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Abstract—In this study we consider the stability of horizontal two-layered liquid film attached
to a heated solid substrate. The film can contain surfactant that is soluble in both liquid phases.
The evaporation of solvent from the upper film is also taken into account. Thus, the two-layered
film can exhibit both thermocapillary and Marangoni instabilities coupled with the effect of
solvent mass loss. The problem is solved in the framework of the lubrication approximation.
We derive a system of partial differential equations describing the evolution of long-wave
disturbances in the presence of surfactant and evaporation. Appropriate rescaling is proposed
and a numerical analysis of the dimensionless groups for particular system of water-light oil
film upon a horizontal PVC plate is performed. The model allows one to investigate the role of
different factors on the film stability: the surfactant concentration and distribution coefficient,
the critical concentrations of micellization, the surface viscosities, the adsorption isotherms of
the surfactant at the liquid surfaces and the intensity of evaporation. Based on this model the
full linear analysis of the stability is given in Part II [see Danov et al. (1997b) Chem. Engng Sci.,
submitted]. The non-linear effects are also taken into account in Part III [see Paunov et al.
(1997) Chem. Engng Sci. submitted], where these effects are studied numerically for a particular
case of PVC/tetrachlorethane/water/vapour system. ( 1998 Elsevier Science Ltd. All rights
reserved.
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1. INTRODUCTION

The problem for the stability of thin liquid films
represents both scientific and technological interest.
Practically, most of the industrial application of sur-
factants include thin films in foams, emulsions, wet-
ting and coating films (cf. Adamson, 1976;
Kralchevsky et al., 1996). The mechanism of arising of
instabilities in thin liquid films can be rather different
depending on the particular factors. In general, due to
thermal or other fluctuations the film surfaces are
disturbed. When the film is thin enough, the attractive
disjoining pressure can amplify the fluctuation and
can cause the film rupture (see Maldarelli and
Jain, 1988). The liquid interfaces can be additionally
destabilised by processes like evaporation or conden-

sation of vapour at the interface (cf. Hatziavramidis,
1992).

Levich (1962) has shown that when surfactant is
present at the interface the surface waves are effec-
tively suppressed due to the elastic properties of the
deformed surfactant monolayer. Prosperetti and Ples-
set (1984) demonstrate that for a single liquid interface
the high intensive evaporation can strongly increase
the interfacial instabilities with growth times less than a
millisecond.

There are numerous contributions to the stability
analysis of thin liquid films in the literature. Linear
stability analysis of the fluctuations of the thickness of
stationary quasi-equilibrium plane-parallel thin
liquid film between two different phases is performed
by Maldarelli and Jain (1988). The authors derived
a dispersion relation which includes the influence of
the van der Waals and electrostatic interactions and
Marangoni effect due to the surfactant redistribution.
Ivanov and Dimitrov (1988) investigated the stability
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of a thin foam plane-parallel film during the process of
its drainage.

Edwards et al. (1991) performed linear stability
analysis of surfactant stabilised wetting film. They
establish that the surface diffusivity and viscosity,
Gibbs elasticity and instantaneous adsorption are
more important factors than the value of the surface
tension itself. The inclusion of non-linear effects may
be of particular significance to the predicted rupture
time (cf. Williams and Davis, 1982).

Non-linear stability problems of surfactant free
evaporating/condensing thin liquid films have been
reported by Davis (1987). Burelbach et al. (1988) and
Joo et al. (1991). Their results show that both the
evaporation and condensation amplify the instabili-
ties at the film surfaces. Danov et al. (1997a) extended
the work of Burelbach et al. (1988) for the case of
surfactant containing wetting film in the presence of
evaporation. These authors investigate the influence
of the surface viscosity and elasticity, the surfactant
concentration, bulk and surface diffusivity of surfac-
tant and the intensity of evaporation on the film
stability. Hatziavramidis (1992) reports results for the
influence of surfactant on the film stability in the case
when the surfactant adsorption is kinetically con-
trolled. Stability analysis of down-flowing multilayer
liquid films has been performed by Kao (1968) and
Kliakhandler and Sivashinsky (1995). However, the
possible effects due to the presence of surfactant and
evaporation of solvent have not been considered. For
detailed review of the literature on the stability of
coating films we recommend Burelbach et al. (1988)
and Danov et al. (1997a).

