b). The exact
solutions to the respective electrostatic problems [34] are
described in Appendix C. The mathematical problem for a spherical
dielectric media in fact is a 2D-problem because of the symmetry
(Fig. 2), while in the case of a cylinder, the electrostatic problem
is essentially 3D (Fig. 3). The general solution for the cylindrical
geometry is presented in terms of the modified Bessel functions
of the first kind, In, and of the second kind, Kn (n = 0, 1, 2, . . .) [40].

The distance between the charge and an arbitrary point A(q,/,z)
in the dielectric phase is denoted by rA. For positions of charges out-
side the cylinder (Fig. 3a), the exact expression for the function of
electrostatic potential in the outer dielectric phase, u, reads [34]:

u ¼ q
4pe0eRc

½Rc

rA
þ ð1� 2aÞCoutð sRc

;
q� Rc

Rc
;/; zÞ� for q P Rc ð7Þ
Fig. 3. Charge q placed in water phase with a dielectric constant e, at a distance s to a c
phase is inside the cylinder and the distance between the charge and the axis of revoluti
charge to the axis of revolution is Rc–s.
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Here the induced electrostatic potential from the inner cylindri-
cal phase is accounted for by the function Cout, which for cylinders
is given by the following definition:

Coutðt1; t2;/; zÞ � 2
p

Z 1

0

I1ðkÞK0½kð1þ t1Þ�K0½kð1þ t2Þ�
K1ðkÞ½1� ab0ðkÞ� cosðk z

Rc
Þdk

þ 4
p

X1
n¼1

Z 1

0

½Inþ1ðkÞ þ In�1ðkÞ�Kn½kð1þ t1Þ�Kn½kð1þ t2Þ�
½Knþ1ðkÞ þ Kn�1ðkÞ�½1� abnðkÞ�

� cosðn/Þ cosðk z
Rc
Þdk ð8Þ

where t1 > 0 and t2 � 0. The dependencies of functions bn(k),
defined by Eqs. (C10) and (C11), on n and k are shown in Appendix
C, Fig. C1. For n = 0, 1, 2, . . ., the inequality 0 < bn(k) � 1 takes place
and bn(k) decrease with the increase both of n and k. Therefore, the
terms 1� a 6 1� abnðkÞ < 1 in the integrals in the right-hand side
of Eq. (8) do not affect the convergence of these integrals.

For a charge inside the cylinder (Fig. 3b), the solution of the
respective electrostatic problem leads to the exact result [34]:

u ¼ q
4pe0eRc

½Rc

rA
þ ð1� 2aÞCinnð sRc

;
Rc � q
Rc

;/; zÞ� for q 6 Rc ð9Þ

In this case, the induced electrostatic potential from the outer
cylindrical phase is accounted for by the function Cinn, which for
cylinders is defined as follows:

Cinnðt1; t2;/; zÞ � 2
p

Z 1

0

K0ðkÞI0½kð1� t1Þ�I0½kð1� t2Þ�
I0ðkÞ½1� ð1� aÞb0ðkÞ� cosðk z

Rc
Þdk

þ 4
p

X1
n¼1

Z 1

0

KnðkÞIn½kð1� t1Þ�In½kð1� t2Þ�
InðkÞ½1� ð1� aÞbnðkÞ� cosðn/Þ cosðk

� z
Rc
Þdk ð10Þ

where 0 < t1 < 1 and1 0 � t2 � 1. The terms
a 6 1� ð1� aÞbnðkÞ < 1 (n = 0, 1, 2, . . .) in the integrands in the
right-hand side of Eq. (10) again do not affect the convergence of
all integrals.

The electrostatic interaction energy, uc, between the charge and
the nonpolar cylindrical phase is simply calculated by multiplying
the value of the induced electrostatic potential at the charge posi-
tion q = Rc ± s, / = 0, and z = 0 (Fig. 3) by charge q. Hence the inter-
action energy difference,uc � uo

c , is given by Eqs. (C31) and (C33) in
Appendix C. The numerical results for the effect of cylinder radius
Rc on the electrostatic interaction energy for different ratios
between the dielectric constants, a, are illustrated in Fig. C2 and
C3. The final conclusions are analogous to those drawn for
ylindrical dividing surface with radius Rc and axis of revolution Oz: a) the nonpolar
on is Rc + s; b) the nonpolar phase is outside the cylinder and the distance from the
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spherical dielectric media. The magnitude of the interaction energy
difference for cylinders at fixed distance s and Rc = Rs is about two
times lower than those for spheres.

3. Electrostatic interaction energy between a dipole and
nonpolar phase

From the superposition principle and the general distributions
of the single charge electrostatic potentials, Eqs. (3)–(10), the elec-
trostatic interaction energy, ud, between a dipole and a nonpolar
phase can be obtained for spherical and cylindrical dielectric
media. In the molecular thermodynamic approach, the part of ud,
which does not depend on the radii, is convenient to be included
in the standard chemical potential of the surfactant molecule in
the micellar phase, lo

m [15]. The difference between ud anduo
d, see

Eq. (1), accounts for the shape and radii of the considered micelle
and defines the new alternative form of the dipole component of
the free energy per molecule,f dip ¼ ud � uo

d. The dipole component
of the free energy is conveniently scaled with the corresponding
value for flat interfaces through the following relationship:

f dip
kBT

¼ z2c ½
LB
2s1

þ LB
2s2

� 2LB

ðd2 þ 4s1s2Þ
1=2�Ddip ð11Þ

where the dimensionless function Ddip accounts for the curva-
ture effects of spherical or cylindrical confined space. The reported
results below are exact and valid for all possible positions and ori-
entations of dipoles. Note that Ddip describes the relative change of
the free energy with respect to uo

d calculated for a planar dividing
surface. The multiplier in Eq. (11) gives the magnitude of fdip in
kBT units. For example, in the case of dipole geometrical parame-
ters used in Section 4 (s1 = 0.7 Å and d = 2.23 Å), the values of
the multiplier for parallel to the surface dipole orientation is 4.75
and that for perpendicular orientation is equal to 2.37.

For a spherical dividing surface between dielectric phases with
radius Rs, the two charges of a dipole with length d have the closest
distances to the spherical surface s1 and s2 and the polar angle, hd,
between the radius vectors of the charge positions fulfills the
relationship:

d2 ¼ ðRs � s1Þ2 þ ðRs � s2Þ2 � 2ðRs � s1ÞðRs � s2Þ cos hd ð12Þ
Here the sign plus states for dipoles outside the sphere and the

minus – for dipoles inside the sphere. The coordinates of charge q
are r = Rs ± s1 and h = 0 and those of charge � q are r = Rs ± s2 and
h = hd. From the superposition principle, the induced electrostatic
potential becomes a sum of those induced from both charges.
The dipole electrostatic interaction energy, ud, is a sum of the
respective charges multiplied by the induced electrostatic poten-
tial in their positions (see Appendix B). The final forms of the
expression for Ddip = Dout in the case of a charge outside the sphere
and for Ddip = Dinn in the case of a charge inside the sphere read:

Dj ¼ 2ð1� 2aÞs1s2ðd2 þ 4s1s2Þ
1=2

Rs½ðs1 þ s2Þðd2 þ 4s1s2Þ
1=2 � 4s1s2�

fSj½s1Rs
;
s1
Rs

;0� þ Sj½s2Rs
;
s2
Rs

;0�

�2Sj½s1Rs
;
s2
Rs

; hd�g � ð1� 2aÞ for j ¼ inn; out ð13Þ

Note that the induced electrostatic potential at the sphere cen-
ter (r = 0) is equal to zero for dipoles inside the sphere, see Eq. (5),
because of the electro-neutrality of the dipole. The detailed math-
ematical and numerical calculations are presented in Appendix B.

The numerical results for the dependence of Dout (a dipole out-
side the sphere) on the system parameters are summarized in
Fig. 4. To illustrate the sphere’s curvature effect, the dipole’s posi-
tion and orientation are fixed (s1, s2, and d are fixed) and the ratios
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between dielectric constants, a, and radius Rs are varied. In the case
of a perpendicular orientation of dipoles to the spherical dividing
surface, the polar angle hd is equal to zero and s2 = s1 + d (Fig. 4a,
4c, and 4d).

For a dipole length two times larger than the closest distance of
the dipole charges to the interface (d = 2 s1), the dipole interaction
energy, fdip, increases with the decrease of the sphere radius
(Fig. 4a). If the dielectric constant of the nonpolar inner phase, en,
is smaller than that of the outer phase, e, then the repulsive inter-
action energy, ud, decreases for the smaller sphere sizes
andf dip ¼ ud � uo

d < 0. The magnitude of fdip rises considerably with
the decrease of Rs and for more pronounced differences between e
and en. Note that the typical value of the dielectric constant for
water is e = 78 and that for the nonpolar phase is en = 2, so that
for micelles a 	 1/40 (see Section 4). In the opposite case e < en,
the interaction energy, ud, corresponds to an attraction anduo

d < 0.
The positive values of fdip in Fig. 4a describe the increase of the
dipole interaction energy because of the confined space of the
dielectric phase in the sphere.

For a perpendicular orientation of dipoles, the increase of the
dipole length, d, leads to larger charge distances s2 and magnifies
the absolute values of Dout for fixed ratios of dielectric constants
a (Fig. 4c and 4d). The differences between the calculated curves
for d/s1 = 1 and d/s1 = 3 seem to be small. In fact, the ratio between
the scaling factors in Eqs. (11) for d/s1 = 3 and that for d/s1 = 1 is
equal to 2.7 and the ratio between the respective dipole interaction
energies, fdip, becomes even >2.7 for the fixed all other system
parameters. The effect of dipole orientation is illustrated in
Fig. 4b for d = 3 s1. For a fixed dipole length, the most pronounced
change in the interaction energy is observed when both dipole
charges are at the closest distances to the dividing surface between
the dielectric phases. This corresponds to a dipole orientation par-
allel to the interface and s2 = s1. The solid lines in Fig. 4b are drawn
for perpendicular and the dashed lines – for parallel dipole orien-
tations. One concludes that the dipole orientation does not affect
considerably Dout for all ratios between the dielectric constants.
The ratio between the scaling factors in Eq. (11) calculated for par-
allel and perpendicular dipole orientations for d = 3 s1 is equal to
1.98. Hence, the ratio between the respective dipole interaction
energies, fdip, becomes slightly smaller than 1.98. The overall con-
clusion is that Dout does not depend considerably on d/s1 and the
dipole orientation, while the magnitudes of fdip are quite sensitive
because of the different values of the scaling factor in Eq. (11).

