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Abatraot

The effect of diffusion of polydisperse micellea on the kinetics of the surface tension
is atudied theoretically. It is shown that the surface properties of micellar surfactant
solutions depend on which of the relaxation processes of micellization (fast or slow),
has a time constant comparable with the characteristic time of diffusion. General
equations, deacribing the diffusion of the free monomers and the micelles, are derived.
They include new expressions for the source terms, accounting for the kinetica of
micellization of the polydisperse micelles. Analytical solutions of these equations for
the surface tenasion as a funetion of time are obtained. Since the micelles are additicual
sources of monomera, the relaxation of the surface tension is faster than the relaxation
below the CMC. The theory allows computation of the relaxation time constants of
micellization from data obtained by surface stress experiments.

INTRODUCTION

We consider below the effect of the micelles on the surface tension
kinetics of surfactant solutions at concentrations not exceeding several
times the critical micelle concentration (CMC). When the interfacial
monolayer is expanded, the surfactant molecules are transported to
the interface by diffusion before their adsorption. Hence, the local
equilibrium between the micelles and the monomers has been disturbed
in some vicinity of the interface. Gradients of the micellar concen.
tration thus appear, giving rise (0 a mass transfer.

In homogeneous micellar systems the species have uniform concen-
trations at every point in the solution. The micellization kinetics are
simpler because diffusion and adsorption processes are missing. Relax-
ation techniques, producing small deviations from equilibrium, are
usually applied to study the kinetics of micellization in such systems.
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The relaxation in a micellar solution is a consequence of two relaxation
processes: a fast relaxation process with time constant 1, followed by
a slow relaxation process with characteristic time 75 . Usually the two
time constants, 1y and tg., differ by several orders of magnitude
(tg/ts. =107 2-1C ?). Aniansson and co-workers [1-3] have developed
the most realistic theory of the micellization kinetics in the bulk of
surfactant solutions. They considered the micelles as polydisperse
particles, containing different numbers of monomers s. The micelles
participate in a sequence of reaction steps: at each step one monomer
is added to, or dissociated from, a micelle. They derived theoretical
expressions for the two time constants . and 15 . The nature of the
relaxation processes will be discussed in more detail in Section 1.

The micellization kinetics are more complicated in non-homogeneous
surfactant solutions where -diffusion and adsorption occur simulta-
neously. In this case the concentrations of the species are functions
also of the space variables. As far as we know, the kinetics of adsorption
from micellar solutions has been treated (both theoretically and experi-
mentally) in only a few studies. Lucassen {4] has measured the surface
elasticity modulus of micellar solutions whose surfaces are subjected
to periodical perturbations. He has used the model of Kresheck et al.
[6] for the kinetics of micellization to explain the experimental data.
In this model the micelles are supposed to be monodispesse, i.e. contain-
ing the same number of monomers, m. In addition a single-step forma-
tion of a micelle by simultaneous aggregation of ail m moncmers has
been accepted. This mechanism corresponds roughly to the slow relax-
ation process [2]. One can conclude that the slow relaxation process
of micellization has been detected in the experiment of Lucassen [4].

"sing the same model, Miller {6] has solved numerically the respec-
tive diffusion equations for the monomers and the monodisperse
micelles. His results are not restricted to smail deviations from equilib-
rium. The computations are carried out for Henry’s adsorption iso-
therm (which is not so suitable for typical surfactants above the CMC)
«ud for Langmuir’s adsorption isotherm. The numerical examples
demcnstrated that the adsorption relaxation in the presence of micelles
is faster than the relaxation below the CMC. Recently Joos and van
Hunsel [7] have used the model of the monodisperse micelles to inter-
pret experimental data on adsorption kinetics obtained by the drop-
volume method. The effect of the micelles is accounted for by an
effective diffusivity of the monomers.

The monodisperse model 1s widely used when the diffusivity of the
micelles has been determined [8-7" The apparent diffusivity of the
micelles is calculated in - ments from the concentration
profile, measured at a fixed ie solution.
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Rillaerts and Joos [11] have accounted for the micellization kinetics
by adding a single source term to the diffusion equation of the free
monomers. This term is proportional to the concentration of the mono-
mers, as in the pseudo-first-order reaction (PFOR) model, known from
chemical kinetics. They have solved the respective boundary value
problem, formulated by Ward and Tordai [12] for concentrations below
the CMC. The result is an expression for the adsorpticn as a function
of time and the subsurface concentration. These authors have also
calculated the rate constant of micellization from experimental data
of dynamic surface tension, measured by means of the oscillating-jet
and flowing-film methods. The PFOR-model will be discussed in detail
in Section 5.

Feinerman [i3] has aiso tried to combine the theory of Aniansson
and Wall with the kinetics of adsorption from micellar solutions. He
has proposed two pairs of diffusion equations for the free monomers
and the micelles, written separately for the fast and slow relaxation
processes. To do this he has simplified the respective time constants,
known from the theory of Aniansson and Wall. The source terms thus
obtained are proportional to the concentration of the free monomers
as in the PFOR-model. Feinerman has solved the adsorption kinetics
problem of Ward and Tordai and has found two solutions for the
adsorption, valid for the fast and slow relaxation processes. Very
recently Feinerman and Rakita [14] have applied this theory to calcu-
late the micellization time constant from data of the dynamic surface
tension, obtained experimentally by means of the maximum bubkle
pressure method. More details about the equations of Feinerman [13]
will be given in Sections 3 and 4.

The purpose of our study is to develop a diffusion theory of the
kinetic surface tension of surfactant solutions which contain poly-
disperse micelles. The general diffusion equations, derived below, in-
clude new expressions for the source terms accounting for the kinetics
of micellization of the polydisperse micelles. To do this we apply, in a
consistent way, the ideas of Aniansson and Wall for the micellization
kinetics to non-homogeneous micellar systems, where diffusion and
adsorption take place simultaneously.