In this study we deal with the problem of the
stability of an evaporating two-layered liquid film
that contains soluble surfactant. The film is attached
to a heated solid substrate. In Section 2 the model of
Danov et al. (1997a) is extended by taking into ac-
count the presence of a second liquid layer. We inves-
tigate the evolution of long waves on the both liquid
interfaces by using lubrication approximation. Thus,
the evolution equations for the film thicknesses and
the surfactant concentration are derived and re-scaled
(Sections 3 and 4). The respective dimensionless num-
bers that appear in the problem are defined in a sim-
ilar way as in the paper of Danov et al. (1997a), which
allows one to keep them fixed during the process of
evaporation, when both the temperature and the sur-
factant concentration change. In Section 5 we perform
numerical analysis of the dimensionless groups for
particular system: water-light oil film on a horizontal
PVC substrate. Note that in the paper of Burelbach
et al. (1988) and related works the authors performed
parametric studies of the film stability by varying the
values of the dimensionless groups. However, in our
case the variation of some dimensionless numbers at
fixed values of the other ones seems to be incorrect,
because there is no real physical system that corres-
ponds exactly to each combination of dimensionless
numbers. In order to avoid this, we perform a para-
metric study of the stability of particular systems by

varying their physical parameters. In this respect, we
present the numerical results for the stability of par-
ticular systems with evaporation and surfactant in the
next two parts of this study which are separate papers.
The linear stability analysis of water-light oil film is
a subject of the second part of this study [cf. Danov
et al. (1997b)]. Non-linear analysis of the stability of
a two-layered liquid film of heavy oil and water is
performed in the third part (cf. Paunov et al., 1997).
We believe that this work will contribute to a better
understanding of the processes of appearing and
growing of instabilities in multilayered films in real
conditions and to clarify the role of the surfactants in
these phenomena.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

In this study we consider the problem for the stabil-
ity of evaporating two-layered film attached to an
uniformly heated wall. The film is formed from two
completely immiscible phases (1 and 2) and contains
surfactant which is soluble in both liquid phases. The
upper film is evaporating, so there is solvent mass loss,
momentum transfer, and energy consumption at the
vapour—liquid interface. For the sake of simplicity, we
will accept that the density and the bulk viscosity of
the phases do not change due to the process of evap-
oration. We will consider only films of thickness less
than 20 km, which allows us to neglect the gravity
effects (cf. Danov et al., 1997a). When the films are
thin enough, the interaction between the film interfa-
ces affects strongly the film stability and has to be
taken into account.

In general, lateral variations in the film surface
tension can be induced by both fluctuations in the
surfactant adsorption and the temperature due to
evaporation. The resulting Marangoni instability
causes flow in the film core and perturbs both the
surfactant and temperature distribution (cf. Levich,
1962). The physical picture is complicated by the
additional contribution of the disjoining pressure in
the film in the enhancing (or quenching) of the film
shape fluctuation. That is why the correct analysis of
the film shape fluctuations requires the simultaneous
consideration of the heat and mass transfer as well as
the flow induced in the film.

2.1. ¹ransport equations in the bulk phases
For incompressible surfactant solutions the trans-

port equations of mass, momentum, energy, and spe-
cies in the bulk phases are (cf. Levich, 1962; Landau
and Lifshitz, 1984)
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Fig. 1. The physical configuration of the two-layered film on
a heated plate.

Here the subscript k"1, 2 corresponds to the lower
and upper liquid layer (see Fig. 1), t the time, + the
spatial gradient operator, o

k
, ¹

k
and c

k
are the liquid

density, temperature and surfactant concentration,
v
k

the average mass velocity, P
k

the liquid pressure
tensor, a

k
the thermal diffusivity of the solution, and

D
k
the surfactant bulk diffusion coefficient. Below we

assume that a
k

and D
k

are constant during the film
thinning and the solutions can be treated as incom-
pressible Newtonian fluids. Than the pressure tensor
P
k
reads

P
k
"!p

k
I#T

k
, T

k
"g

k
[+v

k
#(+v

k
)T]. (3)

In eq. (3) p
k

is the pressure in the liquid, I the unit
operator, T

k
the viscous stress tensor, the superscript

T denotes transposition, and the dynamic viscosity g
k

will be considered constant.

2.2. Boundary conditions
In order to close the system of eqs (1)—(3), in this

section we consider the boundary conditions at the
heated wall, z"0, at the liquid—liquid interface,
z"h

1
, and at the liquid—vapour interface, z"h

2
(see

Fig. 1). The respective constitutive relations are dis-
cussed below.