For dipoles inside the dielectric sphere, the systematic study of
the effects of dipole and dielectric phase parameters is illustrated
in Fig. 5. From a physicochemical viewpoint, this case is realized
for inverse (water in oil) microemulsions. As can be expected, the
signs of Dinn are opposite to those of Dout for equal ratios between
dielectric constants a (cf. Figs. 4 and 5). The magnitudes of the
dipole free energy are larger than those illustrated in Fig. 4. For
e > en, perpendicular dipole orientations and d = 2 s1 (Fig. 5a), the
calculated values of Dinn become more than two times greater than
those of Dout. Indeed, for a perpendicular dipole orientation,
a = 1/10, d = 2 s1, and s1/Rs = 0.25, the calculated values are Dout =
� 0.3283 and Dinn = 0.7491, thus |Dinn/Dout| = 2.828. Note, that this
result is also valid for the ratio between the respective dipole free
energies. Moreover, the repulsive dipole interaction energy, ud,
considerably increases with the decrease of sphere radius Rs. This
effect is less pronounced for e < en. The effect of the dipole length
on Dinn is illustrated in Fig. 5c and 5d for a = 1/40 and a = 9/10,
respectively. Hence, not only the magnitude and sign of Dinn but
also the trend of the dependence on the dipole length is different
than that in Fig. 4c and 4d: |Dinn| decreases with the increase of
the dipole length; the change of the dipole free energy becomes
lower than those illustrated in Fig. 5c and 5d. It is interesting to



Fig. 4. Effects of the nonpolar sphere radius, Rs, and the positions and orientations of the dipole in the outer dielectric phase on the dipole interaction energy: a) d = 2 s1,
s2 = s1 + d, and different ratios between dielectric constants; b) d = 3 s1, perpendicular (s2 = s1 + d) and parallel (s2 = s1) dipole orientations, and different values of a; c) a = 1/40
and d) a = 9/10 for s2 = s1 + d, i.e. perpendicular orientation, and different values of the dipole lengths.
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note that the differences between Dinn calculated for perpendicular
(solid lines) and parallel (dashed lines) dipole orientations in the
case of a dipole inside the sphere are smaller than those for Dout

(see Fig. 5b). Thus, one can conclude that the scaling factor in Eq.
(11) accounts for the main effect of the dipole orientations.

For cylindrical dielectric media, the positions of the two charges
of the dipole in cylindrical coordinates are: q = Rc ± s1, / = 0, z = 0,
and q = Rc ± s2, / = /d, z = zd, where the sign plus states for dipoles
outside the cylinder and the minus – for dipoles inside the cylin-
der. The dipole length, d, can be calculated using the following
relationship:

d2 ¼ ðRc � s1Þ2 þ ðRc � s2Þ2 � 2ðRc � s1ÞðRc � s2Þ cos/d þ z2d ð14Þ
The dipole electrostatic interaction energy, ud, is a sum of the

dipole charges multiplied by the induced electrostatic potential
in their positions because of the partially confined dielectric space
in the cylinder (see Appendix C). The dipole free energy is given by
Eq. (11), in which the concrete form of the Ddip is substituted. The
respective expressions for Ddip = Dout in the case of a charge outside
the cylinder and for Ddip = Dinn for a charge inside the cylinder are:

Dj ¼ 2ð1� 2aÞs1s2ðd2 þ 4s1s2Þ
1=2

Rc½ðs1 þ s2Þðd2 þ 4s1s2Þ
1=2 � 4s1s2�

½Cjðs1Rc
;
s1
Rc

;0; 0Þ

þ Cjðs2Rc
;
s2
Rc

;0;0Þ

�2Cjðs1Rc
;
s2
Rc

;/d; zdÞ� � ð1� 2aÞ for j ¼ inn; out ð15Þ
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The detailed mathematical and numerical calculations are pre-
sented in Appendix C.

For a dipole outside the cylindrical dielectric phase, the depen-
dence of the interaction energy on the system parameters is illus-
trated in Fig. 6. The position and orientation of the dipole are fixed
and the ratios between dielectric constants, a, and the radius Rc are
varied. For a perpendicular orientation of dipoles to the cylindrical
dividing surface, the cylindrical coordinates, /d and zd, are equal to
zero and s2 = s1 + d (Fig. 6a, 6c, and 6d). As can be expected, the
general trends are quite similar to those shown in Fig. 4 for spher-
ical dielectric media: the increase of the dipole length and the
decrease of the radius of the cylinder, Rc, lead to greater values of
the dipole free energy, fdip. The differences are in the magnitudes
of Dout, c.f. Figs. 4 and 6. For example, |Dout| for spheres is from
1.7 to 2.2 times larger than that for cylinder for the calculated
examples. The effect of the dipole orientation for /d – 0 and
zd = 0 is demonstrated in Fig. 6b. Note that the change of Dout is
more pronounced for en < e compared to the case en > e.

The numerical results for Dinn in the case of dipoles inside the
cylindrical dielectric phase are summarized in Fig. 7. For a perpen-
dicular dipole orientation, the increase both the dipole length and
the radius of the cylinder, Rc, decreases |Dinn|, see Fig. 7a, 7c, and
7d. The relative differences in the magnitudes of Dinn between
spheres and cylinders when comparing equal Rc and Rs are
between 1.8 and 2.3, c.f. Figs. 5 and 7. In this case, the dipole ori-
entations (Fig. 7b) change |Dinn| insignificantly for all ratios
between dielectric constants, a.



Fig. 5. Effects of the sphere radius, Rs, and the distance and orientations of the dipole inside the sphere on the dipole interaction energy: a) d = 2 s1, s2 = s1 + d, and different
rations between dielectric constants; b) d = 2 s1, perpendicular and parallel dipole orientations, and different values of a; c) a = 1/40 and d) a = 9/10 for s2 = s1 + d, i.e.
perpendicular orientation, and different values of the dipole lengths.
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4. Molecular thermodynamics of zwitterionic surfactant
micelles: Theory vs Experiment

Cocoamidopropyl betaine (CAPB) is more common in industrial
applications [12,14,20]. From a theoretical viewpoint, there are
two problems in the molecular thermodynamic theory to model
the CAPB micelles. First, the samples of CAPB typically contain
not negligible amount of NaCl, which should be taken into account
in calculation of the free energy. Second, CAPB is a mixture of
molecules with different hydrophobic chain lengths (from C10 to
C16), which makes the calculation of the conformational compo-
nent of the free energy difficult [25]. For that reason, the molecular
thermodynamic theory of zwitterionic surfactant micelles is
applied below for a quantitative explanation of the available exper-
imental data for the CMC and aggregation numbers of zwitterionic
micelles from dodecyldimethylamine oxide (DDAO) and tetrade-
cyldimethylamine oxide (TDAO) solutions. The contributions of
the interfacial tension, fr, steric repulsion, fhs, and conformational
free energy, fconf, to the total free energy of a surfactant molecule
in the micellar environment are calculated using suitable physico-
chemical parameters and theoretical expressions as described in
Appendix D. For the dipole component of the free energy, fdip, we
used the model presented in Sections 2 and 3.

The geometrical parameters of molecules can be retrieved from
previous studies, e.g. Refs. [20,41,42]. Note that the data suggest
that the DDAO and TDAO zwitterionic dipoles have a preferential
parallel orientation with respect to the micellar hydrocarbon core
surface. The closest dipole charge distance to the micelle hydrocar-
bon core depends on the nature of polar head. In the case of DDAO
(TDAO) and CAPB, s1 is the distance between N+ and the boundary
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of the micellar core and s1 is the same for these surfactants:
s1 = 0.7 Å [20]. The molecular thermodynamics simulations showed
that the dipole moment of the surfactant headgroups in apolar
solutions is equal to 5.04 Debye [41], while the effective dipole
moment of the hydrated surfactant headgroup is substantially
higher and equal to 10.7 Debye [42]. The dipole length calculated
from the value of 10.7 Debye becomes d = 2.23 Å, so that
d = 3.18 s1. The dielectric constants, en, of dodecane and tetrade-
cane at room temperature are 2.01 and 2.04, respectively [43]. Pro-
cessing the experimental surface tension isotherm of DDAO
solutions using the van der Waals model, we obtain 35 Å2 for the
surface area excluded by the surfactant headgroup, a0 (see
Fig. D2 in Appendix D). Hence, the minimal possible lateral dis-
tance between dipoles at the micelle surface is 6.68 Å, which is 3
times larger than the dipole length and the main assumption in
the capacitor model fails down.

For long spherocylindrical micelles (Fig. 1), the micelle scission
energy, Esc, is defined as: Esc = ns(fs � fc), where ns is the total num-
ber of molecules in the spherical endcaps, fc and fs are the free
energies per zwitterionic molecule in the cylindrical part and
spherical endcaps of micelles, respectively. The standard chemical
potential is independent of micelle shape and the free energies can
be replaced by the differences Df c ¼ f c � lo

m andDf s ¼ f s � lo
m. The

necessary parameters for the calculation of all contributions, fr, fhs,
fconf, and fdip, to the free energy differences and the scission energy
are available and there is no need of adjustable parameters. For
example, Fig. 8a shows the dependence of free energy components
and Dfc on the radius of the micelle cylindrical part, Rc, for DDAO
micelles. The increase of radius Rc leads to the decrease of fr, and
to the increase of fhs, fconf, and fdip, as well (see Section 3 and Ref.



Fig. 6. Dipole interaction energy for a dipole outside a cylindrical nonpolar phase – effects of the cylindrical radius, Rc, and the dipole positions and orientations on the
interaction energy: a) d = 2 s1, s2 = s1 + d, and different ratios between dielectric constants; b) d = 2 s1, perpendicular and parallel dipole orientations, and different values of a;
c) a = 1/40 and d) a = 9/10 for s2 = s1 + d, i.e. perpendicular orientation, and different values of the dipole lengths.
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[15]). The minimum of Dfc = 4.19 kBT is achieved for the optimal
radius of the cylindrical part Rc = 13.60 Å. As expected, the optimal
radius is lower than the extended chain length, l = 16.7 Å, of the
DDAO hydrocarbon chain.

