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Abstract—In this study we perform a linear analysis of the stability of a two-layered liquid film
which is evaporating upon a horizontal solid substrate. The film contains surfactant that is
soluble in both liquid phases. The problem was solved in general form, in our previous work [cf.
Danov et al. (1997b) Chem. Engng Sci., submitted] by using lubrication approximation. The
governing equations for the film thickness and the surfactant concentration derived there are
treated using linear analysis in the present study. The resulting system of ordinary differential
equations describes the evolution of small long-wave disturbances of the film shape and the
surfactant distribution during the film evaporation. The model allows one to investigate the
role of different factors on the film stability. To illustrate the effects we consider a particular
system: water—hexane film evaporating on a PVC plate. The limiting cases of pure liquids and
tangentially immobile surfaces, as well as the general case are studied numerically. Both cases
when a low- and a high-molecular weight surfactants present into the film are investigated. The
numerical results in the case of non-linear stability analysis of a PVC/tetrachlorethane/water/
vapour evaporating film are subject of part III [cf. Paunov et al. (1997) Chem. Engng Sci.,
submitted]. ( 1998 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

The stability of thin liquid films under condition of
evaporation is a problem of great importance from
both technological and scientific point of view. The
modern coating technology often requires a simulta-
neous coating with multilayered films which undergo
further evaporation. The quality of the coatings pro-
duced depends strongly on the stability of the multi-
layered liquid film against outer mechanical and
thermal disturbances. The stability mechanism in
multilayered liquid films depends strongly on the par-
ticular system. The attractive disjoining pressure and
the processes like evaporation or condensation of
vapour at the interface can amplify the disturbance in
the film shape which leads to the film rupture. When
surfactant is present in the system at low concentra-
tion it can cause a destabilising effect due to Maran-
goni instability. On the contrary, at high surfactant
concentration (close or above the critical micelles con-
centration) the surfactant can have a stabilising effect

tCorresponding author.

due to the suppression of capillary waves at the film
surfaces. For detailed literature review of the con-
tributions to the stability analysis of thin liquid films
see Danov et al. (1997a, b).

In this study we deal with the problem of the
stability of evaporating two-layered liquid films that
contain a dissolved surfactant. The film is attached to
a heated solid substrate. Closely related to the present
study is the work by Danov et al. (1997a) where the
linear stability of a single evaporating film on a heated
solid substrate has been considered. The presence of
surfactant has also been taken into account.

In Part I of the present study (cf. Danov et al.,
1997b), we extended the model of Danov et al. (1997a)
by taking into account the presence of a second liquid
layer. We investigated the evolution of long waves on
both liquid interfaces by using lubrication approxi-
mation, and we derived a system of three partial
differential equations governing the evolution of the
disturbances of the film shape and of the surfactant
concentration. Due to the large number of dimension-
less groups appearing in the problem, it is practically
impossible to perform a complete parametric study in
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Fig. 1. The physical configuration of the two-layered film on a heated plate.

the general case, moreover, no physical system corres-
ponds to each combination of dimensionless numbers.
In general, there are two typical configurations of
two-layered films. These are the cases of water-light oil
film and heavy oil—water film that often appear in
practice. For this reason we split the numerical analy-
sis of the stability of two-layered films in two separate
papers, considering there particular physical systems.

Here, in Part II of the study, we perform a linear
stability analysis of the system of evaporating
water—hexane film in the presence of surfactant, pre-
sented in Danov et al. (1997b). Non-linear stability
analysis of the complementary case of tetra-
chlorethane—water film is a subject of Part III of this
study (cf. Paunov et al., 1997).

