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Abstract

ŽThis article is devoted to an overview, comparison and discussion of recent results both
.theoretical and experimental about lateral capillary forces. They appear when the contact

of particles or other bodies with a fluid phase boundary causes perturbations in the
interfacial shape. The capillary interaction is due to the overlap of such perturbations which
can appear around floating particles, vertical cylinders, particles confined in a liquid film,
inclusions in the membranes of lipid vesicles or living cells, etc. In the case of floating
particles the perturbations are due to the particle weight; in this case the force decreases
with the sixth power of the particle size and becomes immaterial for particles smaller than
approximately 10 mm. In all other cases the interfacial deformations are due to the particle
wetting properties; the resulting ‘immersion’ capillary forces can be operative even between
very small particles, like protein globules. In many cases such forces can be responsible for
the experimentally observed two-dimensional particle aggregation and ordering. An analogy
between capillary and electrostatic forces enables one to introduce ‘capillary charges’ of the
attached particles, which characterize the magnitude of the interfacial deformation and
could be both positive and negative. Moreover, the capillary interaction between particle
and wall resembles the image force in electrostatics. When a particle is moving bound to an
interface under the action of a capillary force, one can determine the surface drag
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coefficient and the surface viscosity supposedly the magnitude of the capillary force is
Ž .known. Alternative but equivalent energy and force approaches can be used for the

theoretical description of the lateral capillary interactions. Both approaches require the
Laplace equation of capillarity to be solved and the meniscus profile around the particles to
be determined. The energy approach accounts for contributions due to the increase of the
meniscus area, gravitational energy andror energy of wetting. The second approach is based
on calculating the net force exerted on the particle, which can originate from the hydrostatic
pressure, interfacial tension and bending moment. In the case of small perturbations, the
superposition approximation can be used to derive an asymptotic formula for the capillary
forces, which has been found to agree well with the experiment. Capillary interactions
between particles bound to spherical interfaces are also considered taking into account the
special geometry and restricted area of such phase boundaries. A similar approach can be

Ž .applied to quantify the forces between inclusions transmembrane proteins in lipid mem-
branes. The deformations in a lipid membrane, due to the inclusions, can be described
theoretically in the framework of a mechanical model of the lipid bilayer, which accounts for

Ž .its ‘hybrid’ rheology neither elastic body nor fluid . In all considered cases the lateral
capillary interaction originates from the overlap of interfacial deformations and is subject to
a unified theoretical treatment, despite the fact that the characteristic particle size can vary
from 1 cm down to 1 nm. Q 2000 Elsevier Science B.V. All rights reserved.

Keywords: Capillary forces; Lipid membranes containing inclusions; Liquid films containing particles;
Surface viscosity measurements; Two-dimensional aggregation
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1. Introduction

It is known from the experiment and practice that particles floating on a fluid
interface attract each other and form clusters. Such effects are observed and

w xutilized in some extraction and separation flotation processes 1,2 . As noticed by
w xNicolson 3 these lateral capillary forces are caused by the deformation of the

Ž .interface due to the effect of gravity particle weight and buoyancy force . The
shape of the surface deformations created by floating particles has been studied by

w x w xHinsch 4 by means of a holographic method. Allain and Jouhier 5 , and in other
w xexperiment Allain and Cloitre 6 , have studied the aggregation of spherical

particles floating at the surface of water and demonstrated that the obtained
aggregates have a structure corresponding to a fractal dimension 1.6. A theoretical
calculation of the capillary force between two vertical or inclined plates, partially

w ximmersed in a liquid, has been carried out by Derjaguin and Starov 7 .
Our interest in the capillary forces was provoked by the finding that small

colloidal particles and protein macromolecules confined in liquid films also exhibit
Žattraction and do form clusters and larger ordered domains two-dimensional