The excess free energy of the micelle spherical endcaps, Esc, also
represents a sum of four contributions, Esc = (Esc)r+(Esc)hs+(Esc)-
conf+(Esc)dip, where the subscripts refer to the respective compo-
nents of the micelle free energy. The total aggregation number of
the spherical endcaps, ns, increases with the cube of radius Rs.
The non-shielded area of hydrocarbon/water contact decreases
with the decrease of surface curvature and as a result (Esc)r
decreases with the rise of Rs (Fig. 8b). In contrast, both (Esc)hs and
(Esc)conf are increasing functions of Rs. Note that |fdip| decreases
with the rise of the radii of the cylindrical part and the spherical
endcaps of micelles (see Section 3). Nevertheless, |(Esc)dip|
increases with the rise of Rs, because of the faster increase of ns
(Fig. 8b). The minimum of the scission energy, Esc, is a fine balance
of components with comparable or greater ranges of variations.
The numerical results for Dfc vs Rc and scission energy components
vs Rs in the case of TDAO micellar solutions are summarized in
Figs. D3a and D3b in Appendix D. Fig. D3a shows the dependence
of the free energy components and Dfc on the radius of the micelle
cylindrical part, Rc, for TDAO micelles. The increase of the radius Rc

leads to the decrease of fr, and the increase of fhs, fconf, and fdip. The
minimum of Dfc = 4.45 kBT is achieved for the optimal radius of the
cylindrical part Rc = 15.33 Å. The dependence of the excess free
energy components for TDAO micelles on the radius of the spher-
ical endcaps is shown in Fig. D3b. The respective trends for (Esc)r,
(Esc)hs, (Esc)conf, and (Esc)dip are quite similar to those for DDAO
illustrated in Fig. 8b.
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The requirement for the local minimum of the scission energy,
Esc, as a function of radius Rs for a fixed optimal radius of the cylin-
drical part is equivalent to the chemical equilibrium between the
surfactant molecules in the spherical endcaps and in the micelle
cylindrical part [15]. Fig. 8c shows the dependence of Esc on Rs –
the minimum value of Esc for DDAO micelles is equal to 10.04
kBT, which is achieved at the optimal radius Rs = 16.23 Å, while
for TDAOmicelles, the minimum of Esc is equal to 16.15 kBT at opti-
mal radius Rs = 17.93 Å. In both cases, the values of the optimal
radii are smaller than the respective extended chain lengths,
16.7 Å for DDAO and 19.2 Å for TDAO. Hence, the condition for
the chemical equilibrium between the surfactant molecules in
the cylindrical part and the endcaps of micellar aggregates is ful-
filled. The calculated minimum of the scission energy 16.15 kBT
for TDAO spherocylindrical micelles is considerably larger than
that for DDAO, as can be expected because of the longer chain
length.

The mean mass aggregation number of rodlike micelles, nM, can

be estimated from the following formula,nM 	 2ðXS � Xo
SÞ1=2

exp½Esc=ð2kBTÞ�, where the molar fraction of surfactants is XS and
its value at the CMC is Xo

S [44]. Even for concentration as high as
1 M DDAO, the estimated mean mass aggregation number of
micelles using the obtained theoretical value of Esc = 10.04 kBT is
equal to 41, which is smaller than the aggregation number of
spherical micelles 56 calculated for Rs = l. Hence, the scission
energy of 10 kBT is not enough to produce a considerable increase
of the micellar aggregation number and the simple estimation of
nM cannot be used to predict the dependence of micelle aggrega-
tion number on the DDAO concentration. In contrast for 100 mM
TDAO and Esc = 16.15 kBT, the respective value of nM is 273, which



Fig. 7. Dipole interaction energy for a dipole inside a cylindrical dielectric phase – dependence of Dinn on the cylindrical radius Rc and the dipole positions and orientations: a)
d = 2 s1, s2 = s1 + d, and different ratios between dielectric constants; b) d = 2 s1, perpendicular and parallel dipole orientations, and different values of a; c) a = 1/40 and d)
a = 9/10 for s2 = s1 + d, i.e. perpendicular orientation, and different values of the dipole lengths.
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correlates with experimental observations. It is interesting to note
that all molecular parameters for pentaoxyethylene dodecyl ester
(C12E5) and DDAO are identical [15,26] and the same is observed
for C14E5 and TDAO. The only difference from the viewpoint of
molecular thermodynamics is the appearance of the dipole free
energy for the zwitterionic surfactants. The contribution of fdip
changes dramatically the scission energy and growth of micelles:
Esc = 23.7 kBT for C12E5 [15] vs 10.04 kBT for DDAO; Esc = 28.4 kBT
for C14E5 [26] vs 16.15 kBT for TDAO. Moreover, the values of mean
aggregation number calculated by the model of Nagarajan and
Ruckenstein [30] for the two examples are: i) 15,700 and 24,900
for 175 and 440 mM DDAO vs experimental data of 98 and 103,
respectively; ii) 23,300 and 39,400 for 3.5 and 10 mM TDAO vs
experimental data of 126 and 178.

To predict the mean aggregation number and the size distribu-
tion of micelles at arbitrary values of the scission energy, the gen-
eral molecular thermodynamic approach should be applied. The
single component surfactant solution contains X1 mole fraction of
surfactant molecules in monomeric form and Xn mole fraction of
aggregates that are composed of n surfactant molecules (n > 1).
The minimization of the total free energy of the solution under
the mass balance condition:

XS ¼ X1 þ
X
n>1

nXn ð16Þ

leads to the well-known relationship [30]:

Xn ¼ ½X1 expð� f on � lo
1

kBT
Þ�

n

ðn > 1Þ ð17Þ

Here lo
1 is the standard chemical potential of free monomers in

an aqueous solution and f on is the free energy per surfactant mole-
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cule in a micelle of aggregation number n. Hence the mean mass
aggregation number, nM, can be calculated from the expression
[45]:

nM ¼ 1
XS � X1

X
n>1

n2Xn ð18Þ

For a given optimal shape of the aggregate composed of n sur-
factant molecules, the free energy,f on, is a sum of the considered
contributions and the energy difference in the exponent in the
right-hand side of Eq. (17) is equal tof on � lo

1 ¼ �ðlo
1 � lo

mÞ þ Df ,
whereDf � Df r þ Df hs þ Df conf þ Df dip. The difference between the
standard chemical potentials,lo

1 � lo
m, is independent of the shapes

of aggregates. Therefore, the optimal spherocylindrical micelle
shape for fixed aggregation number n corresponds to the minimum
of nDf ¼ nsðDf Þs þ ðn� nsÞðDf Þc under all geometrical restrictions.
Fig. 9 shows the dependence of the optimal radius of the spheres,
the spherical part of the elongated shapes, and spherical endcaps,
Rs, on the aggregation number. One sees that the micelles are
spherical for aggregation numbers smaller than those correspond-
ing to Rs = l: 30 vs 56 for DDAO; 35 vs 73 for TDAO (left dashed
lines in Fig. 9). In the transition region (30 < n � 92 for DDAO
and 35 < n � 106 for TDAO), the optimal shapes of micelles are
two truncated spheres with radius Rs and Rc is the radius of the
cross sectional circle (Fig. 9). In all cases, the radii Rs are smaller
than the corresponding extended length, l. Further increase of
the aggregation number (n > 92 for DDAO and n > 106 for TDAO)
leads to the formation of spherocylindrical micelles (with a small
decrease of Rs and Rc) up to very large aggregation numbers, for
which Rs and Rc remain constants and the aggregates grow only
because of the increase of the lengths of their cylindrical parts.



Fig. 8. Plots of: (a) components of the total free energy of a surfactant molecule in the micelle cylindrical part vs Rc; (b) scission energy components vs Rs for the micelle
spherical endcaps for DDAO; (c) Esc vs Rs for DDAO and TDAO micelle endcaps. The vertical dashed lines correspond to the positions of the respective minima.

Fig. 9. Plots of the optimal radii, Rs and Rc, and the minimal free energy, Df, vs aggregation number n: (a) DDAO micelles; (b) TDAO micelles. The vertical dashed lines show
the transition from spheres to elongated shapes and subsequently to spherocylindrical micelles.
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The asymptotic values of Rs and Rc for large aggregation numbers
correspond exactly to those illustrated in Fig. 8a, 8c, and D3 in
Appendix D and used to calculate the respective scission energy.

The difference between the standard chemical poten-
tials,lo

1 � lo
m, is needed to predict the size distribution of micelles

and the critical micelle concentration, XCMC, while the geometry of
the optimal aggregates and Df (Fig. 9) are independent oflo

1 � lo
m.

The CMC can be obtained by constructing a plot of X1 against the
total surfactant concentration, XS (see Fig. D4 in Appendix D). In
the molecular thermodynamics, the CMC has been estimated as
that value of X1 for which the concentration of the singly dispersed
surfactant molecules is equal to that of surfactant present in the
form of aggregates [30,46–48]. The experimental observations
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show that the CMC of DDAO at room temperature changes from
0.7 mM to 2.4 mM depending on the solution pH [18,49–52]. Using
the experimental value of the CMC for DDAO in a zwitterionic form
of 1.70 mM, we obtained that the difference between standard
chemical potentials is equal to 14.49 kBT (see Fig. D4 in Appendix
D). The lower value of lo

1 � lo
m is because of the contribution of

the constant dipole interaction energy, Eq. (1), in the standard
chemical potential. Above the CMC of DDAO, the concentration of
monomers slightly increases from 1.70 mM to 1.78 mM with the
rise of the total surfactant concentration. The experimental data
for the CMC of TDAO [23,53,54] show the variation of the CMCwith
pH from 0.15 mM to 0.25 mM. For the CMC value of TTDAO in a
zwitterionic form (0.15 mM), we calculated that the standard
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chemical potential difference is equal to 17.21 kBT (see Fig. D4 in
Appendix D). Above the CMC of TDAO, the respective concentration
of monomers increases from 0.15 mM to 0.157 mMwith the rise of
the total surfactant concentration. The difference between the
standard chemical potentials of TDAO and DDAO is 2.72 kBT, which
corresponds to 1.36 kBT per one CH2 group [30]. Finally, all physic-
ochemical parameters for DDAO and TDAO molecules needed for a
quantitative prediction of the number distribution of aggregates
and the mean aggregation number, nM, are defined.