At the film boundary z"0 (see Fig. 1), we assume
no relative motion of the wall, constant temperature
¹

h
and no specific adsorption, which is equivalent to

zero surfactant diffusion flux. The boundary condi-
tions at z"0 are
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Across the film—vapour interface z"h
2
, we require

conservation of mass, surface-excess linear mo-
mentum, energy, and interfacial species mass.
We consider the limiting case of small vapour density,
viscosity and thermal conductivity comparable to the
respective liquid layer parameters. By this way,
the problem in the vapour phase can be eliminated
and the stability problem for the film can be solved
separately [detail explanation is given by Burelbach
et al. (1988) and Danov et al. (1997a)]. Levich
(1962), Burelbach et al. (1988), Slattery (1990) and
Edwards et al. (1991) showed that in this limit the

boundary conditions simplify to
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The notation appearing in these equations is as fol-
lows: u

2
the velocity of the liquid—vapour interface, n

2
the unit normal (see Fig. 1), +

S
is the surface gradient

operator, S
2
is the interfacial pressure tensor, %

2
is the

disjoining pressure, p
v
and o

v
are the vapour pressure

and density, J is the mass flux due to the evaporation,
¸ is the specific heat of vaporisation, j

2
is the thermal

conductivity of the liquid. !
2
is the adsorption, and B

2
is the interfacial diffusion coefficient.

At the liquid—liquid interface z"h
1
, the kinematic

and dynamic boundary conditions are
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where u
1

is the velocity of the liquid—liquid interface,
n
1

is the unit normal (see Fig. 1), S
1

is the interfacial
pressure tensor, %

1
and %

2
are the disjoining pres-

sures in films 1 and 2, respectively.
The conservation of energy across the liquid—liquid

interface leads to the expression for continuity of the
heat flux, i.e.
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where ¹
1s

is the temperature at the interface.
The local change of the interfacial species mass is

compensated by the interfacial convection, by diffu-
sion and by the diffusion fluxes from both the contigu-
ous phases. Thus, the boundary condition for the
mass balance of surfactant at the liquid—liquid inter-
face reads (cf. Levich, 1962)
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at z"h
1
. In eq. (12) !

1
is the adsorption at interface

1 and B
1

is the respective surface diffusion coefficient.
In order to close the system (5)—(8), one has to write

the constitutive equations for the mass flux J, for the
latent heat of vaporisation ¸, for the disjoining pressure
%

k
, for the adsorption !

k
and for the interfacial pres-

sure tensor S
k
, (k"1, 2). The expression for the sol-

vent mass flux J is given by the kinetic theory and is
used by many authors (cf. Plesset, 1952, Palmer, 1976)
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Here ¹
2s

is the temperature of the liquid—vapour
interface, ¹

s
is the equilibrium saturation temper-

ature, J
T

and ¸ depend on the molecular weight and
on the saturation temperature.

Various surface forces which can influence the hy-
drodynamic stability of thin liquid films (van der
Waals, electrostatic, depletion, etc.)—see e.g. Mal-
darelli and Jain (1988) and Israelachvili (1992). Ac-
tually, the latter depends on the film composition, the
contamination of electrolytes, etc. Here we will inves-
tigate only the role of van der Waals interactions,
therefore the disjoining pressure in the two layers can
be written in the form
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This is the case when the film contains no electrolyte
and the surfactant is non-ionic, otherwise additional
contributions to the disjoining pressure should be
taken into account. In eq. (14), A

1
, A

2
and A

i
are the

respective complex Hamaker constants of the layers
1 and 2, defined by the expressions (cf. Israelachvili,
1992)
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Hence the Hamaker constants for solid/vacuum/
liquid is A

sk
, for vapour/vacuum/liquid is A

vk
, for

liquid/vacuum/liquid is A
kk

, where k"1, 2, for va-
pour/vacuum/solid is A

vs
, and for liquid1/vac-

uum/liquid 2 is A
12

. Note that in this case the van der
Waals pressure can have a non-monotonic behaviour
as a function of the film thickness which depends on
the values of the Hamaker constants.

Let us consider some disturbance of the interface of
an equilibrium surfactant solution. The surface dy-
namics will try to restore the equilibrium, either by
adsorption from bulk phase, or by surface convection,
driven by the gradient of interfacial tension (elasticity
of the interface) in interplay with a specific interfacial
viscous friction (the Boussinesq effect). A simple
rheological model of the interface dynamics is pro-
vided by the linear Boussinesq—Scriven constitutive
law (cf. Boussinesq, 1913; Scriven, 1960)
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where I
s, k

is the surface idemfactor, D
k
and p

k
are the

surface rate of deformation tensor and the interfacial
tension of the film interface k, respectively; g4)

k
and

g$*-
k

are the interfacial shear and dilatational viscosities
(cf. Edwards et al., 1991).