2. CONFIGURATION AND BASIC STATE OF THE SYSTEM

Let us consider an evaporating two-layered film in
the presence of surfactant—see Fig. 1. In Danov et al.
(1997b) we derived the system of three partial differen-
tial equation [eqs (44), (45) and (59) therein] gov-
erning the evolution of the profiles of the two layers
and the surfactant concentration. Here we will lin-
earise the governing equations for small deviation
from the basic state (without fluctuations). All the
notations and the dimensionless groups appearing
below are defined in a similar way as in Danov et al.
(1997b), which allows one to keep them fixed during
the process of evaporation, when both the temperature
and the surfactant concentration change. The numerical
analysis of the dimensionless groups for the physical
parameters of the same system (PVC/water/hexane/va-
pour film) is performed therein. Here we work with the
same values of the physical parameters and of the
respective dimensionless numbers. In this case, the
expressions for van der Waals disjoining pressures,
%

1
and %

2
, in the two liquid films read
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where h
-08

and h
0
are the local thicknesses of the water

and hexane films, respectively. As calculated in Danov
et al. (1997b), the values of the Hamaker constants
for that system are A

1
"5.9]10~21 J, A

2
"5.2]

10~21 J, and A
i
"!9.3]10~21 J. One sees that for

small film thickness the van der Waals disjoining
pressure in both liquid films is attractive and can
amplify the film shape fluctuations. For an illustration
we have plotted in Figs 2(a) and (b) the van der Waals
disjoining pressure in the water and in the hexane
film, respectively. The different curves correspond to
different thicknesses of the other liquid film. It is
worth mentioning that the second term in eq. (1) is
repulsive, but it dominates only at very large film
thickness where the disjoining pressure effect is negli-
gible. Hence the surface forces in this case can only
destabilise the two-layered film.

We assume that the unperturbed state of the film
corresponds to flat film interfaces of time-dependent
thickness of the evaporating hexane film, H

2,b
(dimen-

sionless), and time-independent thickness of the water
film, H

1,b
"h

12
. Here h

12
is the initial thickness ratio

of the water and hexane film. The basic state quantit-
ies will be denoted further by a subscript b. Then the
solution of the compatibility equations (44) and (45)
derived in Danov et al. (1997b) can be written in the
following form:
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The time for which zero thickness of the evaporating
layer is achieved without any fluctuations is called
disappearance time t

d
in the literature; it corresponds

to the dimensionless time, q"1(q,t/t
d
). Here K is

a dimensionless number, characterising the degree of
non-equilibrium at the evaporating interface (see
Danov et al., 1997a for details); j

21
is the ratio of the

two films thermal conductivities. As a rule, due to
instabilities the evaporating thin liquid films rupture
at a time earlier than t

d
. The basic state of the mass

flux [see eq. (2.4) in Danov et al. (1997b)] at the
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Fig. 2. Dependence of the dimensional van der Waals disjoining pressure on the film thickness: (a) for the
water film; the different curves correspond to different thicknesses, h

0
, of the upper (hexane) film; (b) for the

hexane film, the different curves correspond to different thicknesses, h
-08

, of the lower (water) film. The
values of the Hamaker constants are as follows: A

1
"5.9]10~21 J, A

2
"5.2]10~21 J, and

A
i
"!9.3]10~21 J.

interface corresponding to our eq. (2) reads
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The behaviour of the basic state for various degrees of
non-equilibrium evaporation is principally the same
as in the absence of the second layer. The presence of
the second layer increases K to K#h

12
j
21

(cf.
Danov et al., 1997a). From eq. (3) it follows that the
mass flux increases in time, in the first stage not so
pronounced, but with decreasing film thickness the
intensity of evaporation increases significantly. The

presence of the second layer decreases the mass loss
and it can be negligible for K;h

12
j
21

.
The effect of the second layer on the behaviour of

the basic state thickness of the hexane film (for various
thicknesses of the water film) is illustrated in Fig. 3.
The increase in water film thickness decreases the
disappearance velocity and the evaporating film
thickness changes slowly in a real dimensionless time
tJ

T
¸/(o

2
h
0
). Hence, for a given constant degree of

non-equilibrium, the increase of the thermal capacity
of the layer between the solid substrate and evaporat-
ing film prevents the evaporation due to the decrease
of the evaporation mass flux.

From eq. (59) in Danov et al. (1997b) we derive
the basic state for the dimensionless adsorptions
G

1,b
and G

2,b
, and bulk concentration, C

b
, of
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Fig. 3. Dependence of the dimensionless basic state hexane film thickness for h
0
"10 nm and different

water film thicknesses h
w
"10, 100 nm, 1, 10 km vs. the real dimensionless time tJ
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Here Z
2

is the surfactant capacity number of the
hexane layer; and !