Fig. 10 shows the calculated mass distributions of aggregates,
nXn, for DDAO and TDAO micellar solutions. The positions of max-
imums of nXn depend insignificantly on the total surfactant con-
centrations, XS – they are at aggregation numbers 90 for DDAO
and 105 for TDAO. The number of molecules incorporated in the
n-th micellar aggregate decreases considerably with the rise of
aggregation number n for DDAO micelles (Fig. 10a) even at very
large total surfactant concentrations (1 M). Hence the total amount
of surfactant molecules incorporated in the long spherocylindrical
micelles for DDAO is small and the mean aggregation number, nM,
increases slightly with the rise of concentration XS. In contrast, the
mass distributions of aggregates for TDAO micellar solutions
(Fig. 10b) have pronounced long tails seen for n > 105. The total
number of molecules incorporated in these aggregates increases
with the rise of surfactant concentration for relatively low values
of XS (from 2 to 50 mM). As a result, the mean mass aggregation
number considerably increases for not so large TDAO total
concentrations.
Fig. 10. Plots of the mass distribution of aggregates, nXn, vs the aggregation number, n, fo

Fig. 11. Experimental data for the mean aggregation numbers, nM, vs molecular thermody
[22], and C12E5 micellar solutions [15]; (b) TDAO micellar surfactant solutions, experim

479
The first study of the aggregation number of zwitterionic DDAO
micelles occurred in 1962 [55]: the reported value of nM = 76 is
smaller than the measured lately values of nM = 103–110 given
in [18,19,49]. The results from the molecular dynamics simulations
of the interfacial and structural properties of DDAO micelles show
that the micelles are generally ellipsoidal in shape with an axial
ratio of about 1.4 [56]. Recently, the size and aggregation number
of DDAOmicelles for a wide range of surfactant concentration have
been studied using a combination of small angle neutron scattering
and Fourier-transform infrared spectroscopy [22]. Fig. 11a shows
experimental data for nM [22] and the calculated theoretical pre-
dictions from the proposed molecular thermodynamic approach
without adjustable parameters. It is remarkable that nM changes
only from 90 to 115 with the rise of DDAO total surfactant concen-
tration up to 1.3 M. For comparison, the mean mass aggregation
numbers of C12E5 [15] versus surfactant concentration are included
in Fig. 11a. One sees that for 100 mM surfactant concentration, the
aggregation number of C12E5 micelles is>150 times greater than
that of DDAO.

The mean aggregation numbers and sizes of TDAO micelles are
reported in the literature [23,42,57,58]. The relationship between
the growth of rodlike TDAOmicelles and the viscoelastic properties
of TDAO micellar solutions has been systematically studied in Ref.
[59]. The experimental data for nM vs surfactant concentration [57]
are shown in Fig. 11b. As expected, the micellar aggregation num-
ber gradually increases with XS, see Fig. 11b. Even for low concen-
tration (53.4 mM), the experimental value of nM = 315 ± 35 has
r different total surfactant concentrations XS: (a) DDAO micelles; (b) TDAO micelles.

namic theory (solid lines): (a) DDAOmicellar solutions, experimental data from Ref.
ental data from Ref. [57].
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been reported. The solid lines in Fig. 11 are drawn without adjus-
table parameters – the theoretical predictions coincide with exper-
imental data in the frame of experimental errors.
5. Conclusions

The viscoelastic properties of a wide range of micellar solutions
are related to the growth of rodlike and wormlike micelles, charac-
terized by the scission excess energy, Esc, between their spherical
endcaps and cylindrical parts. In our previous studies [15,16,25–
27], Esc was calculated in the frame of molecular thermodynamics
for nonionic and ionic surfactants with and without added elec-
trolytes (salts) and their mixtures. Excellent agreement was
achieved between the proposed therein theory and experiments.
All molecular parameters of many nonionic and zwitterionic sur-
factants are practically identical. It is not clear, why these nonionic
surfactants have lower values of the critical micelle concentration
(CMC), considerably larger scission energy, micellar sizes, and
respectively pronounced viscoelastic behavior of their solutions
[15] compared to the similar (from the viewpoint of their molecu-
lar parameters) zwitterionic surfactants [22]. The present paper is
based on the detailed theory of micelle dipole interaction free
energy, fdip, and its crucial importance on the CMC, micellar size
distribution, and Esc of zwitterionic surfactant solutions, see
Section 4.

For this goal, we first derived the exact expressions for the
interaction energy between a single charge and nonpolar dielectric
phase (e.g. micellar hydrocarbon core) based on the exact solutions
of the respective electrostatic problems in spherical and cylindrical
dielectric media [32,34] (Section 2). Applying the superposition
principle in Section 3, the exact formulae for the interaction energy
between a dipole and nonpolar dielectric phase are obtained. The
reported results are valid for dipole’s arbitrary lengths, orienta-
tions and distances to the dividing cylindrical and spherical bound-
aries between the dielectric phases with different dielectric
constants. The detailed numerical results (Figs. 4–7) showed the
effects of all studied system parameters on the dipole interaction
free energy, fdip. For dipoles outside the confined nonpolar phase
(the case corresponding to zwitterionic surfactant micelles), the
dipole interaction energy decreases with the rise of the radius of
curvature, the dipole length and the difference between the dielec-
tric constants of phases. These effects are more pronounced for
spheres compared to cylinders. In the case of dipoles inside the
confined dielectric phase (the case corresponding to inverse emul-
sions), the trends are exactly the opposite. Because of the general-
ity of the exact solutions and the formal analogy between
electrostatics and magnetostatics, the obtained results are also
applicable for magnetically polarizable spheres and cylinders. They
could be used for modeling a broad class of physicochemical
problems.

The new analytical model for fdip without any adjustable param-
eters (Section 4) allows one to obtain a perfect agreement between
the experiments and the molecular thermodynamic description of
zwitterionic micellar solutions. The calculated optimal micellar
shape parameters (Fig. 9a), size distributions (Fig. 10a), and mean
mass aggregation numbers, nM (Fig. 11a) for DDAO micellar solu-
tions showed the formation of spherocylindrical micelles with a
narrow distribution around aggregation number of 90 and a small
increase of nM from 90 to 115 with the considerable rise of the total
surfactant concentration up to 1.3 M as observed experimentally
[22]. The longer hydrocarbon tail of TDAO leads to larger radii of
the spherical endcaps and cylindrical parts of optimal micelles
(Fig. 9b), a peak of the micellar size distribution at aggregation
number of 105, followed by a long tail in the micellar size distribu-
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tion even at >25 times lower total surfactant concentrations
(Fig. 10b). As a result, the mean aggregation numbers of zwitteri-
onic TDAO micelles significantly increase with surfactant concen-
trations (Fig. 11b) even at 50 mM [57].

The present molecular thermodynamic approach can be further
extended to explain the effects of different pHs and salt concentra-
tions on the size and distribution of zwitterionic surfactants
[6,49,51,59] and their synergistic mixing with ionic surfactants
[12–14,17,22,24,52]. The obtained results could be of interest to
the theoreticians to build up adequate models and simulations of
complex fluids and for the experimentalists to plan their study
and develop new formulations.
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[32] D.V. Redžić, M.S.A. Eldakli, M.D. Redžić, Image charge inclusion in the dielectric
sphere revisited, Eur. J. Phys. 33 (2012) 1751–1759, https://doi.org/10.1088/
0143-0807/33/6/1751.
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Appendix A. Planar geometry 

 In the case of planar geometry, the solution of the electrostatic problem for charge q at 

distance s from the dividing surface between two dielectric phases (Fig. A1) is well-known in 

the literature [1]. In Cartesian coordinate system, Oxyz, the position of the interface is defined 

by z = 0, the original charge q is placed at the point z = s, so that the position of the image 

charge, qn, is at z = –s, see Fig. A1. The relative dielectric constants of the phases are  and n, 

respectively, and the original charge is placed in the phase with dielectric constant . For 

simplicity, the dielectric phase with dielectric constant n is hereinafter referred to as the 

nonpolar phase and that with  – as the dielectric phase. 

 

Fig. A1. Schematic presentation of a charge q at distance s 

from the dividing surface between two phases with dielectric 

constants  and n. qn is the image charge of q. 

 

 

 If 0 is the dielectric permittivity of vacuum and  is the electrostatic potential at an 

arbitrary point A(x,y,z) in the phase where the charge positioned, then the exact solution of the 

electrostatic problem in Cartesian coordinates (Fig. A1) reads: 
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The image charge, qn, is related to the original charge, q, by the following expression: 
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Hence, the expression for the electrostatic interaction energy, o
cu , between the charge and the 

nonpolar phase reads: 
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The dimensionless interaction energy is convenient to be presented in terms of the Bjerrum 

length, LB, and the ratio between the dielectric constants, : 
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where e is the elementary charge, T is the temperature, kB is the Boltzmann constant, and zc  

q/e is the ion valence. For water at 25 oC, the Bjerrum length, LB, is equal to 7.1 Å. Thus Eq. 

(A3) acquires the following final form: 
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Fig. A2. A dipole close to the dividing surface between 

two dielectric phases: d is the dipole length; s1 and s2 

are the closest distances from the charges to the 

interface. 

 The dipole consists of two opposite charges (q and –q) with dipole length d (Fig. A2). 

The closest distances from the dipole charges to the interface are s1 and s2, respectively. In the 

case of planar geometry, the dipole charge, q, has image charge qn at distance s1 in the 

nonpolar phase below the interface and the image charge, –qn, of the opposite charge, –q, is at 

distance s2 below the interface. Hence, the value of the electrostatic interaction energy 

between the dipole and the nonpolar phase, o
du , is calculated using the simple expression: 
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see Eq. (A5) and Fig. A2. 

Appendix B. Spherical geometry 

 In the case of spherical geometry, the dividing surface between the dielectric phases is a 

sphere with radius Rs and center O (Fig. 2). The position of the charge can be outside the 



 3

sphere at distance Rs+s from the center (Fig. 2a) when the nonpolar phase is inside the sphere. 

In the opposite case, when the nonpolar phase is outside the sphere, the distance between the 

charge and the center O is Rs–s (Fig. 2b). The exact solutions of the electrostatic problems in 

spherical coordinates with radial distance r and polar angle  are described in the literature 

[2]. Below, we summarize these solutions and apply them to calculate the respective 

expressions for the electrostatic interaction energies in the cases of charges and dipoles. The 

distance between the charge and an arbitrary point A(r,) is denoted by rA. The general 

solutions are presented as series with respect to the Legendre polynomials, Pn(cos), where n 

= 0, 1, 2, …, with coefficients depending on the radial coordinate, r. 