In Sectioni 1 we present a brief review of the theory of Aniansson
and Wall for micellization kinetics in bulk systems. The general formu-
lation of the mathematical problem describing the diffusion of poly-
disperse micelles is given in Section 2. In Sections 3 and 4 we consider
two special cases of diffusion, where either the slow or the fast relax-
ation process predominantly affects the transfer of surfactant. The
respective two pairs of diffusion equations for the concentratiocns of
the free monomers and the micelles are solved ana'ytically and two
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expressions for the kinetic surface tension are derived. In Secticn 5

an approximate solution for the surface tension in the frames of the
PFOR-model is obtained.

1. RELAXATION PROCESSES WITH MICELLES

According to Aniansson and co-workers [1-3} the relaxation in a
micellar solution can be thought of as a sequence of processes which
can be visualized by plotting the concentration of the species ¢, as a
function of their aggiegation numbers s (see Fig. 1). The size distri-
bution can be separated into three important regions: oligomers, in-
cluding the free monomers(s=1, 2, 3, ..., s, ); rare aggregates (s =s, + 1,
s, +2,...,8;); and abundant micelles (s=s,+1,5;,+2,...,83). The
species belongingz to these regions exhibit a cooperative behavior
during the relaxation in the micellar sclution. The premicellar aggre-
gates with s =2, 3, 4, ..., s, are present at considerably smaller concen-
travions than the free monomers and the abundant micelles.

The relaxation pathway depends on the experimental method used,
although the relaxation time constants are the same. As an example
we shall briefly discuss here the stopped-flow method where initially
two surfactant solutions (micellar and submicellar ones} are suddenly
mixed. After the mixing, the concentrations of the species decrease
(with respect to their values in the micellar solution) if the mixing
time is shorter than 1z (Fig.1). The system moves towards a new
equilibrium state with smaller micellar concentration but the same
monomer concentration (the latter is equal to the CMC). During the
fast relaxation the micelle peak moves towards smaller mean aggrega-
tion numbers without changing its height. During the slow relaxation
the peak returns back to the initial location and simultaneously
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Fig. 1. Sketch of the relaxation of a micellar solution in a stopped-flow experiment.
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decreases its height until the final equilibrium concentration of

micelles is reached (for a more detaiied discussion see Ref. [15]).

Aniansson and Wall have accepted the following reaction mechanism
of formation of aggregates

ki
A, +As_1<:k—__2As s=2 3,4, ... 1.1)

where A is the symbol of one s-mer, &} and k&, are the rate constants
of association and dissociation respectively. Tc solve the system of
kinetic equations corresponding to (1.1) Aniansson and Wall have made
the following assumptions. (i) The size distribution of the abundant

micelles is broad enough to be considered as continuous. A gaussian
size distribution

hJ

Za;,

£(5) = Conax XD [— (if—’-”—)—] 1.2)

has been assumed with a mean aggregation number m and dispersion.
6. In addition, the sums in the micellar region have been replaced by
integrals over s. (i1) The dissociation rate constant of an elementary
reaction in the micellar region does not depend on s, i.e. one can wrifte
k. =~ k, = const. (iii) The reaction set can be cut off at some value g,.
because the concentrations of the micelles with larger s vanish.
Following these assumptions, Aniansson and Wall have obtained

1 m
- oz (1 + 62Bm) (1.3)
F m

for the relaxation time of the fast process, where

kn= > kJE[C, (1.4a)
$2+1

& = > & m=Y s&/fé, (1.4b)
s2+1 sz+1

k. is the mean dissociation rate constant of the micelles; B,,=¢,/¢;;
¢, is the concentration of the free monomers (for non-ionic sur-
factants ¢, ~ CMC); ¢, is the total concentration of the micelles
(€.~ (€ —&;)/mé,); ¢, is the s-mer concentration; ¢ is the total surfactant
concentration; m is the mean aggregation number of the abundant
micelles. (The bars denoie equilibrium values.)
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For the slow relaxation time the authors of Refs [1-3] have derived
respectively

1 1 nzﬁn + mzﬁm 7
= — 5 (1.5)
tSL RC; Bm nZBn + amﬂm
where
m,=m*+ %= > s%¢/é, (1.62)
52+ 1
n =) s¢lé, n,=n*+gt=> s*7 /¢, (1.6b)
1 1
C. =, €
1
52
R =) (k;é) ! (1.6¢c)

where m, and n, are the second mathematical moments of the micellar
and oligomer size distributions; ¢, and n are the dispersion and the
mean aggregation number of the oligomers; ¢, is the total oligomer
concentration; f8,=¢,/¢;; R is termed the resistance of the transition
region.

Although the thecry of Aniansson and Wall explains satisfactorily
a number of experimental data for homogeneous systems, it is too
complicated for direct application to more sophisticated diffusion
problems in non-homogeneous micellar systems, where adsorption-—
desorption processes are also important. That is why we re-examined
recently [16] this theory by means of the mathematical method of
matched asymptotic expansions [17]. The ratio tp/ts. was used as a
small parameter when solving the kinetic problem. Three different
types of solutions for the concentrations of the free monomers and of
the micelles were found: inner, outer and matched solutions. The inner
solutions are valid during the fast relaxation process. The outer solu-
tions describe the relaxation during the slow process. The matched
solutions are uniformly valid over the whole time interval.

The asymptotic solutions obtained in Ref. [16] refer to uniform
micellar solutions, where diffusion and adsorption are absent. In the
present paper we shall consider the case when concentration gradients
and diffusion exist. We shall again use the method of the matched
asymptotic expansions to solve the respective diffusion equations
of the species. The theory is developed for the case of a non-ionic
surfactant. Nevertheless, the main features of the diffusion theory
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proposed here can be valid also for ionic surfactants, as is the theory
of Aniansson and Wall.

2. DIFFUSION EQUATIONS

We shall study the relaxation of the surface tension of a flat air/
water interface with time. Consider an adsorption layer which is in
equilibrium with the adjacent solution (the equilibrium adsorption is
I, while the surface tension is 7). If initially the layer is expanded (or
compressed), as in the surface stress-—relaxation methods [18—20], an
initial non-equilibrium adsorption I is established (the cerresponding
surface tension is gy). Immediately surfactant monomers will start to
adsorb onto the surface to compensate the perturbation there. We
propose that the total area of the adsorption layer does not change
during the relaxation. The adsorption is supposed to be diffusi:zn con-
trolled. This means (i) the diffusion is much faster than the adsorption
and (ii) the adsorption layer and the subsurface layer are in a staie of
instantaneous (quasi)equilibrium during the relaxation.