12
is the ratio of the surfactant

adsorption at the two liquid interfaces when the bulk
concentration is equal to CMC (see Danov et al.,
1997b for details). Equation (4) expresses the conser-
vation of the total surfactant mass in the film. Due to
the evaporation the thickness of the upper layer de-
creases, the concentration of surfactant increases in
both layers and hence the adsorption increases. If the
initial amount of the surfactant is large enough, then
in the liquid phase of smaller CMC the final value of
adsorption will be achieved earlier. Then, the surfac-
tant transfer to this phase will not increase the adsorp-
tion at the interfaces any more and all the incoming
surfactant will form micelles. In this case, the mobility
of interfaces due to the process of evaporation can
change in a complicated way, depending on the ratio
of CMC values of the surfactant in the two liquid
phases and the surfactant distribution coefficient m

21
.

3. LINEAR STABILITY ANALYSIS

To perform a linear analysis of the governing sys-
tem of equations derived in the first part of this study
(cf. Danov et al., 1997b), we introduce small fluctu-
ations in the dimensionless pressure P

i
, the interfacial

velocity U
i
, the shape H

i
, the adsorption G

i
, and the

surfactant concentration C. (Here i is equal to 1 for
the lower phase and i is equal to 2 for the upper
phase.) For the sake of simplicity, we consider only
planar surface waves with a dimensionless wave num-
ber k and lateral wave functions cos(kx) and sin(kx).
The perturbed physical parameters of the problem

can be put in the form
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where the perturbation amplitudes are denoted by
subscript f ; they depend only on the dimensionless
time q. The perturbation amplitude H

2,f
of the shape

of the evaporating surface is defined relative to the
layer thickness H

2,b
of the basic state, which decreases

in time due to evaporation. The corresponding per-
turbation amplitude H

1,f
of the lower liquid layer

thickness is proportional to the constant h
12

. The
rupture time of the film is defined as the time at which
one of the perturbation amplitudes of the layer thick-
ness becomes equal to 1.

Note that H
1,f

and H
2,f

can have both different
and equal signs which corresponds to different coup-
ling of the instability modes of the two interfaces. The
case H

1,f
H

2,f
(0 corresponds to the so-called

squeezing mode, whilst in the opposite case
H

1,f
H

2,f
'0 defines the bending mode. It is known

that the squeezing mode disturbances for symmetric
films give a larger contribution to the film instability
than the bending mode disturbances (cf. Edwards
et al., 1991). This is a new element which is not present
in the case of single film on a solid substrate (cf.
Danov et al., 1997a).

The linearised form of normal stress boundary con-
ditions (52) and (53) in Danov et al. (1997b) give an
explicit relation between the pressure amplitudes to
the shape amplitudes
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. (6)

Using eq. (5) the tangential stress boundary condi-
tions presented by eqs (55) and (57) of Danov et al.
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(1997b) can be transformed into a linear relation be-
tween the velocity amplitudes and shape and concen-
tration amplitudes:
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Here and in eq. (6) the coefficients depend on the basic
state [see Appendix A for details, eqs (A1)—(A5)].

The linearisation of the dimensionless Langmuir
isotherm (49) in Danov et al. (1997b) leads to the
simple linear relation between the fluctuations of
the adsorption and concentration G
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The linearised form of the compatibility equations
and the surfactant mass balance equation in the gen-
eral case [see eqs (44), (45) and (59) in Danov et al.
(1997b)] can be presented as follows:
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where the fluctuation in the total amount of surfac-
tant S

f
is defined as
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The explicit expressions for the coefficients a
ij

(i, j"1, 2, 3) are given in Appendix A [see eqs
(A6)—(A14)]. Equations (9)—(11) form a system of
three ordinary differential equations (ODE) govern-
ing the evolution of the perturbations in the film
profile and in the surfactant concentration.