B1. The nonpolar phase is inside the sphere 

 The general solution of the Laplace equation for the electrostatic potential inside the 

dielectric sphere, n, can be presented in the following form [2]: 
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where Cn are unknown constants. The respective solution for the electrostatic potential outside 

this sphere, , is a superposition of the electrostatic potential of the charge resided in this 

phase and that induced from the nonpolar dielectric sphere: 
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where Bn are unknown constants. The boundary conditions are defined at r = Rs, so that the 

inner expansion of 1/rA in series: 
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should be used to apply the boundary conditions. Therefore, one represents Eq. (B2) in the 

following equivalent form: 

s1 1
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r R s
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 
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   (B4) 

 The function for the electrostatic potential at the boundary is continuous and the surface 

charge density is equal to zero at r = Rs. Applying these boundary conditions to the general 
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solutions, Eqs. (B1) and (B4), one obtains the following linear system of equations for the 

unknown constants (Bn and Cn, n = 0, 1, 2, …) [2]: 

1
1s s

s n s1 1 1 2
s s s s

( 1)
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n n
n nn n
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


   


   

 
 (B5) 

The solution of this system of equations, Eq. (B5), is given by the expressions: i) for n = 0: 

0 0
s

1
0 ,  B C

R s
 


 (B6) 

ii) for n > 0: 
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n R s R s R
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 (B7) 

Therefore, the final exact solution of the considered electrostatic problem in the outer 

dielectric phase reads [2]: 

s s
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R r Rq s
S r R

R r R R
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where function Sout is given by the following definition: 
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The function, Sout, describes the induced electrostatic potential because of the nonpolar 

sphere. 

 The electrostatic interaction energy, uc, between the charge and the nonpolar phase is 

equal to the charge, q, multiplied by the induced electrostatic potential at the charge position, 

r = Rs+s and  = 0: 

2c B
c out

B s s s

(1 2 ) ( , ,0)
u L s s

z S
k T R R R

   (B10) 

 In the case of dipoles, the two dipole charges with the closest distances to the spherical 

surface s1 and s2, the dipole length d, and the radius of sphere Rs define the polar angle, d, 

between the radius vectors of the charge positions: 

2 2 2
s 1 s 2 s 1 s 2 d( ) ( ) 2( )( ) cosd R s R s R s R s         (B11) 

The electrostatic potential in the outer phase at an arbitrary point A is a superposition of the 

electrostatic potentials of charge q at distance Ar
  from point A and that of charge –q at 

distance Ar
  from point A. Thus from Eq. (B8), it follows that the exact solution of the 

electrostatic problem for an arbitrary dipole reads: 
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s s 1 s 2 s
out out d

0 s s s s s
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 The electrostatic interaction energy, ud, between the dipole and the nonpolar phase is 

equal to the sum of the charge, q, multiplied by the induced electrostatic potential at the 

charge position, r = Rs+s1 and  = 0, and the opposite charge, –q, multiplied by the induced 

electrostatic potential at its position, r = Rs+s2 and  = d: 

2d B 1 1 2 2 1 2
c out out out d

B s s s s s s s

(1 2 ) { ( , ,0) ( , ,0) 2 ( , , )]
u L s s s s s s

z S S S
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 The derived analytical interpolations and the used procedures for precise calculations of 

uc and ud are discussed in Appendix B3. 

B2. The nonpolar phase is outside the sphere 

 In this case, charge q is inside the sphere at position r = Rs–s and  = 0 (Fig. 2b). The 

general solutions of the Laplace equation for the electrostatic potentials, n and , are 

analogous to those given by Eqs. (B1) and (B2) [2]: 
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where Bn and Cn are unknown constants. The boundary conditions are defined at r = Rs, so 

that the alternative outer expansion of 1/rA in series: 
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should be used. The substitution of this expansion into Eq. (B15) leads to the equivalent form 

of the solution for the electrostatic potential in the inner phase: 

s
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 Applying the boundary conditions at the dividing surface r = Rs to the general solutions, 

Eqs. (B14) and (B17), one obtains the respective linear system of equations for the unknown 

constants (Bn and Cn, n = 0, 1, 2, …): 
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The solution of this system of equations is: i) for n = 0: 

n
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n n s

1
 ,  B C

R

 
 


   (B19) 

ii) for n > 0: 
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From Eqs. (B15), (B19) and (B20), one obtains the final exact solution of the considered 

electrostatic problem in the inner dielectric phase [2]: 
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Here the definition of function Sinn is 
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Note that Sinn = 0 for r = 0 and hence, the induced electrostatic potential at the sphere center is 

different than zero, see the second term in the right-hand side of Eq. (B21). 

 The electrostatic interaction energy, uc, between the charge and the nonpolar phase is 

equal to the charge multiplied by the induced electrostatic potential at the charge position, r = 

Rs–s and  = 0, (see Appendix B1). Thus from Eq. (B21), we derive the following expression 

for the dimensionless value of uc: 
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 In the case of dipoles with the closest distances from the dipole charges to the spherical 

surface s1 and s2, the dipole length d, the radius of sphere Rs, and the polar angle d between 

the radius vectors of the charge positions, one uses the following relationship: 

2 2 2
s 1 s 2 s 1 s 2 d( ) ( ) 2( )( ) cosd R s R s R s R s         (B24) 

If the distances from given point A in the inner phase to the charges q and –q are Ar
  and Ar

 , 

respectively, then the superposition of the respective solutions given by Eq. (B21) yields: 
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Note, that the zero order term appearing in the right-hand side of Eq. (B21), n n( ) /   , 

disappears in the solution for the electrostatic potential in the case of dipoles, Eq. (B25). 

Finally, the electrostatic interaction energy, ud, between the dipole and the outer nonpolar 

phase is equal to the sum of the charges, q and –q, multiplied by the induced electrostatic 

potential at their positions: 

2d B 1 1 2 2 1 2
c inn inn inn d
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 The respective analytical interpolations and the procedures for precise calculations of uc 

and ud are discussed in Appendix B3. 

B3. Procedures for precise calculations of the electrostatic interaction energies 

 Charges and dipoles outside the sphere of nonpolar phase. If the charges and dipoles 

are outside the sphere, then the respective expressions for the interaction energies are given by 

Eqs. (B10) and (B13). The series converge slowly in their original form and it is difficult to 

obtain analytic interpolation expressions, which are convenient for fast calculations. One 

possible way for precise calculations is to use the identity 
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 (B27) 

The last term in the right-hand side of Eq. (B27) is considerably smaller than unity, because 

of (1 ) 1/ 4    and ( 1)( 1 ) ( 1)n n n n     . Thus, one represents the general function, 

out ( , )t  , appearing in the right-hand sides of Eqs. (B10) and (B13), in the following 

equivalent form: 
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see Eqs. (B9) and (B27). Note that the last sum in the right-hand side of Eq. (B28) converges 

fast and it is easy to calculate this sum numerically with an excellent precision. 

 The first two sums in the right-hand side of Eq. (B28) can be calculated analytically. 

Indeed, the first sum corresponds to the generating function of the Legendre polynomials: 
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The integration of Eq. (B29) with respect to t leads to the second sum appearing in the right-

hand side of Eq. (B28): 
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Therefore, the final interpolation formula for the calculation of out ( , )t  , valid for all 

physical values of 0 <  < 1 and 0 < t < 1, reads: 
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Note that  
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 Fig. B1 shows the calculated relative error of the interpolation formula for out ( ,0)t , 

see Eq. (B31), for several typical values of . As should be, the maximum relative error is 

obtained for  = 0.5 and the relative error decreases with the increase of |21|. The 

parameter  = 0.5 when the dielectric constants of the phases are equal, i.e.  = n and there is 

no interfacial boundary. If  > n then  < 0.5, e.g. for typical values of water and 

hydrocarbon  = 78 and n = 2, respectively, which results in  = 1/40. For ethanol-water 

mixtures with high alcohol content and elevated temperature the dielectric constant could 

decrease to e.g.  = 18, then for n = 2,  = 1/10. For the hypothetical case of  < n and  > 

0.5, for example  = 5 and n = 45, which results in  = 9/10. 

 

 

 

Fig. B1. Relative error of the interpolation 

formula for out ( ,0)t . 

 

 

 

 



 9

 When the distance between the charges and dipoles to the dividing surface decreases, 

then the value of parameter t increases to unity and the relative error decreases considerably. 

In the typical cases of dipoles, the polar angles, d, are small, see Eq. (B11), and the precision 

of the interpolation formula is close to that illustrated for out ( ,0)t  in Fig. B1. 

 To account for the curvature effect (radius of the sphere) on the electrostatic interaction 

energy between the individual charge and the nonpolar sphere, Eq. (B10) is presented in its 

equivalent form: 

o 2 2
c c B c s

out out out 2
B s s

2
 ,  (1 2 ){ [ ,0] 1}

2 ( )

u u L z s R
F F

k T s R R s


    


 (B32) 

The difference between the interaction energies, o
c cu u , accounts for the curvature effect of 

the sphere. In fact, for a fixed value of s, this difference depends on the sphere radius through 

the ratio s/Rs and the parameter , i.e. on the ratio between the dielectric constants, see Eq. 

(B32). 

 Fig. B2 illustrates the dependence of Fout on  and s/Rs. Note that 

n n( ) / ( ) 1 2         and the sign of o
c cu u  changes from negative for 1/ 2   to 

positive for 1/ 2  , see Eq. (B32). With the increase of the sphere radius (i.e. decrease of 

s/Rs), the differences between the interaction energies decrease. In the opposite case, i.e. Rs 

decreases (increase of s/Rs) the magnitude of interaction energy difference significantly 

increases (Fig. B2). Note that the Bjerrum length, LB, for water at 25 oC is 7.1 Å and even for 

s = 3.5 Å and 2
c 1z  , the scaling factor in Eq. (B32) is equal to 1, which gives the interaction 

energy difference of kBT multiplied by the respective value of Fout. 

 

 

Fig. B2. Effect of sphere radius Rs (Rs 

decrease leads to s/Rs increase) on the 

electrostatic interaction energy between the 

charge in the outer dielectric phase and the 

nonpolar phase in the sphere. 

 

 

 In the case of dipoles in the outer dielectric phase, the electrostatic interaction 

difference, o
dip d df u u  , is convenient to be presented in the following form: 
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where function Dout accounts for the curvature effect of the spherical nonpolar phase. From 

Eqs. (A6) and (B13), the exact expression for Dout reads: 
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The dependencies of the calculated values of Dout on the system parameters are shown in Fig. 