The characteristic time of the experiment should be of the order of
the diffusion time constant 7y in order to observe any relaxation of the
surface tension caused by the surfactant diffusion. Generally, 7p can
be expressed as 1p=6%/D,, where dp is the characteristic length of
diffusion and D, is the diffusivity of surfactani monomers. Since
D, ~5-10"%cm? s~ ! for most surfactants, 7p will be determined pre-
dominantly by ép. The last quantity may be the derivative 6I'/9¢, (see
below) or some other gquantity of linear dimension, characterizing the
width of the region where the diffusion takes place. Tp can vary over
fairly large limits: 10 ~5-102 s, depending on the type of the surfactant.
These values cover the whele interval of 1z and g observed experimen-
tally [3]. We shall consider separately the following two cases: (i) tp of
the order of 1, and (ii) 7p of the order of g .

Consider a semi-infinite solution occupying the space with x > 0 (the
dividing surface solution/air is placed at x =0). The starting peoint of
our considerations is the following set of equations corresponding to
the reaction mechanism (1.1):

de 0%c . 8

T = DiGe "% L @12)
dc, d2c, . .

at = s axz +Js—.]s+1 5= 2: 3: 4: RS 33 (2-1b)

Js=kieje,_y — ke, §=2,3,4, ..., 5 (2.2)
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Ye=c (2.3)

where c.(x, ) is the s-mer concentration; D, is the diffusivity of one
s-mer; j.(x, t) is the total rate of the sth reaction, i.e. the chemical
(pseudo)flux. Note that the total surfactant concentration c(x, £) is not
equal to the equilibrium value, ¢, in the mass balance of the monomers
(2.3), because of the diffusion and adsorpt’on processes.

The boundary and the initial conditions are the following:

%—f = D, % . (2.4)
K=+ @rjéd;))(e; — ¢ )lrzo (2.5)
%—%Ix=0=0 §=2,3,4, ..., 8 (2.6)
¢ (00, t) = ¢, s=1,2,3, ..., 83 (2.7a)
c,(x, 0)=¢, s=1,2,3, ..., 83 {(2.7b)
roy=r, (2.8)

Equation (2.4) is the surface mass balance; Eqn (2.5) is an expansion
of the adsorption I'(f) at small deviations from equilibrium. The deriva-
tive 9I'/0¢; should be calculated at the CMC [4]. Equation (2.6) means
that all aggregates (s = 2) do not adsorb while Egn (2.7a) implies that
the equilibrium concentrations of the species are not disturbed far from
the interface. Equations (2.7b) and (2.8) are the respective initial condi-
tions, valid at the moment ¢ = 0. An expansion similar to (2.5) can be
written also for the surface tension o(2)

= o+ (35/0¢,)(cy — €1 )lx=0 (2.9a)

It follows from (2.5) and (2.9a) that the respective deviations from the
equilibrium quantities are connected by means of the relationship

Ao(t) _ Ar(t) _ Ac, (0, 2)
Aoc(@) AI'(0) Ac, (0, 0) (2.9b)

where Ac =0 —6, A= —{ and dc, =¢; — ¢,.

To solve the set (2.1) containing many partial differential equations
we shall follow the asymptotic approach, developed in Ref. [18] for
systems without diffusion terms. First, we group the equations de-
scribing the cooperative behavior of the aggrcrates in the three distinct
regions (oligomers, rare aggregates and abundant micelles). Second,
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we scale the terms in an appropriate way to distinguish the role which
every term plays during the mass transfer. Third, we expand the concen-
trations c, and the fluxes j, into power series of the sinall parameter

€= 15 |Tg, < 1 (2.10)

Fourth we reduce the number of the source terms in the right-hand
side of Eqns (2.1) as explained in Ref. [16]. Finally, we obtain a system
of two diffusion equations for the concentrations of the free monomers
and of the micelles. The application of this procedure is demonstrated
below.

We scale time by 7, which is the diffusion time constant of the free

monomers. The space variable, x, is scaled by the respective diffusion
length (see Eqn (2.5))

6D= af/aél

It is clear that the kinetic terms dc,/0t and dI'/dt and the diffusion
terms D, 0%c,[6x? and D, d¢, /6x must be of the same order of magnitude.
However, the bulk diffusion equations ought to be consistent with the

boundary conditions (2.4) and (2.5). That is why the diffusion time 1y
must be

1 [or\?
Ip= ']_—): (55—1) (2.11)

Very imnortant is the scaling of the fluxes j.. Based on the kinetic
theory of micellization one can introduce two characteristic fluxes

JF=61/TF and JSL=61ITSL (2.12)

(their meaning is discussed in detail in Ref. [16]). We scale the fluxes
Js» having s =2, 3, 4, ...,s, (oligomer region) and s=s,+1,s,+ 2, ..., 85
(micelle region), by Jr. The fluxes with s=s, + 1, s, + 2, ..., s, {transi-
tion region) are scaled by Jg .

In accordance with Eqn (2.2) j; can be written in the form

jszks_c—s[gl(l.*-és-l)-*-és—l.—és] S=2, 3! 4’ <e-y S3 (213)
where _
Es(x. t) =(c;— C,)/¢; §=1,2,3, ..., 53 (2.14)

is the relative dcoviation of the s-mer concentration, c.(x,?), from
equilibrium. The equilibrium mass action law

kRl |k =¢&,]¢,65_, s=2,38,4, ..., 8;
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is used when deriving Eqns (2.13). At small deviations from equilibrium
(I&,] € 1) the product &, &, ; €1 can be omitted.