. w xarrays 8]13 . However, the weight of such tiny particles is too small to create any
surface deformation. Nevertheless, they also produce interfacial deformations
because of their confinement in the liquid film; such deformations depend on the
wetting properties of particle surfaces related to the thermodynamic requirement
that the interface must meet the particle surface at a given angle } the contact
angle. The overlap of such wetting-driven deformations also gives rise to a lateral

w xcapillary force 14 .
w xAfter Nicolson 3 , who derived an approximated analytical expression for the

capillary force between two floating bubbles, calculations about the capillary force
per unit length of two infinite parallel horizontal floating cylinders were carried out

w x w xby Gifford and Scriven 15 and by Fortes 16 . This configuration is the simplest
one, because the meniscus has a translational symmetry and the Laplace equation,

w x w xgoverning the interfacial profile, acquires a simpler form 7,15,16 . Chan et al. 17
derived analytical expressions for floating horizontal cylinders and spheres using
the Nicolson’s superposition approximation, whose validity was supported by a
comparison with the exact numerical results for cylinders from Gifford and Scriven
w x15 .

w xThe aforementioned studies 3,15]17 deal with floating particles. For the first
time the capillary forces between two vertical cylinders and between two spheres
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Ž .partially immersed confined in a liquid layer have been theoretically studied by
w xKralchevsky et al. 14 . A general expression for the interaction energy has been

w xused 14 , which includes contributions from the gravitational energy, energy of
particle wetting and energy of increase of the meniscus area due to the deforma-
tion caused by the particles; this expression is valid for both floating and confined
particles. Expressions and numerical results for the energy and force of interaction
have been obtained for the case when the slope of the deformed meniscus is small;
this case corresponds to the usual experimental situation with small particles. The
theory has been extended also to particles entrapped in thin films, for which the
disjoining pressure effect, rather than gravity, keeps the non-deformed surface

w xplanar 14 .
w xAnother new moment in the paper by Kralchevsky et al. 14 is the approach to

solving the Laplace equation: instead of assuming a mere superposition of the
known axisymmetric profiles around two separate particles, the linearized Laplace
equation has been solved directly in bipolar coordinates, which allows one to

Žimpose the correct boundary conditions at the particle contact lines constancy of
.the contact angle . Thus a correct theoretical description of the force at small

interparticle distances is achieved, which is not accessible to the superposition
approximation.

w xPaunov et al. 18 obtained solutions for the meniscus profile in bipolar coordi-
nates for other configurations: vertical cylinder]vertical wall, and particle]vertical
wall. A different, force approach to the calculation of lateral capillary interactions
has been applied to obtain both analytical and numerical results. The validity of
the derived analytical expressions has been confirmed by checking whether the
force exerted on the particle and the wall have equal magnitudes and opposite
signs, as required by the third Newton’s law.

w x w xNext, the theory developed by Kralchevsky et al. 14 and Paunov et al. 18 was
w xextended in 19 in the following two aspects. First, the energy approach and the

force approach have been applied to the same object: vertical cylinders and
particles in a liquid film; the two approaches were found to give numerically
coinciding results, although their equivalence has not been proven analytically

w xthere. Furthermore, in Ref. 19 an analytical solution of Laplace equation in
bipolar coordinates has been obtained for the case of two dissimilar particles:
vertical cylinders andror spheres confined in a film. Attractive and repulsive
capillary forces have been obtained depending on whether the meniscus slope at
the contact line of the two particles has similar or different signs.

w xIn Ref. 20 the theory of the capillary forces between small floating particles of
different size has been extended on the basis of the result for the meniscus profile

w xfrom Ref. 19 . The energy approach has been applied to calculate the capillary
interaction, appropriate analytical expressions have been derived and numerical
results for various configurations have been obtained. From the general expression

w xfor the interaction free energy the approximation of Nicolson 3 has been derived
as an asymptotic case, and thus its validity has been proven analytically. It has been
noticed that in a wide range of distances the capillary forces obey a two-dimen-
sional version of the Coulomb law of electricity. Following this analogy ‘capillary
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charges’ of the particles have been introduced; depending on whether the two
‘capillary charges’ have the same or the opposite sign, the capillary force is
respectively attractive or repulsive.

w xIn Ref. 20 the physical nature and the magnitude of the lateral capillary forces
between floating and confined particles have been compared and the differences
between them have been explicitly analyzed. It has been established that the
energy of capillary interaction between floating particles becomes negligible
Ž .smaller than the thermal energy kT for particles smaller than 5]10 mm. On the

Ž .other hand, when the particles instead of being freely floating are partially
Žimmersed into a liquid film, the energy of capillary interaction is much larger for

.the same particle size , and it can be much greater than kT even for particles of
w xnanometer size. This analysis has been extended in Ref. 21 , where the former

type of capillary interactions have been called ‘flotation forces’, and the latter }
w x‘immersion forces’. Other configurations have been also investigated in Ref. 21 :

Ž .i two particles in a symmetric liquid film with account for the disjoining pressure
Ž . Ž .effect, and ii two particles of fixed contact lines rather than fixed contact angles .