4 and discussed in the main text. 

 Charges and dipoles inside the dielectric sphere. In this case, the expressions for the 

interaction energies are given by Eqs. (B23) and (B26). Again the series converge slowly in 

their original form. For that reason, one considers the following identity: 

1 1 (1 )
1

( )

n

n n n n
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 (B34) 

where the last term is considerably smaller than unity. Therefore, one represents the general 

function, inn ( , )t  , appearing in the right-hand sides of Eqs. (B23) and (B26), in the 

following equivalent form: 
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The last sum in the right-hand side of Eq. (B35) converges fast and it is easy to calculate this 

sum with a high precision. 

 The first sum in the right-hand side of Eq. (B35) is given by the exact formula, Eq. 

(B29). The exact result for the second sum is calculated as follows: 
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Therefore, the final interpolation formula for the calculation of inn ( , )t  , valid for all 

physical values of 0 <  < 1 and 0 < t < 1, reads: 
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 Fig. B3 shows the calculated relative error of the interpolation formula for inn ( ,0)t , 

see Eq. (B37) for typical ratios between the dielectric constants as discussed above. Again the 

maximum relative error is obtained for  = 0.5. The relative error decreases considerably 

with: the increase of |21|; the increase of parameter t (for charges and dipoles closer to the 

dividing surface); the increase of polar angle d. 

Note that 

2
s 1 2 s 1 s 2

inn inn inn d inn d2 2
s s s ss s

( ) ( )( )
( , ,0) [ ,0]  and  ( , , ) [ , ]

s s R s s s R s R s
S S

R R R RR R
   

     

 

 

Fig. B3. Relative error of the interpolation 

formula for inn ( ,0)t  for several 

characteristic values of . 

 

 

 

 

 

 

Fig. B4. Effect of sphere radius Rs on the 

electrostatic interaction energy between the 

charge in the inner phase (sphere) and the 

nonpolar phase outside the sphere. 

 

 

 

 The difference between the interaction energies, o
c cu u , accounts for the curvature 

effect of the sphere. For a fixed value of s, this difference is described by the function Finn, 

given by the following definition: 
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see Eq. (B23). 

 If the charge is in the inner phase (sphere), then the energy difference for a fixed 

distance s is characterized by the function Finn, see Eq. (B38). The curvature effect on the 

electrostatic energy difference is illustrated in Fig. B4. Note that the solution for the 

electrostatic potential, Eq. (B21), contains non-zero value of the induced potential at center O, 

i.e. for r = 0, which increases considerably for the decrease of the dielectric constant of the 

outer phase, n. Hence this leads to a steep increase of Finn for small values of . As it should 

be expected, the signs of o
c cu u  are opposite to those in Fig. B2 – they are positive for 

1/ 2   (n < ) and negative for 1/ 2   (n > ). Note that the electrostatic interactions are 

much stronger when the dielectric constant of the outer nonpolar phase is lower than that of 

the inner dielectric phase. 

 In the case of dipoles resided in the inner dielectric phase, the electrostatic interaction 

difference, o
d du u , is presented in the analogous form to Eq. (B33a): 
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   


 (B39a) 

where function Dinn accounts for the curvature effect of outer nonpolar phase. From Eqs. (A6) 

and (B26), the exact expression for Dinn reads: 

2 1/2
2 2s 1 s 21 2 1 2

inn inn inn2 1/2
s ss 1 2 1 2 1 2

2(1 2 ) ( 4 )
{ [( ) ,0] [( ) ,0]

[( )( 4 ) 4 ]

R s R ss s d s s
D

R RR s s d s s s s

   
  

  
 

s 1 s 2
inn d2

s

( )( )
2 [ , ]} (1 2 )

R s R s

R
 

 
     (B39b) 

The dependencies of the calculated values of Dinn on the system parameters are shown in Fig. 

5 and discussed in the main text. 

Appendix C. Cylindrical geometry 

 In the case of cylindrical geometry, the dividing surface between the dielectric phases is 

a cylinder with radius Rc. We define cylindrical coordinate system Oz, where Oz is the axis 

of revolution and  and  are the radial and polar coordinates, respectively (Fig. 3). The 

position of the charge can be outside the cylinder with charge coordinates  = Rc+s,  = 0, and 

z = 0 (Fig. 3a), when the nonpolar phase is inside the cylinder. In the opposite case (the 

dielectric phase is inside the cylinder), the charge coordinates are  = Rc–s,  = 0, and z = 0 
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(Fig. 3b). The exact solutions of the respective electrostatic problems are reported in the 

literature [3]. The problem in Appendix B is 2D because of the symmetry (Fig. 2), while in 

the case of cylinder, the electrostatic problem is essentially 3D (Fig. 3). 

C1. The nonpolar phase is inside the cylinder 

 The general solution of the electrostatic problem in the inner nonpolar phase ( < Rc) is 

presented as follows [3]: 

n 0 0
0 c c c0

2
[ ( ) I ( ) cos( )d

4

q z
C k k k k

R R R


  



   

1 c c0

4
( ) I ( )cos( )cos( )d ]n n

n

z
C k k n k k

R R

 






   (C1) 

where Cn(k) are unknown functions and In are the modified Bessel functions of the first kind 

(n = 0, 1, …). The respective general solution for the electrostatic potential outside the 

cylinder ( > Rc) is given by the relationship [3]: 

c n
0 0

0 c n c c0

2
[ ( ) K ( )cos( )d

4 A

Rq z
B k k k k

R r R R

  
    


 

   

n

1n c c0

4
( ) K ( )cos( ) cos( )d ]n n

n

z
B k k n k k

R R

   
  








    (C2) 

Here: Bn(k) are unknown functions; Kn are the modified Bessel functions of the second kind 

(n = 0, 1, …); rA is the distance from the charge to an arbitrary point A(, , z), see Fig. 3a. 

 The boundary conditions are applied at the cylindrical dividing surface,  = Rc, which 

corresponds to the inner integral representation of 1/rA: 

c
0 0

c c c0

2
I ( ) K [ (1 )]cos( )d

A

R s z
k k k k

r R R R






   

c
1 c c c0

4
I ( ) K [ (1 )]cos( ) cos( )d   for n n

n

s z
k k n k k R s

R R R

  






     (C3) 

The unknown functions are determined from the following system of equations: i) the 

electrostatic potential is a continuous function at the cylindrical surface: 

n

c n

K ( )
K [ (1 )] ( ) ( ) 0  ( 0,  1, 2, ...)

I ( )
n

n n n
n

ks
k B k C k n

R k

 
 


    


 (C4) 

ii) the surface charge density at the dividing surface is equal to zero: 
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c c

n
n| |R R 

 
  




 
 (C5) 

The substitution of the obtained expressions, Eqs. (C1)–(C3), into the boundary condition, Eq. 

(C5), yields: 

1 n
0 0 0

c 1

K ( )
K [ (1 )] (1 2 ) ( ) ( ) 0

I ( )

ks
k B k C k

R k




      (C6) 

1 1 n

c 1 1

K ( ) K ( )
K [ (1 )] (1 2 ) ( ) ( ) 0  ( 0)

I ( ) I ( )
n n

n n n
n n

k ks
k B k C k n

R k k




 

 


     


 (C7) 

The exact solution of the linear system of equations, Eqs. (C4), (C6), and (C7), for 

coefficients Bn(k) (n = 0, 1, …) reads: 

1 0
c

0
1 0

I ( ) K [ (1 )]

( )
K ( )[1 ( )]

s
k k

R
B k

k b k





 (C8) 

1 1
c

1 1

[I ( ) I ( )]K [ (1 )]

( )   ( 0)
[K ( ) K ( )][1 ( )]

n n n

n
n n n

s
k k k

R
B k n

k k b k

 

 

 
 

 
 (C9) 

where functions b0(k), b1(k), … are given by the definitions: 

1 0
0

0 1

I ( )K ( )
( ) 1

I ( )K ( )

k k
b k

k k
   (C10) 

1 1

1 1

K ( ) I ( ) I ( )
( ) 1   ( 0)

I ( ) K ( ) K ( )
n n n

n
n n n

k k k
b k n

k k k
 

 


  


 (C11) 

 From the obtained expressions for the coefficients, Eqs. (C8)–(C11), the final solution 

for the electrostatic potential, , in the outer dielectric phase, given by Eq. (C2), is presented 

in the following explicit form: 

c c
out

0 c c c

[ (1 2 ) ( , , , )]
4 A

q R s R
C z

R r R R

  
 


    (C12) 

Here the induced electrostatic potential from the inner cylindrical phase is accounted for by 

the function Cout, which for cylinders is given by the following definition: 

1 0 1 0 2
out 1 2

1 0 c0

2 I ( )K [ (1 )]K [ (1 )]
( , , , ) cos( )d

K ( )[1 ( )]

k k t k t z
C t t z k k

k b k R


 

  


  

1 1 1 2

1 1 1 c0

[I ( ) I ( )]K [ (1 )]K [ (1 )]4
cos( ) cos( )d

[K ( ) K ( )][1 ( )]
n n n n

n n n n

k k k t k t z
n k k

k k b k R


 


 

  

  


   (C13) 
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Fig. C1. Dependence of functions bn(k) on 

n and k, calculated after Eqs. (C10) and 

(C11). 

 

 

 

 The dependencies of functions bn(k) on n and k are shown in Fig. C1. One sees that 0 < 

bn(k)  1 and bn(k) decrease with the increase both of n and k. Therefore, the terms 

1 1 ( ) 1nb k      in the integrands in the right-hand side of Eq. (C13) do not affect the 

convergence of the integrals. 

