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Abstract  

The effect of diffusion of p o l y d i m ~  micell~ on the kine~Acs of the aurfaoe t~asioa 
is studied theoretically, It is shown that  the stu4kce proper t iu  of micoAlar ~ t  
solutions depend on which of the relaxation procuses of  mieel|ization ([kst or  slowk 
has a time constant comparable with the characteristic time of dit~mio~ 
equations, describing the dilatation of the tkee monomem and the mieelleL are derived. 
They include new expre~ions for the source terms, a c c o t m t i ~  tbr the kinetics of 
micelliaation of the pol,vdispeme micelle~ Analytical so|ution~ of t h ~  equatimm for 
the surface tension as a flmction of time are obtained. Since the micellu are additic~ml 
sources of monomers, the relaxation of the surface tension is faster than the re!azation 
below the CMC, The theory allows computation of the relaxation time constants of 
micellization/Yore data obtained by surface stress experiment~, 

INTRODUCTION 

W e  c o n s i d e r  b e l o w  t h e  e f f e c t  o f  t h e  m i c e l l e s  o n  t h e  s u r f a c e  t e n s i o n  
k i n e t i c s  of  s u r f a c t a n t  s o l u t i o n s  a t  c o n c e n t r a t i o n s  n o t  e x c e e d i n g  s e v e r a l  
t i m e s  t h e  c r i t i c a l  m i c e l l e  c o n c e n t r a t i o n  ( C M C ) ,  W h e n  t h e  i n t e r / ' a c i a l  
m o n o l a y e r  is  e x p a n d e d ,  t h e  s u r f a c t a n t  m o l e c u l e s  a r e  t r a n s p o r t e d  to  
t h e  i n t e r f a c e  b y  d i f f u s i o n  b e f o r e  t h e i r  a d s o r p t i o n ,  H e n c e ,  t h e  loca l  
e q u i l i b r i u m  b e t w e e n  t h e  m i c e l l e s  a n d  t h e  m o n o m e r s  h a s  b e e n  d i s t u r b e d  
in  s o m e  v i c i n i t y  o f  t h e  i n t e r f a c e ,  G r a d i e n t s  o f  t h e  m i c e l l a r  c o n c e n .  
t r a t i o n  t h u s  a p p e a r ,  g i v i n g  r i s e  t o  a m a s s  ~ .  

I n  h o m o g e n e o u s  m i c e l l a r  s ~ t e m s  t h e  s p e c i e s  h a v e  u n i f o r m  conce~ -  
t x a t i o n s  a t  e v e r y  p o i n t  in  t h e  s o l u t i o n ,  T h e  m i c e l l i z a t i o n  k i n e t i c s  a r e  
s i m p l e r  b e c a u s e  d i f f u s i o n  a n d  a d s o r p t i o n  p r o c e s s e s  a r e  m i ~ .  Re lax -  
a t i o n  t e c h n i q u e s ,  p r o d u c i n g  s m a l l  d e v i a t i o n s  flrom e q u i l i b r i u m ,  a r e  
u s u a l l y  a p p l i e d  t o  s t u d y  t h e  k i n e t i c s  o f  m i c e l l i z a t i o n  in s u c h  s ) ~ t e m s .  
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The relaxation in a micellar solution is a ctinsequence of two relaxation 
processes: a fast relaxation process with time constant rF9 followed by 
a slow relaxation process with characteristic time ‘csL. Usually the two 
time constants, tF and zsL, differ by several orders of magnitude 
(r&L = 10 - 2- 1C “). Aniansson and co-workers El-3j have developed 
the most realistic theory of the micellization kinetics in the bulk of 
surfactant solutions. They considered the micelles as polydisperse 
particles, containing different numbers of monomers s. The micelles 
participate in a sequence of reaction steps: at each step one monomer 
is added to, or dissociated from, a micelle. They derived theoretical 
expressions for the two time constants ; ,. and tSL. The nature of the 
relaxation processes will be discussed in more detail in Section 1. 

The micellization kinetics are more complicated in non-homogeneous 
surfactant solutions where -diffusion and adsorption occur simulta- 
neously. In this case the concentrations of the species are functions 
also of the space variables. As far as we know, the kinetics of adsorption 
from micellar solutions has been treated (both theoretically and experi- 
mentally) in only a few studies. Lucassen 143 has measured the surface 
elasticity modulus of micellar solutions whose surfaces are subjected 
to periodical perturbations. He has used the model of Kresheck et al. 
151 for the kinetics of micellization to explain the experimental data. 
In this model the micelles are supposed to be monodisperse, i.e. contain- 
ing the same number of monomers, m. In addition a single-step forma- 
tion of a micelle by simultaneous aggregation of all m monomers has 
been accepted. This mechanism corresponds roughly to the slow relax- 
ation process [23. One can conclude that the slow relaxation process 
of miceilization has been detected in the experiment of Lucassen [4]. 

‘sing the same model, Miller [G] has solved numerically the respec- 
tive diffusion equations for the monomers and the monodisperse 
micelles. His results are not restricted to small deviations from equilib- 
rium. The computations are carried out for Henry’s adsorption iso- 
therm (which is not so suitable for typical surfactants above the CMC) 
;,ild for Langmuir’s adsorption isotherm. The numerical examples 
demcnstrated that the adsorption relaxation in the presence of micelles 
is faster than the relaxation below the CMC. Recently Joos and van 
Hunsel [7] have used the model of the monodisperse micelles to inter- 
pret experimental data on adsorption kinetics obtained by the drop- 
volume method. The effect of the micelles is accounted for by an 
effective diffusivity of the monomers. 

The monodisperse model is widely used when the diffusivity of the 
micelles has been determined [8-7r The apparent diffusivity of the 
micelles is calculated in :nents from the concentration 
profile, measured at a fixec, it3 solution. 
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Rillaerts and Joos [II] have accounted for the micellization kinetics 
by adding a single source term to the diffusion equation of the free 
monomers. This term is proportional to the concentration of the mono- 
mers, as in the pseudo-first-order reaction (PFQR) model, known from 
chemical kinetics. Tlney have solved ihe respective boundary value 
problem, formulated by Ward and Tordai [12] for concentrations below 
the CMC. The result is an expression for the adsorption as a function 
of time and the subsurface concentration. These authors have also 
calculated the rate constant of micellization from experimental data 
of dynamic surface tension, measured by means of the oscillating-jet 
and flowing-film methods. The PFOR-model will be discussed in detail 
in Section 5. 