It has been established that the interaction at fixed contact angle is stronger than
w xthat at fixed contact line. Finally, in Ref. 21 the equivalence of the energy and

force approaches to the capillary interactions has been analytically proven for the
case of two semi-immersed vertical cylinders.

w x ŽPaunov et al. 18 noticed that the meniscus between a vertical cylinder or
.particle and a wall has the same shape as the meniscus between two identical

particles, each of them being the image of the other one with respect to the wall.
For that reason the capillary interaction between the particle and the wall is the
same as between the particle and its mirror image. In this respect there is analogy
with the image forces in electrostatics. This idea has been applied and developed in

w xRefs. 22,23 , where the capillary image forces between particles floating over an
inclined meniscus in a vicinity of a wall have been theoretically and experimentally
investigated.

w xFurther extension of the theory of capillary forces has been achieved in Ref. 24 ,
Žwhere the interaction between particles attached to a spherical interface mem-

. Žbrane has been carried out; note that in contrast with the planar interface or
.film the spherical interface has a finite area and ‘infinite’ interparticle separations

are not possible. Other extension of the theory has been made by Kralchevsky et
w xal. 25 , where lateral capillary forces between inclusions in phospholipid mem-

branes have been investigated on the basis of a special mechanical model account-
ing for the elastic properties of the lipid bilayer. It is a general conclusion from all
studies of lateral immersion forces is that they are strong enough to produce

w xaggregation and ordering of sub-micrometer particles 14,18]25 . This fact could
explain numerous experimental evidences about the formation of two-dimensional
Ž . w x w x2D particle arrays in liquid films 26]45 and in phospholipid membranes 46]48 .

It should be also noted, that the problem about horizontal floating cylinders, was
w xreexamined by Allain and Cloitre 49,50 , who used the linear superposition

approximation and alternatively, a more rigorous expressions for the free energy of
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the cylinders; they calculated the capillary force for both light and heavy cylinders
Ž .for both small and large Bond numbers .

We should note that the lateral capillary forces are distinct from the popular
capillary bridge forces, which are known to form contacts between particles in the
soil, pastes, as well as in some experiments with the atomic force microscope
Ž . w xAFM , see e.g. Mate et al. 51]56 . The capillary bridge forces act normally to the
plane of the contact line on the particle surface, whereas the lateral capillary forces

Ž .are directed almost tangentially to the plane of the contact line.
w xLucassen 57 proposed another type of capillary force, which can be operative

between particles of irregular wetting perimeter. The latter creates respective irregu-
lar deformations in the surrounding liquid surface, even if the weight of the
particle is negligible. The overlap of the deformations around such two particles
also gives rise to a lateral capillary force. For the time being only a single

w xtheoretical study 57 of this kind of forces has been carried out.
ŽIn Section 2 we give an outline of the main results both theoretical and

.experimental for flotation and immersion lateral capillary forces. Then we demon-
strate how the asymptotic expressions for these forces are derived. Further, we
review the extension of the theory to particles at spherical interfacesrfilms and to
inclusions in lipid bilayers.

2. Overview of results about lateral capillary forces

2.1. Interaction between two particles

As mentioned in the introduction, the origin of the lateral capillary forces is the
deformation of the liquid surface, which is supposed to be flat in the absence of
particles. The larger the interfacial deformation created by the particles, the
stronger the capillary interaction between them. It is known that two similar

w xparticles floating on a liquid interface attract each other 3,15]17,20,21 } see Fig.
1a. This attraction appears because the liquid meniscus deforms in such a way that
the gravitational potential energy of the two particles decreases when they ap-

Žproach each other. Hence the origin of this force is the particle weight including
.the Archimedes force .

ŽA force of capillary attraction appears also when the particles instead of being
. Ž . w xfreely floating are partially immersed confined into a liquid layer 14,18,19,21,24

} see Fig. 1b. The deformation of the liquid surface in this case is related to the
wetting properties of the particle surface, i.e. to the position of the contact line and
the magnitude of the contact angle, rather than to gravity.