We chose the following initial conditions for the
system of eqs (9)—(11):

(i) symmetric squeezing mode with amplitude
e compared to the initial hexane film thickness

H
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e
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, H
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(ii) anti-symmetric bending mode with amplitude
e compared to the initial hexane film thickness
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(iii) symmetric squeezing mode with amplitude
e compared to the initial water film thickness

H
1,f

(0)"!

e
2

, H
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(15)

(iv) anti-symmetric bending mode with amplitude
e compared to the initial water film thickness

H
1,f

(0)"e . H
2,f

(0)"0. (16)

Here and hereafter we use e"0.1 in our numerical
calculations.

The initial condition for the fluctuation in S
f

is
arbitrary from mathematical viewpoint. Physically,
closer to the reality is the following assumption: the
fluctuations in the total amount of species at the
initial time are so fast, that the fluctuations in the bulk
concentration at the initial moment is zero. Therefore,
they are described by the fluctuations in the basic
state for the adsorption and bulk concentration [see
eq. (4)] and
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The rupture time is defined as the time for which
one of the films will rupture for a given wave number
k. In all cases (i)— (iv) of initial conditions for inter-
facial shape and wave numbers k, we compute the
rupture time t

r
. The smallest value of t

r
gives the life

time of the system t
#3

, the corresponding dimension-
less critical film thickness H

2,#3
and the dimensionless

critical wave number k
#3

. In addition, we provide
information which of the films has ruptured first.

4. NUMERICAL RESULTS FOR WATER–HEXANE FILM

We will consider here the particular system de-
scribed in Section 5 of Danov et al. (1997b), namely
a two-layered water—hexane film sandwiched between
a PVC substrate and hexane vapour. When the sur-
factant concentration is close or above CMC the
surface elasticity and viscosity are high enough to
prevent the tangential mobility of water—hexane inter-
face and º

1,f
"0. This is the case that will be investi-

gated in Section 4.1 below. For the liquid phases pure
from surfactant, the interfacial velocities depend only
on the pressure distribution (see Section 4.2). We will
illustrate three different cases:

(A) dependence of the critical parameters on the
initial hexane film thickness h

0
and on the temper-

ature differences *¹ at given constant thickness h
w

of
the water film (see Figs 4 and 7);

(B) dependence of the critical parameters on the
initial film thicknesses and *¹ for h

0
"h

w
(see Figs 5

and 8);
(C) dependence of the critical parameters on the

initial hexane film thickness for very thin water layer
h
w
"5 nm (see Figs 6 and 9).

The influence of surfactant at intermediate concen-
trations is illustrated in Section 4.3 below.

4.1. ¹angentially immobile water—hexane interface
In the case, when the surfactant concentrations are

above or close to CMC, º
1,f

"0. In this case, the
hydrodynamic problem decouples from the surfactant
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Fig. 4. Dependence of (a) the dimensionless critical hexane film thickness and (b) the dimensionless critical
wave number for h

w
"100 nm on the initial hexane film thickness h

0
. The temperature difference

*¹"0.01, 0.1, 1, and 10°C. The water—hexane interface is immobile.

mass balance (cf. Edwards et al., 1991) and the linear
system for the perturbations (9)—(11) reduces to a sys-
tem of only two ODE for the amplitudes of the film
shape fluctuations, as described in Appendix A [see
eqs (A15)— (A17)]. For the numerical calculation of
the corresponding initial-value problem we used the
sixth-order Runge—Kutta numerical method with
adaptive time step (IMSL, program DVERK) and
numerical procedures for stiff systems of differential
equations (cf. Press et al., 1992). Unfortunately, these
methods work with good precision only in the cases,
when the coefficients are not much different in magni-
tude. For example, when the thicknesses are
h
0
"5 nm and h

w
"20 km the coefficients are rather

different, e.g. a
11
J109, a

12
J106, a

21
J103 and

a
22
J1, and both numerical methods do not work at

all. That is why we developed a new numerical pro-
cedure, which is described in the Appendix B.