 The electrostatic interaction energy, uc, between the charge and the nonpolar phase is 

equal to the charge, q, multiplied by the induced electrostatic potential at the charge position, 

 = Rc+s,  = 0, and z = 0 (Fig. 3a). Thus from Eq. (C12), we derive the following formula: 

2c B
c out

B c c c

(1 2 ) ( , ,0,0)
u L s s

z C
k T R R R

   (C14) 

 In the case of dipoles with dipole length d and closest distances s1 and s2 from the dipole 

charges to the dividing surface, the coordinates of charge q are  = Rc+s1,  = 0, z = 0 and 

those of charge q are  = Rc+s2,  = d, z = zd. Hence, the dipole length, d, is calculated from 

the relationship: 

2 2 2 2
c 1 c 2 c 1 c 2 d d( ) ( ) 2( )( )cosd R s R s R s R s z         (C15) 

The electrostatic potential at an arbitrary point A in the outer dielectric phase is a 

superposition of the electrostatic potentials of charge q and opposite charge –q at distances Ar
  

and Ar
  from point A , respectively. It follows from Eq. (C12) that the exact solution of the 

electrostatic problem in the case of dipoles reads: 

c c 1 c
out

0 c c c

[ (1 2 ) ( , , , )
4 A A

q R R s R
C z

R R Rr r

  
   


      

2 c
out d d

c c

(1 2 ) ( , , , )]
s R

C z z
R R

  
     (C16) 
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 The electrostatic interaction energy, ud, between the dipole and the nonpolar phase is 

equal to the sum of the dipole charges, q and –q, multiplied by the induced electrostatic 

potential at their positions, so that: 

2d B 1 1 2 2 1 2
c out out out d d

B c c c c c c c

(1 2 ) [ ( , ,0,0) ( , ,0,0) 2 ( , , , )]
u L s s s s s s

z C C C z
k T R R R R R R R

      (C17) 

see Eq. (C16). The procedures for precise calculations of uc and ud are discussed in Appendix 

C3. 

C2. Charges and dipoles inside the dielectric cylinder 

 For charges in the inner dielectric phase, the general solution of the electrostatic 

problem in this phase ( < Rc) is presented as follows [3]: 

c n
0 0

0 c n c c0

2
[ ( ) I ( )cos( )d

4 A

q R z
C k k k k

R r R R

  
    


 

   

n

n c c1 0

4
( ) I ( )cos( )cos( )d ]n n

n

z
C k k n k k

R R

   
  








    (C18) 

where Cn(k) are unknown functions (n = 0, 1, …) and rA is the distance from the charge to an 

arbitrary point A(, , z), see Fig. 3b. The respective general solution for the electrostatic 

potential outside the cylinder ( > Rc) reads [3]: 

n 0 0
0 c c c0

2
[ ( )K ( )cos( )d

4

q z
B k k k k

R R R


  



   

c c1 0

4
( )K ( )cos( )cos( )d ]n n

n

z
B k k n k k

R R

 






   (C19) 

where Bn(k) are unknown functions (n = 0, 1, …). 

 The boundary conditions are applied at the cylindrical dividing surface,  = Rc, which 

corresponds to the outer integral representation of 1/rA (see Fig. 3b): 

c
0 0

c c c0

2
I [ (1 )]K ( )cos( )d

A

R s z
k k k k

r R R R






   

c
c c c1 0

4
I [ (1 )]K ( )cos( )cos( )d   for n n

n

s z
k k n k k R s

R R R

  






     (C20) 

The unknown functions are determined from the following system of equations: i) the 

electrostatic potential is a continuous function at the cylindrical surface: 
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n

c n

I ( )
I [ (1 )] ( ) ( ) 0  ( 0,  1, 2, ...)

K ( )
n

n n n
n

s k
k C k B k n

R k

 
 


    


 (C21) 

ii) the surface charge density at that surface is equal to zero and the substitution of the 

obtained expressions, Eqs. (C18)–(C20), into the boundary condition, Eq. (C5), yields: 

n 1 n
0 0 0

c n 1

I ( )
I [ (1 )] ( ) ( ) 0

K ( )

s k
k C k B k

R k

  
  


   


 (C22) 

n 1 1 n

c n 1 1

I ( ) I ( )
I [ (1 )] ( ) ( ) 0  ( 0)

K ( ) K ( )
n n

n n n
n n

s k k
k C k B k n

R k k

  
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 

 

 
    

 
 (C23) 

The solution of this system of equations for coefficients Cn(k) (n = 0, 1, …) is presented as 

follows: 

c

K ( ) I [ (1 )]

( )   ( 0, 1, ...)
I ( )[1 (1 ) ( )]

n n

n
n n

s
k k

R
C k n

k b k


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 
 (C24) 

Finally, from the obtained expression for the coefficients, Eq. (C24), the explicit form of the 

solution for the electrostatic problem for potential  in the inner dielectric phase, given by Eq. 

(C18), is derived: 

c c
inn

0 c c c

[ (1 2 ) ( , , , )]
4 A

q R s R
C z

R r R R
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 


    (C25) 

In this case, the induced electrostatic potential from the outer cylindrical phase is accounted 

for by function Cinn, which for cylinders is defined as follows: 

0 0 1 0 2
inn 1 2
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k b k R
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



 


   (C26) 

The terms 1 (1 ) ( ) 1nb k      in the integrands in the right-hand side of Eq. (C26) again do 

not affect the convergence of the integrals, see Fig. C1. 

 The electrostatic interaction energy, uc, between the charge and the nonpolar phase is 

equal to the charge, q, multiplied by the induced electrostatic potential at the charge position, 

 = Rc–s,  = 0, and z = 0 (Fig. 3b). Using Eqs. (C25) and (C26) one obtains: 

2c B
c inn

B c c c

(1 2 ) ( , ,0,0)
u L s s

z C
k T R R R

   (C27) 
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 Analogously to Appendix C1, in the case of dipoles with coordinates of charge q,  = 

Rcs1,  = 0, z = 0, and those of charge q,  = Rcs2,  = d, z = zd: i) the dipole length, d, is 

calculated from the expression: 

2 2 2 2
c 1 c 2 c 1 c 2 d d( ) ( ) 2( )( )cosd R s R s R s R s z         (C28) 

ii) the solution for the electrostatic potential in the inner phase reads 

c c 1 c
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0 c c c

[ (1 2 ) ( , , , )
4 A A

q R R s R
C z

R R Rr r
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
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inn d d

c c

(1 2 ) ( , , , )]
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C z z
R R

  
     (C29) 

Therefore, the respective electrostatic interaction energy, ud, between the dipole and the 

nonpolar outer phase, which is equal to the sum of the charges, q and –q, multiplied by the 

induced electrostatic potential at their positions, is calculated from the following formula: 

2d B 1 1 2 2 1 2
c inn inn inn d d

B c c c c c c c

(1 2 ) [ ( , ,0,0) ( , ,0,0) 2 ( , , , )]
u L s s s s s s

z C C C z
k T R R R R R R R

      (C30) 

The procedures for precise calculations of uc and ud are discussed in Appendix C3. 

C3. Procedures for precise calculations of the electrostatic interaction energies 

 Charges and dipoles outside the dielectric cylinder. If the charges and dipoles are 

outside the cylinder, then the charge interaction energy is calculated from Eq. (C14). For large 

radii (s/Rc << 1), the asymptotic value of out c c( / , / ,0,0)C s R s R  is equal to Rc/(2s). For 

numerical calculations, it is convenient to exclude this singularity using Eq. (C3). 

 To account for the curvature effect (radius Rc) on the interaction energy between the 

charge and the cylindrical nonpolar phase, Eq. (C14) is presented in its equivalent form: 

o 2
c c B c

out out out
B c c c

2
 ,  (1 2 )[ ( , ,0,0) 1]

2

u u L z s s s
F F C

k T s R R R


     (C31) 

 

 

Fig. C2. Effect of cylinder radius Rc on the 

electrostatic interaction energy between the 

charge in the outer phase and the nonpolar 

phase inside the cylinder. 
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 Fig. C2 summarizes numerical results for the effect of radius Rc on the electrostatic 

interaction energy for different ratios between dielectric constants. As should be, the general 

trends are quite similar to those in the case of sphere, see Fig. B2. The main difference is in 

the magnitude of the interaction energy – for cylinders at fixed distance s, the magnitudes are 

lower (about 2 times) than those for spheres. 

 In the case of dipoles in the outer dielectric phase, the electrostatic interaction 

difference, o
d du u , is given by Eq. (B33a), in which the exact expression for Dout reads: 

2 1/2
1 2 1 2 1 1 2 2

out out out2 1/2
c c c cc 1 2 1 2 1 2

2(1 2 ) ( 4 )
[ ( , ,0,0) ( , ,0,0)
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 
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1 2
out d d
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2 ( , , , )] (1 2 )
s s

C z
R R

     (C32) 

see Eqs. (A6) and (C17). The dependencies of the calculated values of Dout on the system 

parameters are shown in Fig. 6 and discussed in the main text. 

 Charges and dipoles inside the dielectric cylinder. In this case the charge interaction 

energy is calculated from Eq. (C27). For large values of the parameter s/Rc, the asymptotic 

value of inn c c( / , / ,0,0)C s R s R  is equal to Rc/(2s), as should be. Again for numerical 

calculations, it is convenient to exclude this singularity and to use the following equivalent 

representations of Eq. (C27): 

o 2
c c B c

inn inn inn
B c c c

2
 ,  (1 2 )[ ( , ,0,0) 1]

2

u u L z s s s
F F C

k T s R R R


     (C33) 

Fig. C3 summarizes numerical results for the effect of radius Rc on the interaction energy for 

different ratios between the dielectric constants. The general trends are quite similar to those 

in the case of sphere, see Fig. B4. The main difference is in the magnitude of the interaction 

energy – for cylinders at fixed distance s, the magnitudes are lower than those for spheres. 

 

 

Fig. C3. Effect of cylinder radius Rc on the 

electrostatic interaction energy between the 

charge in the inner dielectric phase and the 

nonpolar phase outside the cylinder. 
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 In the case of dipoles in the inner dielectric phase, the electrostatic interaction 

difference, o
d du u , is given by Eq. (B39a), in which the exact expression for Dinn reads: 

2 1/2
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c c c cc 1 2 1 2 1 2

2(1 2 ) ( 4 )
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R R

     (C34) 

see Eqs. (A6) and (C30). The dependencies of the calculated values of Dinn on the system 

parameters are shown in Fig. 7 and discussed in the main text. 

Appendix D. Molecular aspects and parameters of the micellar model 

 In this section, we summarize all expressions and molecular parameters needed to 

calculate the sizes, shapes, and concentrations of micelles in the case of zwitterionic 

surfactants. The detailed explanation of the molecular thermodynamic model is published in 

Ref. [4]. 

D1. Molecular geometric parameters 

 Below all volumes, surface areas and radii refer to the micelle hydrocarbon core of alkyl 

chains with one end CH3 group and (nC1)CH2 groups, where nC is the number of carbon 

atoms in the alkyl chain. 

 

Fig. D1. Geometrical parameters of the hydrocarbon core of the spherical, the cylindrical part 

of spherocylindrical, and the spherocylindrical micelles. 