To make a difference between the capillary forces in the case of floating
particles and in the case of particles immersed in a liquid film, the former are

w xcalled lateral flotation forces and the latter } lateral immersion forces 20,21 .
These two kinds of force exhibit similar dependence on the interparticle separation
but very different dependencies on the particle radius and the surface tension of

Ž .the liquid. The flotation and immersion forces can be both attractive Fig. 1a,b
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Ž . Ž . Ž .Fig. 1. Capillary forces of flotation a,c,e and immersion b,d,f type: a attraction between two
Ž .similar floating particles; b attraction between two similar particles immersed in a liquid film on a

Ž . Ž .substrate; c repulsion between a light and a heavy floating particle; d repulsion between a
Ž .hydrophilic and a hydrophobic particle; e small floating particles do not deform the interface and do

Ž .not interact, f small particles confined within a liquid film experience capillary interaction because
w xthey deform the film surfaces due to the effects of wetting 21 .

Ž .and repulsive Fig. 1c,d . This is determined by the signs of the meniscus slope
angles c and c at the two contact lines: the capillary force is attractive when1 2

sinc sinc ) 0 and repulsive when sinc sinc - 0. In the case of flotation forces1 2 1 2

Ž .c ) 0 for light particles including bubbles and c - 0 for hea¨y particles. In the
case of immersion forces between particles protruding from an aqueous layer
c ) 0 for hydrophilic particles and c - 0 for hydrophobic particles. When c s 0
there is no meniscus deformation and, hence, there is no capillary interaction
between the particles. This can happen when the weight of the particles is too
small to create a significant surface deformation, Fig. 1e. The immersion force

Ž .appears not only between particles in wetting films Fig. 1b,d , but also in
Ž . w xsymmetric fluid films Fig. 1f . The theory 17,20]22 provides the following

asymptotic expression for calculating the lateral capillary force between two
particles of radii R and R separated by a center-to-center distance L.1 2

2 2Ž . Ž . Ž .F s y2psQ Q qK qL 1 q O q R r < L 2.11 2 1 k k

where s is the liquid]fluid interfacial tension, r and r are the radii of the two1 2

contact lines and

Ž . Ž .Q s r sinc i s 1,2 2.2i i i
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w xis the ‘capillary charge’ of the particle 20]22 ; in addition

2 Ž .q s Dr grs in thick film

2 Ž X . Ž . Ž .q s Dr g y Ł rs in thin films 2.3

Here Dr is the difference between the mass densities of the two fluids and P
X is

Ž .the derivative of the disjoining pressure with respect to the film thickness; K x is1

Ž . w xthe modified Bessel function or Macdonald function of the first order 58]60 .
Ž . Ž .The derivation of Eqs. 2.1 and 2.3 can be found in Section 3. The asymptotic

Ž . Ž y1 .form of Eq. 2.1 for qL < 1 q s 2.7 mm for water ,

y1 Ž .F s y2psQ Q rL r < L < q 2.41 2 k

looks like a two-dimensional analogue of Coulomb’s law, which explains the name
‘capillary charge’ of Q or Q . It is worth noting that the immersion and flotation1 2

forces exhibit the same functional dependence on the interparticle distance, see
Ž . Ž .Eqs. 2.1 and 2.4 . On the other hand, their different physical origin results in

different magnitudes of the ‘capillary charges’ of these two kinds of capillary force.
In this respect they resemble the electrostatic and gravitational forces, which obey
the same power law, but differ in the physical meaning and magnitude of the force

Ž .constants charges, masses . In the particular case when R s R s R; r < L <1 2 k
y1 w xq one can derive 20,21,61

Ž 6 . Ž .F A R rs K qL for flotation force1

2 Ž . Ž .F A sR K qL for immersion force 2.51

Consequently, the flotation force decreases, while the immersion force increases,
when the interfacial tension s increases. Besides, the flotation force decreases
much stronger with the decrease of R than the immersion force. Thus F isflotation

negligible for R - 5]10 mm, whereas F can be significant even whenimmersion

ŽR s 2 nm, see Fig. 2. Protein molecules of nanometer size can be considered as
Ž . .‘particles’ insofar as they are much larger than the solvent water molecules. In