3. DIFFUSION AFFECTED BY THE SLOW RELAXATION PROCESS
3.1 Bulk diffusion equations
Following the scaling procedure, described in Section 2, we write the

diffusion equations (2.1) for Tp=x15. in the following dimensionless
form:

o0&, d*¢, ( < 33 S2
T = - + + - - .
E(@T 0X? | 22 ; Js szz-:l T - s,2+11 Js (3-12)
o0& 0% ¢
Gﬁs(aqi_dsaX; =a(Js_Js+1) S=2, 3, 4, ey 81_1 (3.1b)
pat 2
Cﬂsx (%éffl - dsl %}%{1) = C’-J:-; = “O‘Js, +1 (3.1¢)
2
ﬁs(gii“dng§;)=a(Js—Js+l) s=31+1,51+2,...,32‘_‘1 (31d)
2
Gﬂsz (aaéqsf - dsz %Xﬁ?) = eaJsz - aJsz+ 1 (3-19)
= a2
Eﬁs(gé—sy_ds(ajxézs):a(t]s_ejs.*.l) s=82+1’sz+2,.."83 (3_1f)

where d,=D.[D,; B,=¢/¢;; T=tltp and X=x/[0p; J,=j,[Jr
(s=2,8,...,8; and s=s,+1, s,+2,...,83) and J,=j,[Jg (s=85, +1,
8, +2,...,8,). a=1p/15. =1 is the Damkdéhler number. This number is
an important characteristic of the mass transfer in reacting systems,
giving the ratio between the diffusion and the reaction terms.

Let us expand the functions in Eqns (3.1) in power series of the small
parameter € (2.10)

(X, Tie)= 3 &20(X, T)
0 3.2)
J(X, T; )= > &JONX, T)

k

0

If we substitute the above expansions for &, and J, in Eqns (3.1) and



set equal the coefficients at €%, we find the zeroth-order equations

J§0)=0, S=2, 3, 4, ceey 31;32+1, 32+2, --+3 S3 (3.3)
aégo) aZégO)
ﬁs( T _ds aXz =a(J(30)—J§(21) S=Sl+1,sl+2’ - P (3'4)

Equation (3.3) means that the reactions (1.1) have reached equilibrium
state in the oligomer and micelle regions due to the fast relaxation
process. Bearing in '‘mind that the rare aggregates obey the equilibrium
conditions B, <€ 1(s=s, + 1, 5, + 2, ..., s3), Ean (3.4) gives

J;D)::J(O) 3=31+1, 31+2, veey Sa (3.5)

where the flux J©(x, t) does not depend on s.

In general J'@ is not equal to zeron, i.e. the reactions (1.1) in the
region of the rare aggregates, s; <s<s,, are out of chemical equilib-
rium. Since 15 = Tp, this deviation from equilibrium is due to diffusion.
In fact J is connected with the process of step-by-step disintegration
of the micelles. This process gives rise to the zeries of unstable rare
aggregates, whose consecutive decomposition produces monomers,
thus making up for the lack of monomers due to adsorption. As a
matter of fact, JJ'9 is related to the slow relaxation process (see Fig. 1).

Equations (2.13), (3.3a) and (3.4) give (at &, &,_, ~=0)

EP—¢2, &P =0 §=2,3,4,...,8;::8,+1,8,+2,...,8; (3.6a)
EP— &0 — &P = (S5 [ks &) T s=s,t+1,5,+2,...,s; (3.6b)

To transform Eqgns (3.6) we follow the procedure of Aniansson and Wall
[1]. First, Eqn (3.6a) is summed from 2 to s to yield

sEP— O =0 §=1,2,8,...,8;8, +1,5,+2, ..., 53 3.7

After that, Eqn (3.6a) is summed for 2<s<s;, Eqn (3.6b) for

s; +1<s<s,; and Egn (3.6a) for s, + 1 < s, and then the three resulting
equations are summed again to yield

sEP — EO = RJ, JO s=s,+1,5,+2, ..., 8, (3.8)

where R is given by Egn (1.6c). Further, each of Eqns (3.7) and (3.8) is

multiplied by é; and then they are summed for all admissible values of
s. The results are

nEP — O =g (3.9a)
méP — EQ = ReJg JO (3.9b)
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where
51 53
= Z C C 6m = Z csés/cn
1 s2+1

¢, and &, are the relative deviations from equilibrium of the total
concentrations of the ohgomers and micelles respectively. After that

each of Egns (3.7) and (3.8) is multiplied by s¢é;, and then summed in a
similar way. The results are

n, P — =0 =0 (3.9¢)
ms é(l()) - Sg?) == mRJSLJ(O) (3.9d)
where

S: 33
E,=7Y, s¢& /e, En.= ) sc&/é,

1 sz2+1

=, and =,, are the relative deviations from equilibrium of the total
numbers of monomers aggregated in oligomers and micelles respec-
tively.

Finallv we neglect the concentrations of the intermediate species
s=s8;+1,8,+2,...,s;) in Eqn (2.3) which then becomes

E0 + B ED = BE (3.90)
where
E=(c—¢)/c

1s the relative deviation of the total surfactant concentration from
equilibrium (f = ¢/¢é,).
The terms in ¢ in Egns (3.1) yield

o a2ey

- = —a(s; — 8,)J@ — (2:1"“-%—Sl JP + 3 J;“) 3.10a
5T~ axz T 2T s)ID (200 ) S0+ 3 (3.102)
JEWD 2 z{0) '

Bs 5,;—, _dsaaiz ):a(J;l)—ng_'_)l) s=2’ 3’4’ .“,81_1 (310b)
o (0) 52 (0)

Bs‘( §T ;, 6}5{2 ) a(JD — JO) (3.10¢)
(0) 2 £(0)

Bs;(aaéT _dsz aa}éfz ) =a(J(0)—Ji_;)+1) (310d)

65(0’ 625(0)
B, ( AT ds—aT;Z—)=a(J§”—J§1+’1) s=s,+1,8,+2,...,5 (3.10e)
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Similar equations can also be derived for ¢{!’ in the region of the rare
aggregates s, <s <s,.