In both cases (A) and (B) [see Figs 4(a) and 5(a)]
when the initial thickness is greater than 20 nm,
a greater initial thickness results in a greater dimen-
sionless critical thickness. For temperature differences

smaller than 1°C there is, in principle, no significant
influence of *¹ on the critical thickness, but the film is
more stable than the corresponding one at
*¹"10°C. For these thicknesses, the van der Waals
effect is negligible. The temperature difference influen-
ces the critical wavelength for all investigated values
[see Figs 4(b) and 5(b)]. The magnitude of the dimen-
sionless critical wave number is in the order of unity
and it can increase (for *¹'1°C) or decrease (for
*¹(1°C) with increasing thickness. When the
hexane film is thinner than 20 nm the influence of the
molecular forces is significant for all temperature dif-
ferences and it increases with decreasing of the tem-
perature differences more than five times [see
Figs 4(a) and 5(a)], i.e. with increasing of the disap-
pearance time of the film. The van der Waals forces
are stronger in this case, which leads to the decrease of
the critical wavelength [see Figs 4(b) and 5(b)]. The
higher temperature differences suppress the van der
Waals forces. Finally, it is interesting to note that for
all cases (A) and (B) the symmetric squeezing mode
promotes the rupturing of the hexane film. It is not
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Fig. 5. Dependence of (a) the dimensionless critical hexane film thickness and (b) the dimensionless critical
wave number on the initial film thickness. The initial film thicknesses of the water and hexane films are
equal. The temperature difference *¹ is taken to be 0.01, 0.1, 1, and 10°C. The water—hexane interface is

immobile.

a rule, because in the case (C) for very thin water layer,
the antisymmetric bending mode is the time limiting
factor.

When the water film is very thin (thinner than
20 nm) and the hexane film is thick enough (thicker
than 7 km) then the water film will rupture first due to
the van der Waals attraction forces. In the case, when
the water film will rupture, the dimensionless hexane
film thickness increases from 0.3 to 0.95 with increase
of the hexane film thickness to 20 km (see Fig. 6). The
critical wavelengths are much shorter compared with
the other cases. The decreasing of the temperature
difference makes the effect more pronounced.

4.2. Pure water—hexane interface
When the liquid phases are surfactant-free, the in-

terfacial velocity depends only on the pressure distri-
bution. The linear system for the perturbations
(9)—(11) reduces again to a system of two ODE [see
Appendix A for details, eqs (A18)— (A20)]. For numer-
ical calculation, we use the corresponding initial

conditions (13)—(16) and numerical method described
in the Appendix B.

There are two factors acting in an opposite way
compared to the case of tangentially immobile
hexane—water interface: the higher surface tension
stabilises the film; and due to the motion of the inter-
face and the lateral temperature gradients the thermal
Marangoni effect decreases the critical wave number,
it increases the critical film thickness, and it acts
destabilizing on the evaporating film.

In cases (A) and (B), the quantitative explanation of
these effects is presented by Figs 7 and 8, where the
critical thickness is illustrated as a function of the
initial hexane film thickness for temperature differ-
ences *¹"0.01, 0.1, 1, and 10°C. In contrast to the
case of tangentially immobile hexane—water interface
for large initial film thicknesses and sufficiently large
temperature differences the thermal Marangoni effect
produces additional destabilisation of the film, in-
creasing the critical hexane film thickness. But due to
the mobility of the hexane—vapour interface (the
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Fig. 6. Dependence of the dimensionless critical hexane film thickness and the critical wave number on the
initial hexane film thickness h

0
. The initial water film thickness is small, h

w
"5 nm. The temperature

difference is *¹"10°C. The interface water—hexane is immobile.

Fig. 7. Dependence of the dimensionless critical hexane film thickness on the initial film thickness h
0

for
surfactant-free liquid layers. The initial water film thickness is h

w
"100 nm and the temperature difference

*¹ is 0.01, 0.1, 1, and 10°C.