Fig. 2 the two types of capillary interaction are compared, with respect to their
Ž . ` Ž X. Xenergy DW L s H F L d L , for a wide range of particle sizes. The values of theL

parameters used are: particle mass density r s 2 grcm3, density differencep

between the two fluids Dr s 1 grcm3, surface tension s s 40 mNrm, contact
angle a s 608, interparticle distance L s 2 R, and thickness of the non-disturbed
planar film l s R. The pronounced difference in the magnitudes of the two types0

of capillary forces is due to the different magnitude of the interfacial deformation.
The small floating particles are too light to create a substantial deformation of the
liquid surface and the lateral capillary force is negligible. In the case of immersion
forces the particles are restricted in the vertical direction by the solid substrate
Ž . Ž .Fig. 1b or by the two surfaces of the liquid film Fig. 1f . Therefore, as the film
becomes thinner, the liquid surface deformation increases, thus giving rise to a
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Fig. 2. Energy of capillary attraction DW, in kT units, plotted vs. the radius R of two similar particles
< <separated at a center-to-center distance L s 2 R. If DW ) kT , the capillary attraction is stronger than

w xthe Brownian force and can cause particle aggregation 20,21

strong interparticle attraction. Hence, as already mentioned, the immersion forces
may be one of the main factors causing the observed self assembly of small

w xcolloidal particles 11]13,26]45 and protein macromolecules confined in thin
w x w xliquid films 8]10 or lipid bilayers 25,46]48 .

Ž .In the case of interactions between inclusions in lipid bilayers Fig. 3 the
elasticity of the bilayer interior must also be taken into account. The calculated
energy of capillary interaction between integral membrane proteins turns out to be
of the order of several kT ; hence, such an interaction can be one possible

w xexplanation of the observed aggregation of membrane proteins 25,48 . Lateral
capillary forces can be operative also between particles captured in a spherical
Ž . w xrather than planar thin liquid film or lipid vesicle 24 .

2.2. Measurements of lateral capillary forces

Ž .The first measurement of lateral capillary force of the immersion type has been
w xcarried out by Camoin et al. 62 with millimeter-sized polystyrene spheres attached

to the tip of rod-like holders. By means of a sensitive electromechanical balance it
Ž .has been established that the force is attractive and decays approx. exponentially,

Ž . Ž . Ž .Fig. 3. The thickness of an inclusion say transmembrane protein can be a greater or b smaller
than the thickness of the non-disturbed phospholipid bilayer. In both cases the overlap of the
deformations around two similar inclusions gives rise to attraction between them.
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Ž .which corresponds to the long-distance asymptotics of Eq. 2.1 , see e.g. Lucassen
w x w x59 and Dwight 63 :

1r22p q 1
Ž . Ž . Ž .F f ypQ Q exp yqL 1 q O qL G 2 2.61 2 ž / ž /L qL

w xA detailed comparison of the experimental results from Camoin et al. 62 with the
theory is not possible, because data for the surface tension, contact angle and the

w xcontact line radius are not given in Ref. 62 .
Both attractive and repulsive lateral immersion forces between two vertical

cylinders, as well as between a vertical cylinder and a wall, were obtained by Velev
w xet al. 64 by means of a piezo-transduser balance, see Fig. 4. One of the cylinders

Ž .‘1’ in Fig. 4 is connected by a thin glass needle to a piezo-resistive sensor; thus the
sensor can detect the pressure caused by the needle, which is in fact the horizontal
component of the force exerted on the vertical cylinder 1. The other cylinder 2 can
be moved during the experiment in order to change the distance L between the

Ž .bodies. Fig. 5 presents the dimensionless capillary force Fr qs Q Q vs. the1 2

w xdimensionless distance qL measured by Velev et al. 64 . The liquid is pure water,
s s 72.4 mNrm, qy1 s 2.72 mm; the two cylinders are hydrophilic, so c s c s1 2

908; the radii of the cylinders are r s 370 mm and r s 315 mm. The solid curve in1 2

Ž .Fig. 5 is drawn by means of Eq. 2.1 without using any adjustable parameters. One
Ž .sees that Eq. 2.1 agrees well with the experiment except in the region of small

Ž .distances, where the asymptotic formula Eq. 2.1 , derived under the assumption
for small meniscus slope and long distances, is no longer valid.