The bulk subsurface concentration c
ks

, (k"1, 2) is
related to the surfactant adsorption at the interface
via the adsorption isotherm. In addition, the inter-

facial tension is connected to the absorption by means
of the respective interfacial equation of state. Typical
for most of the surfactant solution below and close to
the critical micelles concentration are the Langmuir
(1918) isotherm and the Frumkin (1925) equation of
state
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Here !
k,=

is the saturation adsorption at the film
interface k, b

k
is a constant concentration parameter

of the adsorption isotherm, related to the energy of
adsorption per molecule, c

1s
is the subsurface concen-

tration of the surfactant from layer 1; c
2s

is the re-
spective concentration from layer 2; p

k,p
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) is the

interfacial tension of the pure solvent at temperature
¹
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, and k
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is the Boltzmann constant. In most

systems of practical interest the relative temperature
difference ¹

h
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s
is not very high and the parameters

b
k
, and !

k,=
can be considered that change insignific-

antly.
In addition, the condition for adsorption/desorp-

tion equilibrium of the surfactant
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takes place, where m
1

and m
2

are the surfactant equi-
librium constants. As a rule, m

1
Om

2
even for identi-

cal surfactants because of the different properties of
the fluid in the separate layers (cf. Adamson, 1976;
Lucassen-Reynders, 1981).

3. LUBRICATION APPROXIMATION

Let us choose the coordinate system so that the
plane z"0 to coincide with the surface of the solid
substrate (see Fig. 1). The vapour—liquid interface and
the liquid—liquid interface are located at z"h

2
(x, t)

and z"h
1
(x, t), respectively, with x being the lateral

coordinate. The lateral and vertical velocity compo-
nents are denoted by v

k, II
and w

k
, (k"1, 2). Levich

(1962), Maldarelli and Jain (1988) and Ivanov and
Dimitrov (1988) showed that the short wave perturba-
tions disappear faster due to the higher viscous dissi-
pation of energy and by capillary damping, than those
of wavelengths longer than the film thickness. There-
fore, the long wave approximation will be applied to
the solution of the problem in sequel. The general
assumptions are:
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These numbers are defined using the characteristic
time of disturbance evolution t

f
.

3.1. Solution of the problem in the bulk phases
From eq. (2) and boundary conditions (4), (7), (11)

and (13) we can calculate the leading order solution
for the temperature distribution, for the interfacial
temperature and for the mass flux due to the evapor-
ation. These expressions read
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where the dimensionless ratio between the thermal
conductivities of the two liquids is j

12
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1
/j

2
and

the temperature difference is *¹"¹
h
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s
.

The solution of eq. (1) in the framework of lubri-
cation approximation with boundary condition (4) for
the pressure and lateral component of the velocity
yields
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If we substitute expressions (24) and (25) into the
continuity equation (1) and integrate the resulting
equations with the boundary conditions (4) and (9),
then the distribution of the vertical velocity compon-
ent in the liquid layers can be obtained in the frame-
work of the lubrication approximation
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In eqs (26) and (27), +
II

is the lateral projection of the
spatial gradient operator, which in the leading order is
equal to the surface gradient operator (cf. Edwards et
al., 1991).

3.2. Compatibility equations and surface-excess linear
momentum boundary conditions

After substitution of the expressions for the vertical
velocity components (26) and (27) into the surface
mass balance and kinematic equations (5) and (9) the
so-called compatibility problem is derived
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From the surface-excess linear momentum equations
(6) and (10) and the general solution for the lateral
velocity component (26) and (27), the normal and
tangential stress boundary conditions at the interfaces
simplify to
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where the Boussinesq—Scriven constitutive law (16)
leads to the coupling of the dilatational and shear
interfacial viscosities effect in one interfacial viscosity
parameter, defined by gs

k
"g$*-

k
#g4)

k
, (k"1, 2).

3.3. Interfacial species transport equation
To obtain the interfacial total species transport

equation in the lubrication approximation we sum eqs
(8) and (12). The result reads
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The diffusion fluxes in eq. (34) can be calculated
from the diffusion equations (2). In the framework of
the lubrication approximation the surfactant concen-
tration c

2
is a sum of a uniform part, c

2s
(x, t), and

a small perturbation, c
2,f

(x, z, t). c
2s

(x, t) does not
depend on the vertical coordinate z and it is equal to
the subsurface concentration, and the z-derivative of
c
2,f

(x, z, t) is comparable with the lateral and time
derivatives of the subsurface concentration (cf. Ivanov
and Dimitrov, 1988). Then the diffusion equation (2)
can be written in the following form:

Lc
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After integrating the diffusion equation (35) from h
1
to

h
2
, using the solution (25), the leading order of the

diffusion fluxes from the liquid phase 2 appearing in
eq. (34) becomes

(D
2
+c

2
) ) n

2
D
z/h2

!(D
2
+c

2
) ) n

1
D
z/h1

"(h
2
!h

1
)
Lc

2s
Lt

#C
h
2
!h

1
2

(u
1
#u

2
)!