Let us first multiply each of Egns (3.10) by s and sum them. The
result is

n — h 4 m_ - m — .
Bn( oT n aXz ) Bm( aT‘ dm BXZ ) 0 (3 113)

where it has been supposed that d; is approximately constant in both
the oligomer and micelle regions, and equal to

dn = DH/DI =s§l, ﬁsds/ﬁn

or (3.11b)
dpn=D,/D; =3 Bd./B.

respectively. D, and D,, are the mean diffusivities of the oligomers and
micelles. Although the deviations from the equilibrium size distribution
are small, s,, s, and s; in principal can depend on x and ¢t during
relaxation (see Fig. 1). That is why, when deriving Eqn (3.11a), we have
performed the differentiations in Eqns (3.10) as follows:

53
53 0 0 0s os
> a(SCS) ~ aj sc(s) ds + s, c(sz)—af — s3c(s3)—é?3 (3.12a)
2 9 o [ os ds
> a(scs) Y EJEJ sc(s) ds + szc(sz)ggz - s3c(s3)-ai (3.12b)

The last two terms in each of Eqns {5.12) can be neglected, because at
the ends of the size distribution c¢(s,) 0 and c(s3) ~ 0. If we sum Eqgns
(3.10d" and (3.10e), we obtain an equation for the micelle concentration

Y PED\ | e
Bm ("ET' dm-“a?" = oteJ (3.13)

It was supposed again that d,~d,, = const for all s, <s<s;. Our aim

below is to reduce the system of equations (3.9), (3.11) and (3.13) to two
equations for the functions &' and &,

If 2 and 9 are expressed from Egns (3.9¢) and (3.9d) and then
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substituted in Eqns {(3.9e) and (3.11a), one obtains

1
0) — (0) — Rx(0) 3.
J lnﬁmRJSL [(nzﬁn + m2 Bm)él ﬁé ] ( 143.)
DE© 52 (0 o2 EW® .
ﬁ( §T - dm—é—fp) —n,B.(d,—d,.) a_;(lf =0 (3.14Db)

Further we substitute J© from Eqn (3.14a) into (3.9b), and the result
for &’ into (3.13). In this way we obtain the expression

54:(0) 525(0) , 56(10) aZé(O) . ©)
g (?T_ Ingxz ) T 2bat Onbn)\ T dn gy | = mad (0-140)

Finally we subtract Eqn (3.14b) from (3.14¢) and substitute the flux J@,
as given by (3.9b). The result, together with Ean (8.13), represents the
final system of two diffusion equations for the concentrations of the
“ree monomers and the micelles:

% = 02¢, - m _

o ~ T Gx R51 (na B, + f";‘:,m.)(mé1 ém) (3.15a)
aém —_ 625""

ot P ex TR IBm (m&y = &m) (3.15b)

The superscripts (0) have been omitted. The functions &, and ¢&,, are
the respective relative deviations of the concentrations of the species
from equilibrium. The constants in (3.15) are given by Eqgns (1.4b) and
(1.6).

Here we have introduced an effective diffusivity of the monomers
¥ given by

Dnnzﬁn+Dm0—§1ﬁm ~D nzﬁn+dmciﬁm
~ 1
n25n+ aiﬁm nzﬁn_*- ar%:ﬁn

If micelles are absent (§,,=0, R — o0, D* = D,), Eyn (3.15a) transforms
into the well-known Fick’s equation. D* exh1b1ts a weak dependence
on the surfactant concentration due to the polydispersity of the
micelles. Indeed, if the micelles were monodisperse, i.e. ¢,,=0, then
D¥ would be identical to D,.

The source term in the right-hand side of Eqgn (3.15a) increases
strongly with the surfactant concentration. In this way the micelles
~ill generally accelerate the relaxation of the monomer concentration
and hence of the surface tension.

The equations derived by Feinerman [13], corresponding to the physi-
cal situation considered in this Section, differ from Egns (3.15). The

DY =

(3.16)
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right-hand sides of Feinerman’s equations for the diffusion of micelles
and monomers contain the same single source term (¢, — ¢, )/ts., depend-
ing only on the concentration of the free monomers as in the PFOR-
model (see below). Instead of the effective diffusivity D¥, the common
monomer diffusivity D,; appears in his equation for the free monomer
diffusion.

Now we shall try to solve the system (3.15) by means of the Laplace

transformation and to obtain an expression for the time dependence of
the surface tension.

3.2 Kinetic surface tension

The boundary conditions (2.4)—(2.8), written in a dimensionless form
for the concentrations of the free monomers and the micelles, read

%4% ~ %%{1_ . (3.17a)
£1(o0, TH=0 (3.17b)
£,(X,0)=0 (3.17¢)
(0, 0)=~# (3.173)
%5)_?. =0 (3.17¢)
¢m(w0, T)=0 (3.17F)
Em(X, 0)=0 (3.17g)

where &,,=¢&,(0, 0) is connected by the initial jump of the surface
tension by means of Egns (2.9a) and (2.14). Equations (3.17e¢)—(3.17g)
are derived by summation of Egqns (2.6)-(2.7). Equations (3.17) remain
the same in the case when the diffusion is affected by the fast relaxation
process, because the boundary conditions (2.4)-(2.8) do not contain
reaction terms explicitly.

To derive an expression for the surface tension o(£) we first transform
Egqns (8.15) and the boundary conditions (3.17) by using the Laplace
transformation (see the Appendix). After that we calculate the image
of the subsurface concentration, which is related to the surface tension
by Eqn (2.9b). In this way we obtain the Laplace image o, (p) of the
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kinetic surface tension

AO'L(p) . 1 1/2
40(0) q+[d—,;(a+q)]

FENT 2 d,—d, n,pf, 1/2
X{[qm—*_(&-—;‘) (oc+Q)”2J M (nzﬁ"imzﬂm)}

-1

(n’Zﬁn + O-r%-le) dm 1/2 -1
><|:q+a(n2ﬁn+m2ﬁm) N (d—f) (cx+q)”2] @

where g = pty (p is the parameter of transformation) and d¥ = D¥/D,.
The other constants in Eqgn (3.18) are given by Eqgns (1.4b), (1.5), (1.6)
and (3.11b). If the micelles are monodisperse the constants become:
f.=1, d,=1 and n,=1; 6,=0 and m,=m?, d¥=1; R=(k;¢,) !;

1/tsL = Rk, (1 + m?B,,). Equation (3.18) can not be inverted in a simple

way to its original o(¢). Special cases of Eqgn (3.18) will be discussed in
Section 5.