Feinerman 1’131 has also tried to combine the theory of Aniansson 
and Wall with the kinetics of adsorption from micellar solutions. Me 
has proposed two pairs of diffusion equations for the free monomers 
and the micelles, written separately for the fast and slow relaxation 
processes. To do this he has simplified the respective time constants, 
known from the theory of Aniansson and Wall. The source terms thus 
obtained are proportional to the concentration of the free monomers 
as in the PFQR-model. Feinerman has solved the adsorption kinetics 
problem of Ward and Tordai and has found two solutions for the 
adsorption, valid for the fast and slow relaxation processes. Very 
recently Feinerman and Rakita [14] have applied this theory to calcu- 
late the micellization time constant from data of the dynamic surface 
tension, obtained experimentally by means of the maximum bubble 
pressure method. More details about the equations of Feinerman [13] 
will be given in Sections 3 and 4. 

The purpose of our study is to develop a diffusion theory of the 
kinetic surface tension of surfactant solutions which contain poly- 
disperse micelles. The general diffusion equations, derived below, in- 
clude new expressions for the source terms accounting for the kinetics 
of micellization of the polydisperse micelles. To do this we apply, in a 
consistent way, the ideas of Aniansson and Wall for the micellization 
kinetics to non-homogeneous micellar systems, where diffusion and 
adsorption tcike place simultaneously. 

In Section 1 we present a brief review of the theory of Aniansson 
and Wall for micellization kinetics in bulk systems. The general formu- 
lation of the mathematical problem describing the diffusion of poly- 
disperse micelles is given in Section 2. In Sections 3 and 4 we consider 
two special cases of diffusion, where either the slow or the fast relax- 
ation process predominantly affects the transfer of surfactant. ‘The 
respective two pairs of diffusion equations for the concentrations of 
the free monomers and the micelles are solved ana’.ytically and two 
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expressions for the kinetic surface tension are derived. In Secticn 5 
an approximate solution for the surface tension in the frames of the 
PFOR-model is obtained. 

1. RELAXATION PROCESSES WITH MICELLES 

According to Aniansson and co-workers [l-3] the relaxation in a 
micellar solution can be thought of as a sequence of processes which 
can be visualized by plotting the cancentration of the species c, as a 
function of their aggregation numbers s (see Fig. 1). The size distri- 
bution can be separated into three important regions: oligomers, in- 
cluding the free monomers (s = 1,2,3, . . . , s1 ); rare aggregates (s = s1 + 1, 
s1 + 2, ..*, s,); and abundant micelles (s = s2 + 1, s2 + 2, . . . , s,). The 
species belongin g to these regions exhibit ir cooperative behavior 
during the relaxation in the micellar solution. The premicellar aggre- 
gate? with 8 = 2, 3,4, . . . , s2 are present at considerably smaller concen- 
tra.$ons thsn the free monomers and the abundant mice&s. 

?‘he relaxation pathway depends on the experimental method used, 
although the relaxation time constants a.re the same. As an example 
we shall briefly discuss here the stopped-flow method where initially 
two surfactant solutions (micellar and submicellar ones) are suddenly 
mixed. ,4fter the mixing, the concentrations of the species decrease 
(with respect to their values in the micellar solution) if the mixing 
time is shorter than tF (Fig. 1). The system moves towards a new 
equilibrium state with smaller micellar concentration but the same 
monomer concentration (the latter is equal to the CMC). During the 
fast relaxation the micelle peak moves towards smaller mean aggrega- 
tion numbers without changing its height. During the slow relaxation 
the peak returns back to the initial location and simultaneously 
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Fig. 1. Sketch of the relaxation of a micellar solution in a stopped-flow experiment. 
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decreases its height until the final equilibrium concentration of 
micelles is reached (for a more detailed discussion see Ref. [15]). 

Aniansson and Wall have accepL-A LL bcu bAa2: following reaction mechanism 
of formation of aggregates 

k2 
A1 -I- A,_ 1--A, k; 

s=2, 3, 4, l *. (1.1) 

where A, is the symbol of one s-mer, Fz,+ and Jz; are the rate constants 
of association and dissociation respectively. To solve the system of 
kinetic equations corresponding to (1.1) Aniansson and Wall have made 
the following assumptions. (i) The size distribution of the abundant 
micelles is broad enough to be considered as continuous. A gaussian 
size distribution 

4s) = c,,, exp r ( - ml2 
- 

L 
’ 2a2 

1 
(1.2) 

m 

has been assumed with a mean aggregation number m and dispersion 
om. In addition, the sums in the micellar region have been replaced b!y 
integrals over s. (ii) The dissociation rate constan.t of an elementary 
reaction in the mice&r region does not depend on s, Le. one can write 
kz, sz k, = const. (iii) The reaction set can be cut off at some value +._. 
because the concentrations of the micelles with larger s vanish. 

Following these assumptions, Aniansson and Wall have obtained 

1 
- = % (l-f- t&&J 
=F m 

for the relaxation 

k?, = % k, es/cm 
sz+l 

s3 

Em = c Es 

s2+1 

(1.3) 

time of the fast process, where 

(1.4a) 

(1.4b) 

k; is the mean dissociation rate constant of the micelles; St,, = Em/El; 
c1 is the concentration of the free monomers (for non-ionic sur- 
factants E I x CMC); 6, is the total concentration of the: micelles 
(em z (c’ - C:‘, )/me, ); Es is the s-mer concentration; E is the total surfactant 
concentration; m is the mean aggregation number of the abundant 
micelles. (The bars denoke equilibrium values.) 



For the slow relaxation time the authors of Refs [l-3] have derived 
respectively 

where 

R _% (k,c,)-’ 
Sl 

(1.5) 

(1.6b) 

(MC) 

where m2 and n2 are the second mathematical moments of the micellar 
and oligomer size distributions; on and n. are the dispersion and the 
mean aggregation number of the oligomers; E, is the total oligomer 
concentration; Pn = En/C,; R is termed the resistance of the transition 
region. 