(h
2
!h

1
)3

12g
2

+
II
p
2D ) +II

c
2s

!+
II
) [D

2
(h

2
!h

1
)+

II
c
2s

] . (36)

It is important to note that the subsurface surfactant
concentrations in the layer 2 at the liquid—vapour
interface and at the liquid—liquid interface are equal.

Similarly, we represent the surfactant concentration
c
1

as a sum of uniform part, c
1s

(x, t), and small per-
turbation, c

1,f
(x, z, t). c

1s
(x, t) does not depend on the

vertical coordinate z and it is equal to the subsurface
concentration, and the z-derivative of c

1,f
(x, z, t) is

comparable with the lateral and time derivatives of
the subsurface concentration. Then the diffusion
equation (2) can be rewritten in the form analogous to
eq. (35):
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(37)

After integrating the diffusion equation (37) from 0 to
h
1
, using the solution (24), the leading order of the

diffusion fluxes from the liquid phase 1 appearing in
eq. (34) is derived to be
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Finally, after substituting eqs (36) and (38) into the
interfacial total species transport equation (34), using
the compatability equations (28) and (29) and the
condition for adsorption/desorption equilibrium (18),

we obtain
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where the dimensionless ratio between the surfactant
equilibrium constants is m

21
"m

2
/m

1
.

The non-linear problem for the stability and evolu-
tion of the two-layer film on the heated wall contains
three partial differential equations with time and
space derivatives (28), (29) and (39), four differential
equations only with space derivatives (30)— (33), and
non-linear algebraic equations (17), (18) and (20)— (22).
This model is a generalisation of the results of Danov
et al. (1997a) for the case of evaporating two-layered
film on a solid substrate in the presence of surfactant
in both liquid phases.

4. SCALING OF THE MODEL

The viscous scales of Williams and Davis (1982),
which are appropriate to isothermal layers, are not
typical for our problem. That is why we use an appro-
priate scaling of the governing system which is consis-
tent with lubrication theory in our case. We use the
following parameters when defining the respective
dimensionless groups:

(i) the thickness, h
0
, of the upper liquid layer and

the ratio of the thicknesses of the lower and upper
layers, h

12
, at the initial time t"0;

(ii) the disappearance time t
d
, defined as

t
d
,

o
2
h
0

J
T
*¹ A1#

1

2K
#

h
12

Kj
12
B . (40)

Equation (40) is obtained after integration of eq. (29)
with the assumption of the absence of any fluctu-
ations. Here, the dimensionless parameter K is
a measure for the degree of non-equilibrium at the
evaporating interface

K"

j
2

¸J
T
h
0

. (41)

The physical meaning of the disappearance time is
discussed in the next section.

(iii) The characteristic scale, l, of the lateral fluctu-
ations, which is defined below is used for the scaling of
the lateral coordinates.

We will define the dimensionless time q and the
dimensionless lateral coordinates X as follows:

t"t
d
q, x"h

0
lX. (42)
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Then the dimensionless liquid layer thicknesses H
k
,

pressure P
k
, and lateral interfacial velocity U

k
,

(k"1, 2) read
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If we substitute the definitions (40)—(43) into the
compatibility equations (28) and (29), using solution
(22), we arrive at the system
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where j
21
"1/j

12
"j

2
/j

1
is the inverse ratio of the

layer thermal conductivities.
Another group of dimensionless parameters is con-

nected with the interfacial properties and it is inde-
pendent of the local changes of temperature. The
capacities of the interfaces and the liquid layers are
determined by the numbers G

k
and Z

k
; a measure of

a log-concentration slope of the interfacial tensions
are defined by S

k
(k"1, 2):
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The notation appearing in this definitions is as fol-
lows: !

k,CMC
the adsorption at the critical micelles

concentration, c
k, CMC

; p
k,0

the pure solvent interfacial
tension at the initial time t"0. For all types of
surfactant, G

k
changes from 0.75 to 0.95 depending on

the specific molecular interactions at the interface.
Only for very strong repulsion between the head of
surfactant molecules G

k
reaches 0.75; the typical value

of G
k

is about 0.9. The values of S
k

for water—air
interfaces are in the range from 0.5 to 0.7, but for most
surfactants it is about 0.5. The corresponding values
for water—oil interfaces can be larger from 0.5 to 0.9.
For a given layer thickness Z

k
can change by several

orders of magnitudes from one type of species to
another; its magnitude increases with the increase of
the initial thickness (cf. Lucassen-Reynders, 1981).