4. DIFFUSION AFFECTED BY THE FAST RELAXATION PROCESS
4.1 Bulk diffusion equations
When tp=x1y the Damkoéhler number for the fast process,

o« =1Tp/te & 1, appears in Eqns (8.1). The respertive diffusion equations
read

aél 52(‘,’1 ( S1 53 ) 52 )

=Tl (2, + S i+ Y J) - J 41

a7 oxz A\t LIt 3 di) e 3 (4.12)
2

ﬁs(%_dsg;;) = oS~ Jos 1) §=2,3,4,..,8 1 (4.1b)

aég 62 <

ﬁs;(ﬁ_dsla—)gil/ =aJsl—eaJsl+1 (4.10)
2

ﬁs(gi_dsg§;)=€a(Js_Js+l) S=Sl+1,sl+2,...,32'—'1 (4.]d)

O&, 0% &,
Bs, (B%% —d,, 6;;22) = e, — o, 4 (4.1e)
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o0&, 0% &,
ﬁs 5T—d56X2 =a(Js—Js+1) S=SZ+1:SZ+2,---7S3 (4‘1f)

If one substitutes the asymptotic expansions (3.2) in Egns (4.1) and set
equal to the coefficienis at €, one obtains

+ oo
66(10) 626(10) — (0)
5T X o J9(s) ds (4.22)
6(0) 62 5(0)
DEO 525‘0’
OT'_d aXZ _G\'.(J(O)—J;c.:.)l) SZS?_+1, Sz+2, ey 33 (4.20)

Here we have neglected the concentrations of the oligomers &, cor-
responding to 2<s<s,;. The equations for the rare aggregates
(s, <s < s,) are omitted, because they are not important for our further
considerations. In the right-hand side of Eqn («1.2a) we have replaced
the summation by integration. It will be show. that in view of Eqn
(1.2) the main contribution to this integral is given by the micellar
region: s, € § < s3. That is why one can extend tl.e limits of integration
to infinity. The flux J©(s) can be written as

JON(s) = ek, B(s) {5‘1"’[1 + &) - a% é‘o’(S)} (4.3)

where B(s) = é(s)/é; (for definition of ¢(s) see Eqgn (1.2)). Equation (4.3)
follows froem LEgqns (2.12) and (2.13), where we have set {,x~ &, in
parentheses and also &, — &,_, a2 0&(s)/ds, as in Ref. [2].

Summing Eqns (4.2¢) and (4.2f) and assuming that d,~ d,, for all
S, < s < s3 we obtain the following equation for the micelles
PED 92 EO
T —d,—=o5 3X2 =0 (4.42)

(note, that J;, = 0). Let us mulitiply each of Eqns (4.2b) and (4.2c) by s
and sum them. The resuit is

+ oo + an

E:r?) d 52 —(O) { d (0) J(O)
S~ dp st = J s dJO(s) 2 J (s) ds (4.4b)

(d,=d, for "N s, <5< 8. J(n) 2 J(— 0)~ D) To derive Eqn (4.4b) we
carried ou. .. {ferentiation by using Egns (38.12). Finally, by using
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Eqn (1.2) we integrate the flux (4.3). The result is

+ oo

m 1
f JO(s) ds = tpk,, B (C‘P’ t—i = :::,?’) (4.5)
The substitution of Egn (4.5) into Eqns (4.2a) and (4.4b), along with
Egn (4.4a), leads to the final set of diffusion equations for the case
when the fast relaxation process affects the diffusion

0 _ P& . m, 1 _

e D, o Ry B \€1 + ) Em 52 =m (4.6a)
o, a2e.

e _p 2 .
o=, _ 0% =, _ m 1 _

zx - DPm 3z + k., (51 + 3 Em s ‘—‘m) (4.6c)

The superscripts (0) have been omitted. The constants are defined by
Eqns (1.4). Equation (4.6a) describes the diffusion of the free monomers;
Egn (4.6b) describes the diffusion of the micelles, while Eqn (4.6¢c)
concerns the transport of the monomers, aggregated in micelles.

In our case the solution of Eqn (4.6b) at the boundary conditions
(8.17¢)—(3.17g) is

(=0 4.7

This means that the total micellar concentration is kept constant
during the relaxation. Nevertheless, the different components belong-
i1g to the fraction of micelles can take part in the diffusion process.
''herefore, the total number of monomers aggregated in micelles at a
given point, i.e. &,,, can vary. For example, when the interfacial adsorp-
tion layer is expanded, the concentration of the micelles of lower
aggregation number will be higher close to the interface than in the
bulk of solution.

Locally, the deficiency of monomers is simultaneously compensated
by the diffusion and the direct exchange of material between the frac-
tions of the micelles and of the free monomers. These two processes
have comparable rates. However, they are not reactions transforming
the micelles into rare aggregates (see Fig. 1), because the reaction
chain with the rare aggregates is activated during the slow relaxation
process. The peak of the micelles in a given layer of the solution will
have a constant height, but will somehow be shifted in comparison
with the peak in the underlying layer situated close to the interface.
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Although locally the total number of the micelles can remain constant
(Eqn (4.7)), diffusion of micellar fractions from and towards the solution
takes place.

From Eqgns (4.6) and (4.7) one finally obtains

08, ., 0%&, o _ , 1
ot _ Ijl axz km ﬁm G1 0_3' —t (4.8&)
o= 0% = 1
m A —_—m -+ - —_——— E ' .
6t Dm axg km (él 0_1'21'l m) \4 Sb)

The respective equations of Feinerman [13] for the micelles and
the monomers contain one and the same single source term
k. c.(c, — &,)/€, 0% (written in our notation). Note, that c,(x, ¢) in this
term is a function of x and ¢, while our Eqgn (4.7) yields ¢, =£,,.