Fig. 8. Dependence of the dimensionless critical hexane film thickness on the initial film thickness for
surfactant-free phases. The initial film thicknesses of the water and hexane phases are equal. The temper-

ature difference *¹ is taken to be 0.01, 0.1, 1, and 10°C.
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Fig. 9. Dependence of the dimensionless critical hexane film thickness and the critical wave number on the
initial hexane film thickness h

0
for surfactant-free film phases. The initial water film thickness is small

h
w
"5 nm and the temperature difference is *¹"10°C.

surfactant cannot adsorb at this interface) this effect is
not so significant as in the case of a single evaporating
film (see Danov et al., 1997a). For hexane film thick-
ness smaller than 20 nm, where the van der Waals
attraction plays an important role for the film stabil-
ity, the interfacial mobility increases the critical thick-
ness. The 2 times higher interfacial tension cannot
prevent the evaporation, Marangoni and van der
Waals instabilities, which leads to smaller film lifetime
compared to the case of high surfactant concentra-
tion. The comparison between Figs 4(a) and 8 (case A)
for h

0
"5 nm and *¹"0.01°C shows an increase of

the critical thickness from about 0.5 to 0.58. It is
interesting to note that the comparison between
Figs 5(a) and 8 (case B) does not lead to the same
conclusion. In fact, the critical thicknesses for
h
0
"5 nm and *¹"0.01°C [Fig. 5(a)] and for

h
0
"h

w
"5 nm and *¹"0.01°C (Fig. 8) are princi-

pally the same. This effect takes place because the
thermal capacity of the 100 nm water layer is much
higher than that of the 5 nm water film. Therefore, the
evaporation intensity is lower and it cannot prevent
the van der Waals instability. We observed that for
large temperature difference at small thickness h

0
the

longer waves destabilise the film contrary to the case
of large thicknesses, where the critical wavelength is
smaller [see Fig. 4(b)]. With decreasing temperature
difference this affects directly opposite and the wave
numbers decrease monotonically with increasing of
the initial film thickness.

Our computations showed that for surfactant-free
films in both cases (A) and (B), the symmetric squeez-
ing mode promotes the rupturing of the hexane film.

In the case (C) when the water film is very thin
(thinner than 20 nm) and the hexane film is thick
enough (thicker than 7 km) than the water film will
also rupture first due to the van der Waals attraction
forces as in Section 4.1. When the water film ruptures
(Fig. 9), the dimensionless hexane film thickness is

significantly higher than that in Fig. 6: it increases
from 0.3 to 0.78 for h

0
"7 km and from 0.93 to 0.98

for the high initial hexane film thickness 20 km. The
critical waves are longer than in the case of high
surfactant concentration. The decrease of the temper-
ature difference makes the effect more pronounced.
The anti-symmetric bending mode is again the time
limiting factor.

4.3. Influence of surfactant on the stability of P/¼/
H/» films

In the case when the initial surfactant concentra-
tion is below critical micelles concentration, it is ne-
cessary to solve the full set of three equations (9)—(11)
in order to calculate the film rupture time. For this
purpose, we used the numerical method described in
Appendix B. The initial conditions we use are given by
eqs (13)—(14) and (17).

In order to illustrate the influence of surfactants on
the stability of the evaporating hexane—water film we
calculate the critical parameters in the case of a thin
hexane film, h

0
"5 nm, and the initial water layer

thickness is 100 nm. The temperature differences were
0.01, 0.1, 1, and 10°C. We chose two different types of
surfactant: low molecular weight surfactant [see Figs
10(a) and (b)] and high molecular weight surfactant
[see Figs 10(c) and (d)]. It is shown that the increase
of the temperature difference suppresses the influence
of surfactant and there is no significant change of the
film lifetime for all concentrations and types of surfac-
tants. When the temperature difference is smaller than
1°C the transition from a fully mobile to an immobile
hexane—water interface is well defined. In the
transition zone, the critical thickness drops from
values of surfactant-free layers to values of tangen-
tially immobile interfaces. The solidification of the
hexane—water interface for ionic surfactant is ob-
served at an initial adsorption about 10~3, since for
high molecular weight surfactants it is found at an
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Fig. 10. Dependence of (a) the dimensionless critical hexane film thickness and (b) the dimensionless critical
wave number on the initial adsorption of typical ionic surfactant. Dependence of (c) the dimensionless
critical hexane film thickness and (d) the dimensionless critical wave number on the initial adsorption of
typical high molecular weight surfactant. The initial film thicknesses are h