Although the theory of Aniansson and Wall explains satisfactorily 
a number of experimental data for homogeneous systems, it is too 
complicated for direct application to more sophisticated diflusion 
problems in non-homogeneous micellar systems, where adsorption-. 
desorption processes are also important. That is why we re-examined 
recently [16] this theory by means of the mathematical method of 
matched asymptotic expansions [17]. The ratio ~~~~~~ was used as a 
small parameter when solving the kinetic problem. Three different 
types of solutions for the concentrations of the free monomers and of 
the micelles were found: inner, outer and matched solutions. The inner 
solutions are valid during the fast relaxation process. The outer solu- 
tions describe the relaxation during the slow process. The m~t.chmI 
solutions are uniformly valid over the whole time interval. 

The asymptotic solutions obtained in Ref. [16] refer to uniform 
micellar solutions, where diffusion and adsorption are absent. In the 
present paper we shall consider the case when concentration gradients 
and diffusion exist. We shall again use the method of the matched 
asymptotic expansions to solve the respective diffusion equations 
of the species. The theory is developed for the case of a non-ionic 
surfactant. Nevertheless, the main features of the diffusion theory 
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proposed here can be valid also for ionic surfactants, as is the theory 
of Aniansson and Wall. 

2. DIFFUSION EQUATIONS 

We shall study the relaxation of the surface tension of a flat air/ 
water interface with time. Consider an adsorption layer which is in 
equilibrium with the adjacent solution (the equilibrium adsorption is 
r, while the surface tension is 5). If initially the layer is expanded (or 
compressed), as in the surface stress-relaxation methods [B-203, an 
initial non-equilibrium adsorption r, is established (the corresponding 
surface tension is ao). Immediately surfactant monomers will start to 
adsorb onto the surface to compensate the perturbation there. We 
propose that the total. area of the adsorption layer does not change 
during the relaxation. The adsorption is supposed to be diffusion con- 
trolled. This means (i) the diffusion is much faster than the adsorption 
and (ii) the adsorption layer and the subsurface layer are in a state of 
instantaneous (quasi)equilibrium during the relaxation. 

The characteristic time of the experiment should be of the order of 
the diffusion time constant oD in order to observe any relaxation of the 
surface tension caused by the surfactant diffusion. Generally, tD can 
be expressed 8s zD = sh/DI, where & is the characteristic length of 
diffusion and II1 is the diffusivity of surfactazt monomers. Since 
D I z 5 l 10s6 cm2 s-l for most surfactants, rb will be determined pre- 
dominantly by 6b. The last qusntity may be the derivative ar’/aE, (see 
below) or some other quantity of linear dimension, characterizing the 
width of the region where the diffusion takes place. zD can vary over 
fairly large limits: 10 -5-1O2 s, depending on the type of the surfactant. 
These values cover the whole interval of zF and zsL observed experimen- 
tally [3]. We shall consider separately the following two cases: (i) rD of 
the order of rFP and (ii) zD of the order of zsL- 

Consider a semi-infinite solution occupying the space with z > 0 (the 
dividing surface solution/air is placed at x = 0). The starting point of 
our considerations is the following set of equations corresponding to 
the reaction mechanism (1.1): 

- 2j2 - 2 js 
3 

js= k~clcs_, - k,c, 

s=2, 3, 4, “‘, s3 

s=2, 3, 4, ‘.‘, s3 

(2.la) 

(2.lb) 

(2.2) 
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s3 

c 
c, = c 

1 
(2.3) 

where c,(x, k) is the s-mer concentration; D, is the diffusivity of one 
s-mer; js(x, t) is the total rate of the sth reaction, i.e. the chemical 
(pseudo)flux. Note that the total surfactant concentration c(x, t) is not 
equal to the equilibrium value, C, in the mass balance of the monomers 
(X3), because of the diffusion and adsorpt-: 3n processes. 

The boundary and the initial conditions are the following: 

df _=*lz _ 
dt x-o 

s = 2, 3, 4, . . . , s3 

(2.4) 

(2.5) 

(2.6) 

s = 1, 2, 3, . ..J s3 (2.7a) 

c,(x, 0) = Es s = 1, 2, 3, . . . . s3 (2.7b) 

r(0) = I-0 (2.8) 
Equation (2.4) is the surface mass balance; Eqn (2.5) is an expansion 
of the adsorption rji;) at small deviations from equilibrium. The deriva- 
tive ar/Z, should be calculated at the CMC [4]. Equation (2.6) means 
that all aggregates (s 3 2) do not adsorb while Eqn (2.7a) implies that 
the equilibrium concentrations of the species are not disturbed far from 
the interface. Equations (2.7b) and (2.8) are the respective initial condi- 
tions, valid at the moment t = 0. An expansion similar to (2.5) can be 
written also for the surface tension a(t) 

G = 5 + (Z/X,)(c, - c’Jl,=() 

It follows from (2.5) and (2.9a) that the respective 
equilibrium quan.tities are connected by means of 

A d0 A f’(t) AC,@, 0 
da(O) = Al-(O) = AC, (0,O) 

where do = c - if, Ar = r - ,? and AC, = cl - El. 

(2.9a) 

deviations from the 
the relationship 

(2.9b) 

To solve the set (2.1) containing many partial differential equations 
we shall follow the asymptotic approach, developed in Ref. Cl.61 for 
systems without diffusion terms. First, we group the equations de- 
scribing the cooperative behavior of the aggregates in the three distinct 
regions (oligomers, rare aggregates and abundant micellcs). Second, 



we scale the terms in an appropriate way to distinguish the role which 
every term plays during the mass transfer. Third, we expand the concen- 
trations c, and the fluxes jS into power series of the smaii parameter 

E = Z&J_ 4 1 (2.10) 

Fourth we reduce the number of the source terms in the right-hand 
side of Eqns (2.1) as explained in Ref. [16]. Finally, we obtain a system 
of two diffusion equations for the concentrations of the free monomers 
and of the micelles. The application of this procedure is demonstrated 
below. 