We will introduce the dimensionless adsorption
G

k
and subsurface concentration C scaling by the

corresponding values at the critical micelles concen-
tration, i.e.

G
k
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c
2s

c
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. (47)

Then from definitions (46) and (47), the dimensionless
form of the equations of state (17) becomes
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and the dimensionless form of the Langmuir iso-
therms are
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The characteristic parameter, l, of the lateral fluctu-
ation length we introduce as the ratio between the
capillary and pressure dimensions appearing in the
normal stress boundary condition (31) at the evapor-
ating interface

l"4S
p
2,0

t
d

3g
2
h
0

. (50)

(cf. Danov et al., 1997a). Then the ratio between van
der Waals disjoining pressure and the loss of inter-
facial linear momentum due to evaporation to the
dynamic pressure in the liquid phase 2 are estimated,
respectively, by the dimensionless numbers W

2
,W

i
(called van der Waals number below) and E. We will
use the following definitions for these dimensionless
parameters:
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The dimensionless form of the normal stress bound-
ary condition (31) at the evaporating interface be-
comes
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where the vapour pressure p
v
is taken to be zero. The

corresponding boundary condition at the liquid—
liquid interface (30) is
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where the van der Waals number, dimensionless ratio
between the viscosities and the interfacial tensions are
defined by
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Stability of two-layered liquid film—I 2815



In eqs (52) and (53) the leading order of the dimen-
sionless equations of state (48) is used.

The thermal Marangoni effects are included in the
Marangoni number M

k
. The influence of interfacial

rheology is measured by Boussinesq and surfactant
Marangoni numbers, defined through the Gibbs elas-
ticities of the interfaces. For the present investigation
these classical numbers are not convenient, because
the Gibbs elasticity changes by eight orders of magni-
tude with the increase of surfactant concentration
from low values to CMC. Therefore, scaling of the
tangential stress boundary conditions (32) and (33) are
performed with interfacial viscosity numbers V

k
and

adsorption elasticity numbers A
k
, which do not de-

pend on the bulk surfactant concentration. The ex-
perimental results obtained by surface waves methods
show that the dependence of the interfacial viscosity
on the surfactant concentration is analogous to that
of the bulk viscosity of concentrated dispersions: the
interfacial viscosity increases to gs

k,.!9
at concentra-

tions close to CMC and after that it decreases again
and reaches a plateau. However, close and above
CMC, the film interfaces become tangentially immo-
bile and the further increasing of the surfactant con-
centration does not influence the film stability.
Therefore, we use below a simple linear relation be-
tween the interfacial viscosity and the adsorption, i.e.
gs
k
"gs

k, CMC
!
k
/!

k, CMC
, where gs

k, CMC
is the interfacial

viscosity at the corresponding critical micelles con-
centration.

The dimensionless form of the tangential stress
boundary condition (32), using solution (20) and the
Frumkin equation of state (17) becomes
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where the dimensionless parameters are defined by
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The corresponding tangential stress boundary condi-
tion (33) at the evaporating interface reads
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where the dimensionless numbers appearing in eq.
(57) are
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Finally, the dimensionless form of the interfacial
total species transport equation (39) is obtained to be
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where the dimensionless ratio between the adsorption
at the CMC and diffusion coefficients of the liquid
phases, and the bulk and surface diffusivity para-
meters are
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(60)

The dimensionless form of the non-linear problem
for the stability and evolution of the two-layer film on
the heated wall contains the partial differential equa-
tions (44), (45) and (59) with time and space deriva-
tives, the differential equations (52), (53), (55) and (57)
only with space derivatives, and non-linear algebraic
equations (49). We will use these equations later when
performing the stability analysis in the next parts
Danov et al. (1997b) and Paunov et al. (1997).

5. DIMENSIONLESS GROUPS ANALYSIS

In order to elucidate the effects of the different
parameters on the magnitude of the dimensionless
groups appeared in the problem for the stability of the
evaporating two-layered film, we will use a particular
physical system. The upper and vapour phases consist
of a light organic material, for example, hexane
(C

6
H

14
) or heptane (C

7
H

16
). The lower phase is water

solution of surfactant and the heated substrate is
a polymeric material, e.g. polystyrene or polyvinyl-
chloride (PVC). For the sake of brevity, we will refer
to the above system as P/W/H/V. The physical para-
meters of heptane and hexane are given by Daubert
and Danner (1989) and they are illustrated in Tables 1
and 2.