0
"5 nm and h

w
"100 nm. The

temperature difference *¹ is taken to be 0.01, 0.1, 1, and 10°C.

adsorption of about 10~6, being three orders of mag-
nitude lower [compare Figs 10(a) and (c)]. Therefore,
the efficiency of high molecular weight surfactants is
much higher than of the ionic one. Figures 10(b) and
(d) show the decrease of the critical wavelength with
increasing of the surfactant concentration for temper-
ature differences lower than 1°C, where the surfactant
affects the stability. The smaller the temperature dif-
ference is the higher the critical thickness is and there-
fore the van der Waals molecular forces are time
limiting for the stability. For *¹"10°C the evapor-
ation and thermal Marangoni instabilities are the
dominating factors.

When the initial film thicknesses are equal and not
small, h

0
"h

w
"100 nm, the change of the critical

film thickness is not so pronounced as in the previous
case [compare Figs 10(a) and (c) and Figs 11(a) and
(b)]. The solidification of the interface takes place at
an adsorption one order of magnitude higher. It is
a reasonable effect because the surfactants in our

computations are chosen to be soluble in the water
phase and their solubility in the hexane phase is
8 times lower. Therefore, the thicker hexane layer is
a greater reservoir for the surfactant from the water
phase and the solidification takes place at higher
adsorption. The critical wavelengths have an opposite
behaviour as in the previous case: the increase of the
initial adsorption increases the critical wavelength.
The critical thickness also changes in a different way:
the increase of the temperature difference decreases
slowly the relative stability of the films. Therefore, the
evaporation and thermal Marangoni instabilities
dominate the van der Waals destabilising effect.

Using this model and the numerical scheme, one
can study many different cases. For example, when the
water film is on the oil film and the surfactants are
soluble in the different phases (see for details Paunov
et al., 1997). On the other hand, the van der Waals
forces can be both positive or negative and can have
stabilising or destabilising effects. Moreover, the
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Fig. 10. (Continued).

influence of electrostatic, steric and other specific in-
teraction is necessary to be taken into account for
a given system. This makes the problem more com-
plex and depending on the concrete physical system.

5. CONCLUSIONS

Linear stability analysis of evaporating two-layered
liquid film on a heated solid substrate in the presence
of surfactant is performed. The model is based on the
general solution previously obtained by Danov et al.
(1997b) using lubrication approximation. Both the
instabilities due to thermal and surfactant Marangoni
effects, coupled by the solvent mass loss are con-
sidered. The effect of the van der Waals surface force is
also taken into account. The main results of this study
are the following:

f Linear analysis of the stability of a particular
system (water—hexane film upon a horizontal PVC
substrate) against fluctuations has been performed.
Three different cases are considered: the surfactant-
free liquid layers, tangentially immobile water—

hexane interface (a lot of surfactant), and the case of
intermediate surfactant concentrations.

f We investigate the influence of different factors
on the film stability: the tangential mobility of the film
surfaces; the evaporation intensity; the initial thick-
nesses of the two layers, and the surfactant adsorp-
tion.

f The results from the linear analysis of the stabil-
ity of water—hexane film show that in most cases the
film shape fluctuations in squeezing mode give smaller
rupture time than these in bending mode. Only for the
case of ultra-thin water film (thinner than 20 nm) and
thick hexane film (thicker than 7 km), the bending
mode leads to rupture of the water film.

f The presence of the second layer increase the film
stability because of the increased thermal capacity of
the whole film which decreases the relative evapor-
ation intensity and suppresses instability due to the
solvent mass loss.

f Two factors govern the film stability in the case of
tangentially immobile interfaces: the higher surface
tension stabilises the film, and due to the motion of
interface and the lateral temperature gradients the
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Fig. 11. Dependence of the dimensionless critical hexane film thickness on the initial adsorption of
a typical (a) low molecular weight surfactant and (b) high molecular weight surfactant. The initial film
thicknesses are equal and h

w
"h

0
"100 nm. The temperature difference *¹ is taken to be 0.01, 0.1, 1, and

10°C.

thermal Marangoni effect decreases the critical wave
number, increases the critical film thickness, and it
acts destabilising on the evaporating film.