We scale time by zD, which is the diffusion time 
monomers. The space variable, X, is scaled by the 
length (see Eqn (2.5)) 

constant of the free 
respective diffusion 

It is clear that the kinetic terms ac,]at and dr/dt and the diffusion 
terms D,Pc,/&c~ and D1 ac, /ax: must be of the same order of magnitude. 
However, the bulk diffusion equations ought to be consistent with the 
boundary conditions (2.4) and (2.5). That is why the dil%sion time ‘CD 
must be 

1 ar 2 

tD=D, K ( > 
(2.13) 

Very Smgortant is the scaling of the fluxes jS. Based on the kinetic 
theory of micellization one can introduce two characteristic fluxes 

JF = C1 /z, and JsL = El /tsL (2.12) 

(their meaning is discussed in detail in Ref. [16]>. We scale the fluxes 
jS, havings=2,3,4, . . . . s1 (oligomer region) and s = s2 + 1, s2 + 2, . . . , s3 

(micelle region), by JF. The fluxes with s = s1 + 1, s1 + 2, , . , , s2 (transi- 
tion region) are scaled by J&. 

In accordance with Eqn (2.2) jS can be written in the form 

s=2,3,4, ‘.‘, SJ (2.13) 

where 

r&z 0 = (c, - &)I& s=l, 2,3, . . . . s3 (2.14) 

is the relative de*f:eCz -. rGuaOil of the s-mer concentration, c,(x, t), from 
equilibrium. The equilibrium mass action law 

s=2, 3, 4, ‘.., s3 



is used when deriving Eqns (2.13). At small deviations from equilibrium 
(I<,1 e 1) the product <I es_ 1 G 1 can be omitted. 

3. DIFFUSION AFFECTED BY THE SLOW RELAXATION PROCESS 

3.1 Bulk diffusion equations 

Following the scaling procedure, described in Section 2, we write the 
diffusion equations (2.1) for zD x ~~~ in the following dimensionless 
form: 

s=2, 3,4, . . . . s1-1 

s=s2+1,s2+2, ..*,s3 

(3.la) 

(3.lb) 

(3.lc) 

(3.?,d) 

(3.le) 

(3.lf) 

where d, = DJD, ; ps = fz&; T = t/TD and X = xl&,; J, = j= fJF 
(s=2,3 ,..., sl and s=sa+l, s,+2 ,..., s3) and Js=jS/JSL (s=s,+l, 
s1+2, .“, a2 ). a = r,/%, z 1 is the Damkijhler number. This number is 
an important characteristic of the mass transfer in reacting systems, 
giving the ratio between the diffusion and the reaction terms. 

Let us expand the functions in Eqns (3.1) in power series of the small 
parameter E (2.10) 

t, (X T; 6) = kFo ck 5:k’(X, T) 
= 

J,(X, T; 6) = f E~J$‘)(X, T) 
k=O 

(3.2) 

If we substitute the above expansions for 5, and Js in Eqns (3.1) and 



set equal the coefficients at fz”, we find the zeroth-order equations 

$0) = 0 s 

p( 

a<!“; 

s=2, 3,4, . . . . s,; sz+l, s,+2, . . . . s3 (3.3) 

= dT 
_d a25Lo’ 

= ax= > 
=a(J;O’-J~~,) s=s,+P,s,+2, . . ..s2 (3.4) 

Equation (3.3) means that the reactions (1.1) have reached equilibrium 
state in the oligomer and micelle regions due to the fast relaxation 
process. Bearing in mind that the rare aggregates obey the equilibrium 
conditions & 4 l(s := s 1 + I, s 1 + 2, . . . , s,), Eqn (3.4) gives 

J(O) 
s 

= J’O’ S = s1+ 1, Sl + 2, l .*, s2 (3.5) 

where the flux J(O)(x, t) does not depend on s. 
In general So) is not equal to zero, i.e. the reactions (1.1) in the 

region of the rare aggregates, s1 c s < s2, are out of chemical equilib- 
rium. Since zSX, z TD, this deviation from equilibri-um is due to diffusion. 
In fact J(O) is connected with the process of step-by-step disintegration 
of the micelles. This process gives rise to the series of unstable rare 
aggregates, whose consecutive decomposition produces monomers, 
thus making up for the lack of monomers due to adsorption. As a 
matter of fact, -J!O) is related to the slow relaxation pr~ces;s (see Fig. 1). 

Equations (2.13), (3.3a) and (3.4) give (at. <._ <,- 1 z 0) 

<‘P’- <Lp-’ 1 - (z$O”’ = 0 s=2,3,4 ,..., s,;s,+l,s,+2 ,..., s3 (3.6a) 

s=s~+l,s~+2 , ---, s2 (3.6b) 

To transform Eqns (3.6) we follow the procedure of Aniansson and Wall 
[l]. First, Eqn (3,6a) is summed from 2 to s to yield 

s<\O’- S p(o) = 0 S = 1, 2, 3, *. . , sz; s* + 1, s* + 2, . . . , s3 (3.7) 

After that, Eqn (3.6a) is summed for 2 -C s < sl, Eqn (3.6b) for 
s1 + 1 -C s < s2 and Eqn (3.6a) for s2 + 1~ s, and then the three resulting 
equations are summed again to yield 

S =s1+ 1, s1+2, . . . . s2 (3.8) 

where R is given by Eqn (1.6~). Further, each of Eqns (3.7) and (3.8) is 
multiplied by ES and then they are summed for all admissible values of 
s. The results are 

(3.9a) 
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where 

c$~ and &,, are the relative deviations from equilibrium of the total 
concentrations of the oligomers and micelles respectively. After that 
each of Eqns (3.7) and (3.8) is multiplied by SC’, and then summed in a 
similar way. The -results 

n&(,0) - EP’ = 0 

pn,<\op’ - EE) = ?&&&J’O’ 

where 

are 

(3.9c) 

(3.9d) 

E,, and Z,,, are the relative deviations from equilibrium of the total 
numbers of monomers aggregated in oligomers and micelles respec- 
tively. 