Systematic measurements of lateral immersion force between two vertical cylin-

w xFig. 4. Sketch of the experimental setup used in Velev et al. 64 to measure the capillary immersion
force between two vertical cylinders, ‘1’ and ‘2’; ‘3’ is a glass needle, which transfers the horizontal force
exerted on cylinder ‘1’ to a piezo-resistive sensor ‘4’. Thus the force, converted into electric signal, is
measured as a function of the distance L.
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Fig. 5. Force F of capillary attraction between two hydrophilic vertical cylinders measured in Velev et
w xal. 64 by means of the piezo-transducer balance sketched in Fig. 4; F is plotted vs. the distance L

between the axes of the cylinders, the parameters values are qy1 s 2.72 mm, s s 72.4 mNrm,
Ž .Q s 0.370 mm, Q s 0.315 mm. The solid line is calculated by means of Eq. 2.1 ; no adjustable1 2

parameters

ders, between cylinder and sphere, and between sphere and vertical wall were
w xcarried out in Dushkin et al. 65,66 by means of a torsion micro-balance, see Fig. 6.

The latter in principle resembles the balance used by H. Cavendish to measure the
gravitational constant in 1798,1 but is much smaller. The force between two

Ž .couples of vertical cylinders andror spheres Fig. 6 was measured by counter-
balancing the moment created by the two couples of forces with the torsion
moment of a fine platinum wire, whose diameter was 10 mm and 25 mm in
different experiments. The angle of torsion, w, was measured by reflection of a
laser beam from a mirror attached to the anchor of the balance, see Fig. 6. Fig. 7

w xshows data from Dushkin et al. 65 for the capillary force between two identical
vertical cylinders for r s r s 50, 165 and 365 mm; the solid lines in Fig. 7 are1 2

Ž .calculated by means of Eq. 2.1 without using any adjustable parameter. It is seen
that the theory and experiment agree well in the range of validity of the theoretical
expressions. At shorter distances between the two interacting bodies, at which the

Ž .linearized theory is not accurate, deviations from Eq. 2.1 are experimentally
w xdetected 66 , as it could be expected.

ŽThe lateral capillary force between two freely floating particles no attachment
.to any holders is more difficult to be measured. One way is to counterbalance the

capillary force by the gravity force in the vicinity of an inclined meniscus, see Fig. 6
w xin Velev et al. 23 . Other way is to measure the displacement of a floating particle

Ž .moving under the action of the lateral flotation force as a function of time;
knowing the surface drag coefficient one can determine the capillary force, and

w xvice versa, see Petkov et al. 68 and the next Section 2.3.

1 w xAbout the measurement of the gravitational constant see Rose et al. 67 .
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w xFig. 6. Sketch of a torsion balance, used by Dushkin et al. 65,66 to measure the capillary attraction
Ž X X .between two pairs of small glass spheres 1 y 1 and 2 y 2 attached to holders. The immersed part of

Ž .the holders is shown dashed. One of the particles in each pair these are particles 1 and 2 is connected
to the central anchor 3, which is suspended on a platinum wire 4; the angle of torsion is measured by
reflection of a light beam from the mirror 5.

Fig. 7. Plot of the force of capillary attraction F vs. the distance L between the axes of two identical
w xvertical cylinders of radius R. The force is measured by Dushkin et al. 65,66 by means of the torsion

balance shown in Fig. 6; the three curves correspond to cylinders of radii R s 50, 165 and 365 mm. The
Ž .solid lines are drawn by means of Eq. 2.1 ; no adjustable parameters.
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2.3. Particle]wall interactions, capillary image forces and their application

The overlap of the meniscus around a floating particle with the meniscus on a
vertical wall gives rise to a particle]wall interaction, which can be both repulsive
and attractive. Imagine a floating spherical particle in the vicinity of a vertical
planar wall. We will use subscripts ‘1’ and ‘2’ to denote parameters characterizing

w xthe wall and particle, respectively. First, following Kralchevsky et al. 22 , we
consider the simplest case, when the contact angle at the wall is a s 908. In such1

Ž .a case the meniscus would be flat if the floating particle Fig. 8a were removed.
Ž .Let us denote by z x,y the meniscus shape in the presence of particle. Since0

Ž . Ž .a s 908 the function z x,y must satisfy the boundary condition z rx s 01 0 0 xs0

at the wall surface. Using considerations for symmetry one realizes that the
Ž . Žmeniscus shape z x,y in Fig. 8a would be the same if instead of a wall at a0