 Spherical micelles. The volume, Vs, the surface area, As, and the packing parameter, p, 

are related to the sphere radius, Rs, as follows: 

3 2 s
s s s s

s s

4 1
 ,  4  ,  

3 3

V
V R A R p

A R
      (D1) 

see Fig. D1. 

 Cylindrical parts of spherocylindrical micelles. The cylinder volume, Vc, the lateral 

surface area, Ac, and the packing parameter, p, are simply related to the cylinder radius, Rc, 

and length, Lc, by the relationships: 
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2 c
c c c c c c

c c

1
 ,  2  ,  

2

V
V R L A R L p

A R
      (D2) 

see Fig. D1. 

 Spherical caps of spherocylindrical micelles. The endcaps have the shape of truncated 

spheres with sphere radius Rs and radius of the truncated circle of the cylindrical part, Rc (Fig. 

D1). The total volume of the two truncated spheres, Vsc, the total area of their spherical 

surfaces, Asc, and the packing parameter, p, are calculated from the expressions: 

2 2 2 1/2 2 2 2 1/2
sc s s s c c s c c s

4 2
[ ( ) ] ( ) ,

3 3
V R R R R R R R R R        (D3) 

2 2 1/2
sc s s s c c s4 [ ( ) ],A R R R R R R     (D4) 

sc

sc s

1 3
 ,  

3 8

V
p p

A R
    (D5) 

Note that the minimal value of the packing parameter, p = 1/3, corresponds to hemispherical 

caps (Rc = Rs), whereas the maximal value, p = 3/8, is realized at 2/3/ sc RR . 

 The numbers of surfactant molecules contained in the cylindrical part, nc, those in the 

spherical endcaps of a spherocylindrical micelle, ns, and the total number of molecules, ntot, 

are: 

c sc
c s tot s c

C C

 ,   ,  
( ) ( )

V V
n n n n n

v n v n
     (D6) 

where v(nC) is the volume of the respective alkyl chain. We used the Tanford expressions for 

the extended chain length, l, and the chain volume, v: 

C 3 C 2 C 3 C 2( ) (CH ) ( 1) (CH ) ,  ( ) (CH ) ( 1) (CH )l n l n l v n v n v       (D7) 

For the length per CH3 and CH2 groups, the values l(CH3) = 2.8 Å and l(CH2) = 1.265 Å have 

been used. The volumes of the CH3 and CH2 groups, estimated from the absolute temperature, 

T, dependence of the volume of aliphatic hydrocarbons, are 

3
3(CH ) [54.3 0.124( 298)] Åv T    (D8) 

3
2(CH ) [26.9 0.0146( 298)] Åv T    (D9) 

D2. Components of micelle free energy per molecule 

 For zwitterionic surfactant micelles, the standard free energy per molecule incorporated 

in an aggregate, o
kf , becomes a sum of five components [4]: f – the contribution of the 

interfacial tension, , of the boundary between the micelle hydrocarbon core and the 

surrounding water phase at the micelle surface; fhs – the steric repulsion between headgroups 
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of the surfactant molecules; fconf – the conformational free energy of the surfactant 

hydrocarbon chains inside the micelle; fdip – the new contribution from the zwitterionic dipole 

head and the hydrocarbon micellar core electrostatic interactions; o
m  – the standard chemical 

potential of the surfactant molecule in the micelle. Here and hereafter, R = Rc for the 

cylindrical part of a spherocylindrical micelle, R = Rs for the spherical endcaps and spherical 

micelles, and p is the value of the packing parameter for the respective geometry. 

 Interfacial tension component. The interfacial free energy per molecule is calculated 

from the expression: 

0( ) ,  
v

f a a a
pR     (D10) 

where a0 is the surface area excluded by the surfactant head group and a is the area per 

surfactant molecule in the considered environment at the boundary between the micelle 

hydrocarbon core and the outer water phase. 

 The interfacial tension, , has been estimated using the generalized Tolman equation: 

1 CT
ow T

( )(1 )
[1 ]  ,  2.25

(11)
Å

l np

pR l

  
    (D11) 

where T C( )n  is the Tolman length and ow is the interfacial tension between the bulk oil and 

water phases. The dependence of ow on the absolute temperature, T, for different numbers of 

carbon atoms in the alkyl chains, nC, is described by the following interpolation formula [4]: 

0.5422
ow C[47.12 1.479 0.0875( 293.15)]  mN/mn T      (D12) 

 Headgroups steric repulsion component. The repulsion between surfactant headgroups 

at the micelle surface has been taken into account using the repulsion term in the two-

dimensional equation of van der Waals: 

hs 0

B

ln(1 )
f a

k T a
    (D13) 

where a and a0 have the same meanings as in Eq. (D10). 

 Chain-conformation component. This contribution to the micelle free energy describes 

the variety of conformations of surfactant hydrocarbon chains in the finite space of the 

micelle interior. The generalized version of the Semenov expression for the chain-

conformation free energy per molecule [4] 

2 2 2
conf

2
B sg

3

4 1 3 2

f R p

k T l l p p




 
 (D14) 
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was used with lsg = 4.6 Å and the concrete value of the extended length, l(nC), given by Eq. 

(D7). 

 Dipole-core interaction energy. These free energy components are described in 

Appendixes B and C. In the case of zwitterionic surfactant micelles, the dipoles are outside 

the micellar hydrocarbon core and the change of free energy component, fdip, with respect to 

that for a planar interface, o
du , is calculated from the obtained formula: 

dip 2 B B B
c out2 1/2

B 1 2 1 2

2
[ ]
2 2 ( 4 )

f L L L
z D

k T s s d s s
  


 (D15) 

see Eq. (B33a). The function Dout in the right-hand side of Eq. (D15) is calculated from Eqs. 

(B9) and (B33b) for the spherical endcaps and spherical micelles and respectively from Eq. 

(C13) and (C32) for cylindrical part of spherocylindrical micelles. 

 The dependence of the water dielectric constant, , on the absolute temperature, T, is 

given by the interpolation formula [5]: 

4 2 6 387.74 0.40008( 273.15) 9.398 10 ( 273.15) 1.41 10 ( 273.15)T T T            (D16) 

The relative dielectric constants, n, of dodecane and tetradecane at room temperature are 2.01 

and 2.04, respectively [6]. 

 Standard chemical potential. The standard chemical potential of the surfactant molecule 

in the micelle, o
m , accounts for molecular internal degrees of freedom and does not depend 

on the micelle shape and aggregation number. For simplification of the calculations, the value 

of o
du , which is also independent on the micelle shape and the radii, is included in o

m . 

D3. DDAO surface tension isotherm 

 To obtain the most probable surface area excluded by the surfactant headgroup, a0, we 

measured the dependence of the surface tension, , of dodecyldimethylamine oxide (DDAO) 

aqueous solutions (Fig. D2). The repulsion term in the two-dimensional equation of van der 

Waals is typically used to calculate the free energy component, fhs, see Eq. (D13). Thus for 

the processing of experimental data in Fig. D2, the same type of the adsorption isotherm and 

the equation of state should be applied. 

 The van der Waals adsorption model for nonionic surfactants [7] consists of: i) the two-

dimensional equation of state: 

2
0 B

01
k T

a
  
   

 
 (D17) 
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where  is the adsorption, 0 is the surface tension of the pure solvent, and  is a parameter, 

accounting for the interaction between the adsorbed molecules; ii) the adsorption isotherm: 

0 0

0 0 B

2
exp( )

1 1

a a
Kc

a a k T

 
  

   
 (D18) 

relates the surfactant concentration, c (mM), and the adsorption constant, K, with the 

adsorption, . The solid lines in Fig. D2 show the obtained best theoretical fit with the van der 

Waals adsorption model, Eqs. (D17) and (D18). The obtained parameters are: a0 = 35 Å2; K = 

175 (mM)1; 0 B/ ( ) 1.49a k T  . The theoretical calculations show that the adsorption 

increases with the rise of DDAO concentration and the value of the saturation adsorption (at 

the CMC) is 3.97 mol/m2. 

 

Fig. D2. Surface tension isotherm of 

DDAO aqueous solutions and the 

theoretical fit with van der Waals model, 

i.e. Eqs. (D17) and (D18). The determined 

surface adsorption is plotted on the right 

axis. 

 

 

D4. Free energy components and the CMC determination 

 Fig. D3a shows the dependence of the free energy components and fc on the radius of 

the micelle cylindrical part, Rc, for TDAO micelles. The increase of the radius Rc leads to the 

decrease of f, and the increase of fhs, fconf, and fdip. The minimum of fc = 4.45 kBT is 

achieved for the optimal radius of the cylindrical part Rc = 15.33 Å. The dependence of the 

excess free energy components for TDAO micelles on the radius of the spherical endcaps is 

shown in Fig. D3b. The total aggregation number of the spherical endcaps, ns, increases with 

the cube of radius Rs. The non-shielded area of hydrocarbon/water contact decreases with the 

decrease of surface curvature and as a result (Esc) decreases with the rise of Rs. In contrast, 

both (Esc)hs and (Esc)conf are increasing functions of Rs. Note that |fdip| decreases with the rise of 

radii of cylindrical part and spherical endcaps of micelles (see Sections 2 and 3). 

Nevertheless, |(Esc)dip| increases with the rise of Rs, because of the faster increase of ns. 
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Fig. D3. Plots of: (a) fc vs. Rc for the micelle cylindrical part; (b) scission energy 

components vs. Rs for the micelle spherical endcaps for TDAO. The vertical dashed line 

corresponds to the position of the fc minimum. 

 The critical micelle concentration has been estimated as that value of the monomer 

concentration, X1, for which the concentration of singly dispersed surfactant molecules is 

equal to that of surfactant present in the form of aggregates. All molecular parameters and 

optimal shapes of micellar aggregates are defined – the only free parameter is the standard 

chemical potential difference. 

  

Fig. D4. Dependence of the monomer concentration, X1, on the total surfactant concentration: 

(a) DDAO micellar solutions; (b) TDAO micellar solutions. 

 Fig. D4 shows the dependence of X1 on the total surfactant concentration, XS. At the 

experimental CMC value (1.7 mM for DDAO and 0.15 mM for TDAO), the total surfactant 

concentration, XS, is equal to 2X1 (3.4 mM for DDAO and 0.30 mM for TDAO). As a result, 

we calculated that o o
1 m   is equal to 14.49 kBT for DDAO and to 17.21 kBT for TDAO. 
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