Finally we neglect the concentrations of the intermediate species 
(.WS~ +1,s,+2, “., s2) in Eqn (2.3) which then becomes 

p r(Q) + 
n-n 

pm&)’ = pp) 

where 

is the relative deviation 
equilibrium (/3 = c/C1 ). 

The terms in E in Eqns 

of the total surfactent concentration from 

(3.1) yield 

(3.9e) 

agp a2 c(F) 51 s3 
- - 

azl ax2 
= -cY(s2 - s,)P’ - a! ( 2c?y + z cry’ -t 

3 N 
(1) * s (3.10a) 

s2+ 1 

a2p 
s ax2 =&7~“- J:‘?,) 

s=2,3,4 ,..., s,-1 (3. lob) 

(3.104 

(3.10d) 

s=s,+l,s,+2, . . ..s (3.10e) 
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Similar equations can also be derived for <ifI in the region of the rare 
aggregates s, < s < s2. 

Let us first multiply each of Eqns (3.10) by s and sum them. The 
result is 

(3.lla) 

where it has been supposed that d, is approximately constant in both 
the oligomer and micelle regions, and equal to 

(3.lfb) or 

4 = RI& = g P&lP, 

respectively. D, and D, are the mean diffusivities of the oligomers and 
micelles. Although the deviations from the equilibrium size distribution 
are small, sl, s2 and s3 in principal can depend on x and t during 
relaxation (see Fig. 1). That is why, when deriving Eqn (3.11a), we have 
performed the differentiations in Eqns (3.10) as follows: 

as2 as3 
SC(S) ds + s24s2)at - SECT (3.12a) 

$2 

gpCsh&~ 
as2 

SC(S) ds + s2 c(s2) ax - 
as3 

SSC(S3)~ (3.12b) 

s2 

The last two terms in each of Eqns (5.12) can be neglected, because at 
the ends of the size distribution c(s2) x 0 and c(s3) z 0. If we sum Eqns 
(3.10di and (3.10e), we obtain an equation for the micelle concentration 

“<g’ 
m ax2 > 

= aJ(,,) 
(3.13) 

It was supposed again that d, M d, = const for all s2 -C s < s3. Our aim 
below is to reduce the system of equations (X9), (3.11) and (3.13) to two 
equations for the 

If c”L”) and s”c) 
functions <\‘I and <g). 
are expressed from Eqns (3.9c) and (3.9d) and then 



248 

substituted in Eqns (3.9e) and (3.11a), one obtains 

J(O) = 
,@ Kn*Pn + ~2Pm>ci0’ - P4’“‘3 

m 
8, 

ap”) _ d a2<(0) p<\o’ 

i?T m ax2 > 
- ~zBn(d, - dm) ax2 = 

0 

(3.14a) 

(3.14b) 

Further we substitute J (‘I from Eqn (3.14a) into (3.9b), and the result 
for <:I into (3.13). In this way we obtain the expression 

a<(“) _ d ,2<(o) -- 
dT m ax2 > 

-(n2Pn+a;Pm) $dm%$!) cmcrJ'O) (3.14c) 

Finally we subtract Eqn (3.14b) from (3.14~) and substitute the flux J(O), 
as given by (3.9b). The result, together with Eqn (3.13), represents the 
final system of two diffusion equations for the coricentrations of the 
“Fee monomers and the micelles: 

(3.15a) 

(3.15b) 

The superscripts (0) have been omittt:?. The functions <I and 5, are 
the respective relative deviations of the concentrations of the species 
from equilibrium. The constants in (3.15) are given by Eqns (1.4b) and 
(1.6). 

Here we have introduced an effective diffusivity of the monomers 
RT given by 

(3.16) 

If micelles are absent (pm = 0, R 4 cc, DT = D1), Eqn (3.15a) transforms 
into the well-known Fick’s equation. DT exhibits a weak dependence 
on the surfactant concentration due to the polydispersity of the 
micelles. Indeed, if the micelles were monodisperse, i.e. a, = 0, then 
13: would be identical to D1. 

The source term in the right-hand side of Eqn (3.15a) increases 
strongly with the surfactant concentration. In this way the micelles 
*Nil1 generally accelerate the relaxation of the monomer concentration 
and hence of the surface tension. 

The equations derived by Feinerman [13], corresponding to the physi- 
cal situation considered in this Section, differ from Eqns (3.15). The 
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right-hand sides of Feinerman’s equations for the diffusion of micelles 
and monomers contain the same single source term (c, - El )/zSL, depend- 
ing only on the concentration of the free monomers as in the PFOR- 
model (see below). Instead of the effective diffusivity Dt, the common 
monomer diffusivity D1 appears in his equation for the free monomer 
diffusion. 

Now we shall try to solve the system (3.15) by means of the Laplace 
transformation and to.obtaln an expression for the time dependence of 
the surface tension. 

3.2 Kinetic surface tension 

The boundary conditions (2.4)-(2.8), written in a dimensionless form 
for the concentrations of the free monomers and the micelles, read 

(3.17a) 

Lb, T)=O (3.17b) 

51(X, O)=O (3.17c) 

MO, O)= F (3.17d) 

xm 
ax x=0=0 (3.17e) 

Gnb, T) = 0 (3.17f) 

MX, 0) = 0 (3.17g) 

where LO = WA 0) is connected by the initial jump of the surface 
tension by means of Eqns (2.9a) and (2.14). Equations (3.17e)-(3.17g) 
are derived by summation of Eqns (2.6)-(2.7). Equations (3.17) remain 
the same in the case when the diffusion is affected by the fast relaxation 
process, because the boundary conditions (2.4)-(2.8) do not contain 
reaction terms explicitly. 