4.2 Kinetic surface tension

To solve the set of equations (4.8) we use Egns (3.17a)-(3.17d) as
boundary conditions for the function £,. The boundary conditions for
the function =,, are

o=

= =0 (4.9a)
aX x=0
E,,,(OO, T) =0 (4.9b)
E (X,00=0 (4.9¢)

Equations (4.9) can be derived by multiplying Eqns (2.6)—(2.7) by s and
summing them. Solving this set we obtain the Laplace image of the
surface tension (see the Appendix)

do (p) _ 1/2 1/2 1/2 1/2 2 _ 1 12
AO'(O) - q+(a+ Q) q +dm (a+Q) +d(1 dm)1+ O_sth
-1
1 -1
X [q + o m‘z—ﬁ—— -+ d,ln"z(d + Q)UZJ (4.10)

Equation (4.10) is a counterpart of Eqn (3.18) for the fast relaxation
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process. The original of Eqn (4.10) can be found in some special cases,
considered in the next Section.

The exact numerical solutions of the diffusion problems based con
Eagns (3.15) and (4.8) will be published in a forthcoming paper [21].

5. PSEUDO-FIRST ORDER REACTION MODEL

Let us consider the special case when the micellar solution represents
a quasi-closed system, i.e. the condition

clx,t)~¢ (5.1)

is fulfilled at every instant, i.e. £ 0. In other words, the total surfac-
tant concentration remains constant, although the concentrations of
the individusal species (s-mers) can vary. In this case two additional
relationships follow from the mass balance (2.3).

(1) When 1, is of the order of 74, then

(n’?.ﬁm + a:%tﬂm)él + mﬁmém =0 (5'2)

Equation (5.2) can be derived if J?, =@ gnd =@ are eliminated from
(3.9b)—(3.9¢) at £ =0.
(11) When 1 is of vhe order of 7z, then

Ey + BuZn=0 (5.3)

Equation (5.3) is a direct result from (2.3) and (5.1).

However, one can multiply each of Egns (2.1) by s, sum them and
take into account (2.3), written at ¢ ~ ¢. In this manner one obtains the
following relationship for the diffusivities:

D,~D,~D*=xD, (5.4)

Equation (5.1) is a corollary of Eqn (5.4). It implies that the micelles
and the free monomers must have approximately equal diffusivities in
order to ensure the constancy of the total surfactant concentration
during the micellization. In reality D, is considerably siz2l.er than D, .

However, this hypothesis can be useful for some estimates, as demon-
strated below.

Equations (5.2) and (5.3) reduce the sets of two diffusion equations,
derived in Sections 3 and 4, to single equations for the concentration

of the free monomers. In view of Eqn (5.4), Eqns (3.15) and (4.8) reduce
to one and the same eguation

o0& d*E& 1
T DG T8 ®2)

™



25656

where 1y is either 1 or 15.. The effect of the micelles on the diffusion
of the free monomers is given by the source term in the right-hand side
of (5.5). In this approximation the micelles diffuse as fast as the free
monoriaers do (see Eqn (5.4)). That is why the micelles appear like
sources of monomers rather than as surfactant carriers. Equation (5.5)
could be postulated at once, assuming that the micellization kinetics
can be described in the frames of the PFOR-model. This model is widely
used in chemical kinetics (see e.g. Ref. [22]). According to the PFOR-
model every complicated reaction (or reaction set) can be described
roughly as a pseudo-first order reaction, if the deviations from equilib-
rium are small. The reverse characteristic time, 1/ty, is not yet a rate
constant of an elementary first-order reaction, but is a complex function
of the rate constants of the real reaction mechanism as well as of the
concentrations. Equation (5.5) is a generalization of the statements of
the PFOR-model for a diffusion problem.

The equation used by Rillaerts and Jcos [11] 1s similar to Egn (5.5),
but instead of 1/1); (cf. Eqns (1.3) or (1.5)) a simple reaction rate constant
1s used.

Solvinz Eqn (56.5) at the boundary conditions (2.4), (2.5), (2.7) and
(2.8) (at s=1) we find the Laplace image of the surface tension

Aa (p) _ 1
Ac(0) g+ (g + )i? (5.6)

The same equation as Eqn (5.6) follows from both Eqn (3.18) and Eqgn
(4.8), if d,,~ d,~ 1. The original of (5.6) is

ZORE B

1+ G & \? 1-G/t\'?
oo 52() ] a-on[ 592 e

where E(2) = exp(2?) erfc(z), erf{(z) =1 — erfc(z) 1s the error function
and G = (1 + 4x)'/2.
Three particular cases can be considered. If ¢ < 1, i.e. if the diffusion

term in Egn (5.5) is much smaller than the source term, Egn (5.7)
reduces to

a0y [t \" ot N 8(t e\
o [ M R R C I L [N L

In the cpposite case (x> 1) Egqn (56.5) reduces to the simple kinetic
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equation
o0&, 1
— T e 5.9 L
TRt (5.92)

which has a solution &, (0, t) = &,(0, 0) exp (— t/ty). In view of Eqn (2.9b)
for the surface tension one obtains

A
A:((é)) ~ exp (— alt/tp) (5.9b)

Finally, for solutions without micelles (1yy = o0, & = 0, G = 1) both Eqns
(6.7) and (5.8) transform into

do(t) ( ¢ )“2

= — 5.10
Ac(0) E[ TD ( )
Equation (5.10) has been utilized recently in Refs [18-20].

Finally, we give the solution for the bulk concentration profile
stemming from Eqn (5.5)

dey(x, 1) 1 ( x2 t )

4c,(0, 00 2G P\ T 4D 1y

x 1+ Gt \'/?
+G + —
"{(l "”E[zw.n“z > () ]

x 1— G/ t \V?
“(1"G)E[.‘Z(Dlt)”"-+ ) (T)) ]} G-1D)

In agreement with Eqn {(2.9b) at x =0, Egn (56.11) transforms into Eqn
(56.7). Similar concentration profiles have been obtained in other diffu-
sion problems having a similar mathematical description [23-25]. For
example this is the case when a sclute, absorbing into a liquid at a
constant surface concentration, reacts chemically with the liquid.