f In the case of surfactant free film, for large initial
film thicknesses and large temperature difference the
thermal Marangoni effects produces additional de-
stabilisation of the film, increasing the critical hexane
film thickness. However, this effect is not as significant
as in the case of single evaporating film [see Danov
et al. 1997a)] due to the mobility of the hexane—va-
pour interface.

f For intensive evaporation the influence of surfac-
tant is not so pronounced but when the temperature
difference is smaller than 1°C the transition from
a fully mobile to an immobile hexane—water inter-
face is well established. The solidification of the
hexane—water interface for high molecular weight sur-
factant is observed at three orders of magnitude lower
adsorption than that of the ionic one.

We believe that this study can help for a better
understanding of the physics of the stability of multi-

layered films and can be useful for determining of the
main factors that influence the film behaviour in par-
ticular systems.
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APPENDIX A. DERIVATION OF THE LINEAR PROBLEM

EVOLUTION EQUATIONS

By substituting eq. (5) into the dimensionless form of the
normal stress balance, [eqs (52) and (53) in Danov et al.
(1997b)] and linearisation around the basic state (see Sec-
tion 2) we obtain eq. (6) where the coefficients are as follows:
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Besides, we use eq. (5) to linearise the tangential stress bal-
ance [eqs (55) and (57) in Danov et al. (1997b)]. Thus, we
obtain eq. (7), where the respective coefficients are
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Here, for the sake of brevity, we have introduced the nota-
tions:
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By substituting of eqs (5)—(7) and (12) into the governing
equations, [see eqs (44), (45) and (59) in Danov et al. (1997b)]
and keeping only the leading terms we arrive at the system of
ordinary differential equations (9)— (11), where the coeffi-
cients are defined as follows:
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For the case of a tangentially immobile water—hexane
interface and a fully mobile hexane—vapour surface the linear
stability problem reduces to a system of two ordinary differ-
ential equations (9) and (10) where the corresponding expres-
sions for the coefficients a

ij
are
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The definitions of all others coefficients are the same as in the
general case, eqs (A1)—(A5), with the setting of G

1,b
"1 and

G
2,b

"0.
In the case of surfactant-free liquid phases, the linear

stability problem reduces again to a system of two ODE (9)
and (10) where the coefficients a

ij
have the following form:
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The definitions of all coefficients in eqs (A1)—(A5) are the
same as in the general case with the concentration of surfac-
tant and adsorption taken to be zero.

APPENDIX B. NUMERICAL METHOD FOR THE

INITIAL -VALUE PROBLEM

We consider a linear system of n differential equations
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The exact solution of the problem (B1)— (B2) can be written
in the matrix-exponential form
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where the vector of solution is f and the matrix of coefficients
is A. The integral appearing in eq. (B3) can be replaced by the
trapezoidal rule
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with precision *t3. The approximate solution (B4) is the
solution of the corresponding system of differential equa-
tions with constant coefficients a0
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In the case of a system of two differential equations the
characteristic values of the matrix u
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can be cal-

culated from the expression
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In our computation the characteristic values are real and
different. Therefore, the approximate solution at t

0
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In the case of a system of three differential equations the
characteristic values are calculated as a solution of the equa-
tion

u3#au2#bu#c"0 (B7)

where the coefficients a, b, and c are defined by the following
expressions:
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c"!det(a0
ik
).

The solution of (B7) we can represent using the Cardano
formulas (cf. Korn and Korn, 1968)
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In our case the characteristic values are real and the approx-
imate solution (B4) can be written as follows: (i) for different
characteristic values
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and (iii) if all characteristic values are equal to u
1

then
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where (k"1, 2, 3). The constants, appearing in formulas
(B10) are the solution of the linear systems of initial condi-
tions
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The right-hand side of eq. (B11) depends on the correspond-
ing initial value of the problem and
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The matrix B of the system (B11) is defined, depending on the
type of characteristic values:

(i) for different characteristic values
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(iii) if all characteristic values are equal to u
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In principle, this algorithm can be used for systems with
n differential equations, but the difficulties lie in the compu-
tation of the exact solution.
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