To derive an expression for the surface tension a(t) we first transfczm 
Eqns (3.15) and the boundary conditions (3.17) by using the Laplace 
transformation (see the Appendix). After that we calculate the image 
of the subsurface concentration, which is related to the surface tension 
by Eqn (2.9b). In this way we obtain the Laplace image a,(p) of the 
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kinetic surface tension 

-1 

x [ 
(n2Pn + ds7l) &I 

q+a(n2~.+m2P,) + dT (3 1i2(u + q)‘,2 -l II (3. 

where Q = pz, (p is the parameter of transformation) and dy = 0: /Dl. 
The other constants in Eqn (3.18) are given by Eqns (1,4b), (l-5), (1.6) 
and (3.1lb). If the micelles are monodisperse the constants become: 
Pn=l, d,=l and n2=1; o,=O and m,=m’; dT=l; R=(/z;~~)-‘; 
ll%L = ki (I+ m2j3,,,). Equation (3.18) can not be inverted in a simple 
way to its original g(t). Special cases of Eqn (3.18) will be discussed in 
Section 5. 

4. DIFFUSION AFFECTED BY THE FAST RELAXATION PROCESS 

4.1 Bulk diffusion equations 

When TD z Tp the DamkGhIer number for the fast process, 
a = T,/r, zz 1, appears in Eqns (3.1). The respective diffusion equations 
read 

- 
> 

=hJ..- Js+d 

a2h - 
s 8X2 

=ax(J,- Js& 

a2c52 
s2 ax2 

ccaJ -uJ 
52 52 + 1 

S =2, 3, 4, . . . . s1-1 

(4.la) 

(4.lb) 

(4.lc) 

s=s~+l,s~+2,...,s2-1 (4.1 d) 

(4.le) 
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s=s,+l,s,+Z, . . ..S3 (4Sf) 

If one substitutes the asymptotic expansions (3.2) in Eqns (4.1) and set 
equal to the coefficienk at co, one obtains 

-f-m 
aL$y ;‘<\O’ 
- - 

i3T 3X2 =--r~! s J(o)(s) ds (4.2a) 

at;o”’ _ d a2 El*’ -_ -- 
ilT s ax2 

= c&y)- cJ$!,, S =szfl,s2+2, ‘.., s3 (4.2~) 

Here we have neglected the concentrations of the oligomers 5, cor- 
responding to 2 < s < s1 _ The equations for the rare aggregates 
(sl -=c s < s2) are omitted, because they are not important for our further 
considerations. In the rigb.t-hand side of Eqn (Ma) we have replaced 
the summation by integration. It -will be s’h0w.1 that in view of Eqn 
(1.2) the main contribution to this integral is given by the micellar 

. 
region: s2 d s d s3. That is why one can extend 
to infinity. The flux J(*)(s) taxi be written as 

tkke limits of integration 

(4.3) 

where p(s) = C(s)/CI (for definition of E(s) see Eqn (1.2)). Equation (4.3) 
follows from %qns (2.12) and (2.13), where we have set <,x c$,-~ in 
parentheses and also c, - &- 1 x a<(s)/&, as in Ref. [2]. 

Summing Eqns (4.2e) and (4.2f) and assuming that d, x d, for all 
s2 < s < s3 we obtain the following equation for the micelles 

aC?_d a251no)=0 
i?T m ax2 

(4.4a) 

{note, that J,, x 0). Let us multiply each of Eqns (4.2b) and (4.2~) by s 
and sum them. The result is 

+03 +-m 
pg,o, d2E, -_(O) P 

--d, ax2 =-a 
dT J s dJ’*’ (s) z o( 

s 
J’*‘(s) ds (4.4b) 

-CO -00 

(Cz, z d, for qJ1 s2 < s < s2: J(co) c -_r!- M) N Q,)_ To derive Eqn (4.4b) we 
carried 01~ , I Xerentiation by using Eqns (3.12). Finally, by using 
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Eqn (1.2) we integrate the flux (4.3). The result is 

+C0 

s J’o’(s) ds = zFk; P,,, c:“’ + 

-m 

The substitution of Eqn (4.5) into Eqns (4.2a) and (4.4b), along 
Eqn (4.4a), leads to the final set of diffusion equations for the 
when the fast relaxation process affects the diffusion 

(4.5) 

with 
case 

(4.6a) 

(4.6b) 

The superscripts (0) have been omitted. The constants are defined by 
Eqns (1.4). Equation (4.6a) describes the diffusion of the free monomers; 
Eqn (4.6b) describes the diffusion of the micelles, while Eqn (4.6~) 
concerns the transport of the monomers, aggregated. in micelles. 
In our case the solution of Eqn (4.6b) at the boundary conditions 
(3.17e)-(3.17g) is 

t: 
Grn = 0 (4.7) 

This rreans that the total micellar concentration is kept constant 
during the relaxation. Nevertheless, the different components belong- 
i Ig TV the fraction of micelles can take part in the diffusion process. 
‘Yherefore, the total number of monomers aggregated in micelles at a 
given point, i.e. Zm, can vary. For example, when the interfacial adsorp- 
tion layer is expanded, the concentration of the micelles of lower 
aggregation number will be higher close to the interface than in the 
bulk of solution. 

Locally, the defi.ciency of monomers is simultaneously compensated 
by the diffusion and the direct exchange of material between the frac- 
tions of the micelles and of the free monomers. These two processes 
have comparable rates. However, they are not reactions transforming 
the micelles into rare aggregates (see Fig. l), because the reaction 
chain with the rare aggregates is activated during the slow relaxation 
process. The peak of the micelles in a given layer of the solution will 
have a constant height, but will somehow be shifted in comparison 
with the peak in the underlying layer situated close to the interface. 
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Although locally the total number of the micelles can remain constant 
(Eqn (4.7)), diffusion of micellar fractions from and tov:arde the solution 
takes place. 

From Eqns (4.6) and (4.7) one finally obtains 

(4.8a) 

(4.8b) 

The respective equations of Feinerman [l3] for the micelles and 
the monomers contain one and the same single source term 
Kc&, - E,)IElo~ (written in our notation). Note, that c,(x, t) in this 
term is a function of x: and t, while our Eqn (4.7) yields c,,, = E,. 

4.2 Kinetic surface tension 

To solve the set of equations (4.8) we use Eqns (3.17a)-(3.17d) as 
boundary conditions for the function c1 _ The boundary conditions for 
the function sm are 

a 3 

aLiT I x=o = 

0 

&(W, T) = 0 

c”,(X, 0) = 0 

(4.9a) 

(4.9b) 

(4.9c j 

Equations (4.9) can be derived by multiplying Eqns (X6)-(2.7) by s and 
summing them. Solving this set we obtain the Laplace image of the 
surface tension (see the Appendix) 

&AP) 
= AdO) I q+(a+q)l’” q1’2 + &/2(OL + qp2 1 

2 

+a(l-cl,) 1 

112 

1+ ca%n 

-1 

1 
x q+o! 