In Fig. 2 we have represented the effect of the micellization kinetics
on the surface tension. The theoretical curves are calculated from Eqns
(5.8) and (5.10) at different values of the Damkohler number «. The
values of E(z) are computed by numerical integration of erf(z) for
z<10"? or by means of the approximate formula

1 6, 135 ..(2k+1)
E() ~ —~7C,,22|:1 +kZ1 (-1) 227 :|

for z> 10'/2. It is seen that when increasing the effect of the micelles
(when increasing o) the surface tension relaxes more quickly. It is
known from experiment [3] that the relaxation time constants 7 and
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Fig. 2. Effect of the micellization kinetics on the surface tension at different values of
the Damkdohier number a: curve 1, « = 0 (no micelles); curve 2, a = 0.01; curve 3, ¢ = 0.05;
curve 4, « =0.1; curve 5, a =0.5.

5. decrease (and therefore o increases), when the micellar concen-
tration increases (see also Eqns (1.3) and (1.5)). Heiice, the more con-
centrated the surfactant solution, the faster the relaxation of the
surface tension. This conclusion is also supported experimentally [26].

CONCLUSIONS

in this paper we developed a diffusion theory of the kinetics of
adsorption and surface tension of micellar surfactant solutions. To
account for the eifect of the micelles on the surface properties we
incorporated the predictions of the theory of Aniansson and Wall for
the kinetics of micellization in the mass transfer equations. As a model
experiinent we considered the stress relaxation techniques, where
initially a small perturbation in the surfactant adsorption layer is
created. The deviation from equilibrium is restored by the adsorption
and diffusion of the free surfactant monomers. The micelles are con-
sidered as polydisperse particles, which can form or distintegrute ip
order to compensate the local deviation of the menomer concentration
from equilibrium. The two relaxation processes of micellization are
taken into account. During the fast process the micelles release only
a few monomers, while during the slow process they entirely dis-
integrate. The process whose time constant is comparable with the
diffusion time constant has the greater effect on the mass transfer.
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We considered two cases of interest: diffusion rate comparable with
the rate of the fast or the slow relaxation process. The realization of
one of them in an experiment depends on the tyvpe of surfactant used
or on the dynamics of the particular experiment. To solve the diffusion
equations of the species, we utilized ar asymptotic mathematical
method. In this way two equations describing the diffusion of the free
monomei's and of the micelles have been derived. The parameters con-
tain-d in these equations represent collective characteristics of the
micelle size distribution and of the micellar reaction chain. The set of
equations has been solved for 75 = 7 and 1p = 75 and the Laplace image
of the surface tension has been obtained. An approximate solution for
the surface tension as a function of time has been found in the frames
of the PFOR-model. In agreement with experiment the theory predicts
faster surface tension relaxation at higher surfactant concentration.
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APPENDIX
A.l Diffusion affected by the slow process

The Laplace images of (3.15) are

B _ o, A1
dXZ = ay éIL amémL ( . a)
d?é&,,

d.ffZL =b1&L + b, (A.1b)

where &,; and ¢&,,, are the Laplace images of &, and ¢&,. We have
introduced the following notation:

*\ — o
@ = (g/dt) — ma,, U= T Gona Bt a0 BRI
bl = —am/(dmﬁmRJSL) bm= (Q/dm)—(bl/m)

The respective images of the boundary conditions (3.17a) and (3.17e)
are:

d

S| =eh 09~ (A.22)
dme

—= = .2b
52 MR (A.2b)

The solution of (A.1) for the functions &, (X, q) and &, (X, q) is

i =Fy exp(— 4, X) + Fyexp(— 4, X) (A.3a)
(=B, exp(—4, X))+ B, exp(— 1, X) (A.3b)

{see, e.g. Ref. [27]). Here A,(g) and A,(q) are the two positive roots of
the characteristic equation

A4 —(a, +b,)A2+A4=0 (A.4)
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where 4 =a,b,,— a,,b,. (According to (3.17b) and (3.17f), the functions
&, and &, should vanish as x —+ o0). The roots of (A.4) are

Ay =[(a; + b, + M1i2)[2]1/2 Ax=[(a, + b, — lez)/2]1/2

where M= (a; — b,,)* + 4a,,b, is the discriminant. A, and A, are con-
nected by the relationships

A2A3 =A=q(g +a)/dtd,, A.ba)
(Al + AZ)Z =Qa, + bm + 24 1/2 (A.5b)

To determine the coefficients F(q) and B,{q) (k=1, 2) in Egns (A.3),
we substitute Eqns (A.3) into Eqns (A.1) and (A.2) and obiain

Fy = = 1,(i — ) F1 /2303 - a) (A.62)

B, = (A — a,)F,/a, (A.6b)

B, =~ 4,0} — @) Fi[hsa, (A.60)

Fy=&0 28200 1000 4 034 s = a) + M A G + AT (A
2 1

Finaily Egns (A.3a), (A.6a) and (A.7) give thbe Laplace image of the

bulk concentration &,, (X, p). Setting X = 0 there and using Egn (2.9b),
we obtain the image of the surfacze tension

TB) o 3+ 3+ Muda— )90 + 2B+ s — @)+ LAy + )]

= (b,, + 4V [q(b,, + 4'*) + 4'*(a, + b, +24"%)] 71 (A.8)
After some algebra Eqn (A.8) transforms into Equ (3.18).

A.2 Diffusion affected by the fast process

The Laplace transformation of Eqns (4.8) is

d
—'dié,l{ =a; 8Lt e, (A.9a)
dZEmL —

a2 =b,& L+ b,EL (A.9b)
where
a‘l =q—aiam am= —‘G(’L'Fk,,_, ﬁm/arzn

by = —atek, /d, b, =(q/dn) — (b,/o7)
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The boundary condition for the free monomer concentration &, (X, q)
remains the same, while the condition for the concentration of the
aggregated monomers =, (X, q) is

dZ,.. _
dXx x=0 =0
(cf. Eqn (4.103)). We solve the set (A.9) in thes same way as the set (A.1).

The only difference is that 4 = qg(q + ag)/d,, in this case. The Laplace
image of the surface tension has the same form as Eqn (A.8), which
finally gives Eqgn (4.11).