Using the formula of Plesset (1952), the saturation
temperature ¹

s
, the vapour density, and the latent

heat of evaporation ¸, we calculated the value of the
coefficient J

T
, appearing in eq. (13). Thus, for hexane

we obtain: ¹
s
"342 K, o

v
"3.182 kg/m3, ¸"3.35
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Table 1. The physical parameters of the water and
hexane at the hexane saturation temperature

¹
s
"342 K

Water Hexane

M 18 86.18
o (kg/m3) 989.1 612.6
g (Pa s) 4.08]10~4 1.88]10~4

l (m2/s) 4.125]10~7 3.069]10~7

j (J/(msK)) 0.658 0.138

Table 2. The physical parameters of the water and
heptane at the heptane saturation temperature

¹
s
"371 K

Water Hexane

M 18 100.3
o (kg/m3) 960.0 605.6
g (Pa s) 2.88]10~4 1.62]10~4

l (m2/s) 3.00]10~7 2.657]10~7

j (J/(msK)) 0.679 0.140

Fig. 2. Dependence of the degree of non-equilibrium number K on the initial hexane film thickness h
0
.

]105 J/kg, and J
T
"6.85 kg/(sKm2). For heptane we

derive: ¹
s
"371 K, o

v
"3.432 kg/m3, ¸"3.16

]105 J/kg, and J
T
"6.65 kg/(sKm2). In both cases,

the saturation temperature is lower than the water
saturation temperature and the lighter liquid has the
greater vapour density

We estimate the values of the Hamaker constants,
appearing in eq. (14), by using the following average
values for the Hamaker constants available from Is-
raelachvili (1992): 4]10~20 J for water/vacuum/
water film, 7.5]10~20 J for PVC/vacuum/PVC, and
1.2]10~20 J for PVC/water/PVC. Therefore, the
Hamaker constant for PVC/vacuum/water is cal-
culated to 5.15]10~20 J. The values of the Hamaker
constants for water/octane/air is 0.52]10~20 J and
for octane/water/air it is !0.24]10~20 J. Using
these parameters we calculate the respective Hamaker

constants for water/vacuum/octane to be 4.22]
10~20 J and for octane/vacuum/octane to be
4.74]10~20 J. There are no data available for the
Hamaker constant for polystyrene/vacuum/hexane,
polystyrene/vacuum/heptane, PVC/vacuum/hexane
or PVC/vacuum/heptane. That is why we used the
formula A

s2
+JA

ss
A

22
from Israelachvili (1992) to

estimate them. The calculated result is 5.96]10~20 J
for PVC/vacuum/octane film. Here we assume that
the van der Waals interaction in hexane, heptane and
octane layers is similar. Finally, for the Hamaker
constants, appearing in our problem we obtain:
A

1
"5.9]10~21 J and A

2
"5.2]10~21 J which are

positive (attraction), and A
i
"!9.3]10~21 J which

is negative (repulsion).
The surface parameters at the liquid—vapour inter-

face do not depend on the surfactant concentration
and they are as follows: for hexane—vapour interface,
p
2, p

"1.323]10~2 N/m and Lp
2
/L¹"!9.95]

10~5 N/(mK); and for heptane—vapour interface,
p
2, p

"1.247]10~2 N/m and Lp
2
/L¹"!9.3]

10~5 N/(mK). The corresponding interfacial
parameters at the hexane—water interface are
p
1, p

"5.113]10~2 N/m and Lp
1
/L¹"!6.95]

10~5 N/(mK) and at the heptane—water interface they
are p

1, p
"4.644]10~2 N/m and Lp

1
/L¹"

!9.80]10~5 N/(mK). For the different surfactant
types, typical parameters such as, ionic, non-ionic and
high molecular weight are reported by Danov et al.
(1997a).

The numerical results for the dimensionless para-
meters, appearing in the non-linear problem for wave
evolution are illustrated in Figs. 2—9. The degree of
non-equilibrium number K depends only on the in-
itial evaporating film thickness h

0
and it decreases in

four orders of magnitude when h
0
increases from 5 nm

to 20 km (see Fig. 2). Just the opposite is the influence
of interfacial linear momentum due to evaporation. It
increases with increase of h

0
and temperature differ-

ence (see Fig. 4). The evaporation number E decreases
more than 10 times, when thickness of the water film
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Fig. 3. Dependence of the van der Waals number W
1

on the initial hexane film thickness h
0

for
temperature difference (a) *¹"10°C, (b) *¹"0.01°C.