C 1+ &La 
+ dz2(ec + q)l12 (4.10) 

Equation (4.1Oj is a counterpart of Eqn (3.18) for the fast relaxation 
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process. The original of Eqn (4.10) can be found in some special cases, 
considered in the next Section. 

The exact numerical solutions of the diffusion problems based on 
Eqns (3.15) and (4.8) will be published in a forthcoming paper [21]. 

5. FSEUDO-FIRST ORDER REACTION MODEL 

Let us consider the special case when the micellar solution represents 
a quasi-closed system, i.e. the condition 

C(X, Q w c’ (5.1) 

is fulfilled at every instant, i.e. 5 x 0. In other words, the total surfac- 
tant concentration remains constant, although the concentrations of 
the individual species (s-mers) can vary. In this case two additional 
relationships follow from the mass balance (2.3). 

(i) When zD is of the order of zsL, then 

(%B, + cGJ&l>51+ fnPmSm = 0 (5.2) 

Equation (5.2) can be derived if J(O), ZIP) and Zg) are eliminated from 
(3.9b)-(3.9e) at 5”) = 0. 

(ii) When zD is of Lhe order of rF, then 

(5.3) 

Equation (5.3) is a direct result from (2.3) and (5.1). 
However, one can multiply each of Eqns (2.1) by s, sum them and 

take into account (2.3), written at c z C. In this manner one obtains the 
following relationship for the diffusivities: 

D ,XD,XIDTZZ& (5.4) 

Equation (5.1) is a corollary of Eqn (5.4). It implies that the micelles 
and the free monomers must have approximately equal diffusivities in 
or&r to ensure the constancy of the total surfactant concentration 
during the micellization. In reality Dm is considerably sr~Xer tha.n D1 + 

However, this hypothesis can be useful for some estimates, as demon- 
strated below. 

Equations (5.2) and (5.3) reduce the sets of two diffusion equations, 
derived in Sections 3 and 4, to single equations for the concentration 
of the free monomers. In view of Eqn (5.4), Eqns (3.15) and (4.8) reduce 
to one and the same equation 

(5.5) 



where zM is either OF or ‘csL. The effect of the micelles on the diffusion 
of the free monomers is given by the source term in the right-hand side 
of (5.5). In this approximation the micelles diffuse as fast as the free 
monomers do (see Eqn (5.4)). That is why the micelles appear like 
sources of monomers rather than as surfactant carriers. Equation (5.5) 
could be postulated at once, assuming that the micellization kinetics 
can be described in the frames of the PFQR-model. This model is widely 
used in chemical kinetics (see e.g. Ref. [22]). According to the PFOR- 
model every complicated reaction (or reaction set) can be described 
roughly as a pseudo-first order reaction, if the deviations from equilib- 
rium are small. The reverse characteristic time, l/zM, is not yet a rate 
constant of an elementary first-order reaction, but is a complex function 
of the rate constants of the real reaction mechanism as well as of the 
concentrations. Equation (5.5) is a generalization of the statements of 
the PFOR-model for a diffusion problem. 

The equation used by Rillaerts and Joos 1111 is similar to Eqn (5.5), 
but instead of l/z, (cf. Eqns (1.3) or (1.5)) a simple reaction rate constant 
is used. 

Solving Eqn (5.5) at the boundary conditions (2.4), (2.5), (2.7) and 
(2.8) (at s = 1) we find the Laplace image of the surface tension 

Aa,cP) = 1 

A@0 q + (q + cp 

The same equation as Eqn (5.6) follows from both Eqn (3.18) and Eqn 

(5.6) 

(4.8), if d, x d n x 1. The original of (5.6) is 

da(t) 1 
= - exp(--17,) 

da(Q) 2G 

x ((1+Gje[l;G(;~‘2] - (1- G)E[l;"(;>"'1) (5.7) 

y_&re E(E) r= elcp (x9 j erfc (zj, erfjzj = i - erfc (zj is the error function 
and G = (I + ~cx)‘/~. 

Three particular cases can be considered. If ~14 1, i.e. if the diffusion 
term in Eqn (5.5) is much smaller than the source term, Eqn (5.7) 
reduces to 

In the opposite case (a s 1) Eqn (5.5) reduces to the simple kinetic 



equation 

(5.9a) 

which has a solution tr (0, t) = < I (0,O) exp ( - t/~~). In view of Eqn (29b) 
for the surface tension one obtains 

A d0 
AdO) 

z exp (- cx(t/rD) (5.9b) 

Finally, for solutions without micelles (TV -+oo,c+O,G=l)bothEqns 
(5.7) and (5.8) transform into 

A4Q 
AdO) = E[(;Y2] (5.10) 

Equation (5.10) has been utilized recently in Refs [IS-201. 
Finally, we give the solution 

stemming from Eqn (5.5) 
for the bulk cdncentration profile 

AC& 0 1 x2 t -- 
AC, (0, 0) = % exp ( 

---- 
4&t TM > 

x {u+ G)g[2(D:L)L'2 

I- 'y 

+1+G t 1’2 

2 g (> I 

- Cl- WE 2(o-,)‘,~ -I- 1 1 

yy;y’2]} (5.11) 

In agreement with Eqn (2.95) at x = 0, Eqn (5.11) transforms into Eqn 
(5.7). Similar concentration profiles have been. obtained in other diffu- 
sion problems having a similar mathematical description [23-251. For 
example this is the case when a solute, absorbi.ng int,o a liquid at a 
constant surface concentration, reacts chemically with the liquid. 