Fig. 4. Dependence of the evaporation number E on the initial hexane film thickness for different
thicknesses of the water h

w
film and temperature differences *¹.

2818 K. D. Danov et al.



Fig. 5. Dependence of the temperature Marangoni number M
1

(water/hexane interface) on the initial
hexane film thickness for different thicknesses of the water h

w
film and temperature differences *¹.

Fig. 6. Dependence of the temperature Marangoni number M
2

(hexane/vapour interface) on the initial
hexane film thickness for different thicknesses of the water h

w
film and temperature differences *¹.

(which is below the hexane film) increases from 5 nm
to 20 km. This effect is more pronounced for thicker
evaporating films. The influence of the intermolecular
forces (van der Waals forces) are significant for lower
temperature difference [compare Figs. 3(a) and (b)],
when the van der Waals number increases 100 times.
When the thermal capacity of the water film increases
and the initial film thickness h

0
decreases, the van der

Waals number can reach greater values than these of
the evaporation number, and comparable values with
these of the degree of non-equilibrium number.
It is interesting to note that the magnitudes of the
temperature Marangoni numbers M

1
and M

2
are

comparable in all cases (see Figs 5 and 6). With
increase of the water film thermal capacity, the tem-
perature difference and the initial hexane film thick-
ness h

0
, the influence of interfacial mobility on the

film stability increases. The effect on interfacial mobil-
ity due to the interfacial temperature gradients for
thicker water layer h

w
is more pronounced, and it has

a simple physical explanation: with increase of h
w

the
disappearance time t

d
and the characteristic

wavelength l increase [see eqs (40) and (50)], which
leads to greater values of the temperature Marangoni
numbers [see eqs (56) and (58)]. The dependence of
the adsorption number A

1
and the interfacial viscosity
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Fig. 7. Dependence of the surfactant Marangoni number A
1

(water/hexane interface) on the initial hexane
film thickness for different thicknesses of the water h

w
film and temperature differences *¹.

Fig. 8. Dependence of the interfacial viscosity number V
1

(water/hexane interface) on the initial hexane
film thickness for different thicknesses of the water h

w
film and temperature differences *¹.

number V
1

for typical values for a non-ionic surfac-
tants are plotted in Figs 7 and 8. It is shown that the
interfacial viscosity plays an important role for thin-
ner films and greater temperature differences, which is
exactly the opposite to the effect of interfacial elastic-
ity. Finally, the greater the temperature difference and
the lower the water film thermal capacity suppress the
surfactant diffusivity (see Fig. 9).

The corresponding computations for heptane
showed that the behaviour and magnitude of the
dimensionless parameters are very close to those of
the hexane phase.

6. CONCLUSIONS

We have developed a theoretical model that allows
one to investigate the stability of evaporating two-
layered liquid film attached to a heated solid substrate
in the presence of surfactant. The model accounts for
the instabilities due to surface tension gradients cre-
ated by fluctuations in the temperature and the sur-
factant distribution, coupled by the solvent mass loss.
Additionally, the role of the van der Waals surface
force is also taken into account.

The model is a subject of the following restrictions:
(i) small Reynolds number; (ii) small thermal Peclet
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Fig. 9. Dependence of the diffusion number B on the initial hexane film thickness for different thicknesses
of the water h

w
film and temperature differences *¹.

numbers, (iii) small diffusive Peclet numbers; and (iv)
small slope of the interface (long waves). The theory
we developed here is a result from the application of the
lubrication approximation to the governing equations
and allows one to investigate the evolution of the two
thin liquid layers in the film and to study the influence
of evaporation and surfactant on the film stability.

Four types of dimensionless groups appear in the
final form of the governing equations. The first one is
connected to the evaporation effects, whilst the second
one gives the thermal Marangoni effect on the stabil-
ity. The last two are related to the effects of the
surfactant and of the surface forces on the film
stability. Thus, our model allows one to investigate
quantitatively the influence of the following physical
parameters: bulk viscosity, surface viscosity, surface
elasticity, adsorption isotherm of surfactant, CMC of
the surfactant in the two liquid films, the surfactant
concentration, the intensity of the evaporation, the
ratio of the film thicknesses, the role of the solid
substrate (in the Hamaker constant), etc.

Numerical analysis of the behaviour and magnitude
of the dimensionless groups is performed in this part of
the study. The linear stability analysis of the same
physical system is a subject of the second part of this
study (cf. Danov et al., 1997b). Non-linear analysis of
the stability of two-layered film of heavy oil and water
is performed in the third part (cf. Paunov et al., 1997).
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Fettsäuren und die Zustandsgleichung der Ober-
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