In Fig. 2 we have represented the effect of the micellization kinetics 
on the surface tension. The theoretical curves are calculated from Eqns 
(5.8) and (5.10) at different values of the Damkohler number a. The 
values of E(z) are computed by numerical integration of erf(z) for 
z d 101i2 or by means of the approximate formula 

k=l C2z2 jk 1 
for z > 101j2. It is seen that when increasing the effect of the micelles 
(when increasing cc) the surface tension relaxes more quickly. It is 
known from experiment [3] that the relaxation time constants TF and 
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Fig. 2. Effect of the micellization kinetics on the surface tension at different values of 
the Damkiih’rer number a: curve I, a = 0 (no micelles); curve 2, cz = 0.01; curve 3, cc = 0.05; 
curve 4, a = 0.1; curve 5, a = 0.5. 

zsL decrease (and therefore 01 increases), when the micellar concen- 
tration increases (see also Eqns (1.3) and (1.5)). Hence, the more con- 
centrated the surfactant solution, the faster the relaxation of the 
surface tension. This conclusion is also supported experimentally [26]. 

CONCLUSIONS 

In this paper we developed a diffusion theory of the kinetics of 
adsorption and surface tension of micellar surfactant solutions. To 
account for the eRect of the micelles on the surface properties we 
incorporated the predictions of the theory of Aniansson and Wall for 
the kinetics of micellization in the mass transfer equations. As a model 
experiment we considered the stress relaxation techniques, where 
initially a small perturbation in the surfactant adsorption layer is 
created. The deviation from equilibrium is restored by the adsorption 
and diffusion of the free surfactant monomers. The micelles are con- 
sidered as polydisperse particles, which can form or distintegrate !n. 
order to compensate the local deviation of the mcnomer concentration 
from equilibrium. The two relaxation processes of micellization are 
taken into account. During the fast process the micelles release only 
a few monomers, while during the slow process they entirely dis- 
integrate. The process whose tjme constant is comparable with the 
diffusion time constant has the greater effect on the mass transfer. 
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We considered two cases of interest: diflusion rate comparable with 
the rate of the fast or the slow relaxation process. The realization of 
one of them in an experiment depends on the tvpe of surfactant used _ _ 
or on the dynamics of the particular experiment. To solve the diffusion 
equations of the species, we utilized arr asymptotic mathematical 
method. In this way two equations deacribiug the diEuaion or” t‘ne free 

monomers and of the micelles have been derived. The parameters con- 
tainc-!d in these equations represent collective characteristics of the 
micelle size distribution and of the micellar reaction chain. The set of 
equations has been solved for ‘tD z TF and rD z zsL and the Laplace image 
of the surface tension has been obtained. An approximate solution for 
the surface tension as a function of time has been found in the frames 
of the PFOR-model. In agreement with experiment the theory predicts 
faster surface tension relaxation at higher surfactant concentration. 
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APPENDIX 

A.1 Diffusion affected by the slow process 

The Laplace images of (3.15) are 

d2e 
IL = aI &, + urn&_ 

dX2 

d2 &??I_ 
dX2 =b1 ~IL+hn&rlL 

(A-la) 

(A.lb) 

where tIL and tmL are the Laplace images of <I and 5,. We have 
introduced the following notation: 

al = (q/G? - ma, 

b, = - ~Md,Pm~Js,) b, = WdnJ - (4 In) 
The respective images of the boundary conditions (3.17a) and (3.17e) 
are: 

d5lL 
dX x=o 

= SSluA a) - Lo 

GnL 
dX x_-0=o 

(A.2a) 

(A.2b) 

The solution of (A.l) for the functions eIL(X, q) and emL(X, q) il 

5 1L =F, exp(-&X)+F, exp(-12X) (A.3a) 

5 mL=B1 exp(--;l,X)+B2exp(--;1,X) (A.3b) 

(see, e.g. Ref. 1271). Here iI (q) and A2(q) are the two positive roots of 
the characteristic equation 

3L4 - (a, + &,)A2 + d = 0 (A.41 



where A = a,b,- ambr. (According to (3.17b) and (3.17f), the functions 

5 1L and crnL should vanish as x --+ co). The roots of (A.4) are 

/I.1 = [(a, + b, t AcP/~)/~] ‘I2 A2 = [(a, + b, -- I4~2’~~)/2] ‘/’ 

where M= (a, - b,)2 + 4a,b, is the discriminant. ;1, and A2 are con- 
nected by the relationships 

,5:n; = A = q(q + rx)/d~d,,., ,ii.5a) 

(& + A212 = a, + b, -t- 2A’12 (A.5b) 

To determine the coefficients Fk(q) and E&(q) (k = 1,2) in Eqns (A.3), 
we substitute Eqns (A.3) into Eqns (A.l) and (A.2) and obLain 

F, = - A1(J_z - a,)F,/A;($ - al) (A.6a) 

J% = (2: - al)Flla, (A.6b) 

B2 = -a,@: - a,)F,/A,a, (A.6c) 

FI =&I 
A2(& - aI) 

;1 
2-b 

fq(AT + A$ + IL1 A2 - alI + W2(& + A2)3-’ CA.71 

Finally Eqns (AJa), (A.6a) and (A.7) give the Laplace image of the 
bulk concentration tIL(X, p). Setting X = 0 there and using Eqn (2.9b), 
we obtain the image of the surface tension 

= (b, + A1j2)[q(b, + A’/‘) + A”‘(a, + b, + 2A1/2)]-1 

After some algebra Eqn (A+8) transforms into Eqn (3.18). 

(A-8) 

A.2 Diffusion affected by the fast process 

The Laplace transformation of Eqns (4.8) is 

d5lL 
- = a, cIL + a,EmL 
dX’ 

d2 zmL 

dX2 = bl <IL + &,Z,,,_ 

where 

a1 =q-&a, 

bl = - or@; /d, 

(A.9a) 

(A.9b) 
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The boundary condition for the free monomer concentration 2jlL(X, CJ) 
remains the same, while the condition for the concentration of the 
aggregated monomers &=(X, Q) is 

d F 
-mt 

dX x=0=o 

(cf. Eqn (4.10a)). We solve the set (A.9) in the same way as 
The only difference is that d = ~(CJ + aF)/& in this case. 
image of the surface tension has the same form as Eqn 
finally gives Eqn (4.11). 

the set (A.1). 
The Laplace 
(A-8), which 