. Ž .distance s one has a second particle mirror image floating at a distance 2 s from
the original one. The ‘image’ must be identical to the original particle with respect
to its size, weight and contact angle, that is the particle and its image ought to have
identical capillary charges, Q . Note, that the capillary charge of a floating particle2

w xis given by the expression 20

1 r y r2 II2 3 3Ž .Ž Ž ..Q f q R 2 y 4D q 3 cosa y cos a 1 q O qR , D '2 2 2 2 2 2 26 r y rI II

Ž .2.7

where R , a and r are the radius, contact angle and the mass density of the2 2 2

particle; r and r are respectively the mass densities of the lower and upper fluidI II

phases. As mentioned previously, for two identical particles the lateral capillary
force is always attractive. Hence, the particle and its mirror image depicted in Fig.
8a will attract each other, which in fact means that the wall will attract the floating

Ž . Ž .particle; the resulting force will asymptotically obey Eq. 2.1 with Q s Q .1 2

Ž .The boundary condition z x s 0 s 0 represents a requirement for a zero0

w xelevation of the contact line at the wall. As noticed in Ref. 22 this can be realized
in practice if the contact line is attached to the edge of a vertical plate, as shown in
Fig. 8b, or to the boundary between a hydrophobic and a hydrophilic domain on
the wall. Using again considerations for symmetry one realizes that the meniscus

Ž . Ž .shape z x,y in Fig. 8b would be the same if instead of a wall at a distance s one0

Ž . Ž .has a second particle image of the opposite capillary charge Q s yQ at a1 2

distance 2 s from the original particle. In such a case the capillary force is
w xrepulsive, i.e. in reality the wall will repel the floating particle 22 .

The configuration with repulsive capillary image force, which is depicted in Fig.
w x w x8b, is realized experimentally by Velev et al. 23 and Petkov et al. 68 as shown in

Fig. 9. In these experiments the ‘wall’ is a hydrophobic Teflon barrier, whose
position along the vertical can be precisely varied and adjusted. The total lateral
capillary force exerted on the particle depicted in Fig. 9 is given by the following
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Ž .Fig. 8. Sketch of the meniscus profile, z r , around a particle floating in the vicinity of a vertical wall;0

a and r are the particle contact angle and contact line radius; c is the meniscus slope angle at the2 2 2

Ž . Ž .particle contact line; a fixed contact angle at the wall a s 908 corresponding to attractive capillary1

Ž . Ž .image force; b fixed contact line at the wall z ' 0 for x s 0 which leads to repulsive capillary image0

w xforce 22 .

w xasymptotic expression 22 :

2yqs yqs 2 2 2Ž . Ž . Ž . Ž .F s f ps 2Q qHe q q r qHe y 2 qQ K 2 qs 1 q O q RŽ .2 2 2 1 2

=Ž . Ž .r < s 2.82

Here H characterizes the position of the contact line on the wall with respect to
Ž .the non-disturbed horizontal liquid surface Fig. 9 ; s is the particle]wall distance;

Ž . Ž .and q is defined by Eq. 2.3 thick films . The first term in the right-hand side of
Ž .Eq. 2.8 expresses the gravity force pushing the particle to slide down over the

inclined meniscus on the wall; the second term originates from the pressure
difference across the meniscus on the wall } this pressure difference also pushes
the particle to slide downward, toward the wall; the third term expresses the
repulsive ‘capillary image force’, that is the particle is repelled by its mirror image
with respect to the wall surface, as it is in Fig. 8b.

Ž .Note that for the configuration in Fig. 9 the first two terms in Eq. 2.8 are
positive, whereas the third one is negative. For each given H there will be a

U Ž U .distance s s s , for which F s s 0. This distance corresponds to an equilibrium
position of the particle, i.e. one can expect that a particle floating in a vicinity of

Ž . Uthe vertical wall Fig. 9 at equilibrium will stay at a distance s from the wall. The
w xmeasurements carried out by Velev et al. 23 show that really this is the experi-

mental situation. Varying H one can change the distance sU. Fig. 10 shows
experimental points for H vs. sU measured with a hydrophobized copper bead
floating on the surface of pure water. The radius of the bead is R s 700 " 15 mm2

and its contact angle with pure water is a s 1008. The accuracy and the repro-2
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w xFig. 9. Experimental setup used for studying capillary interactions 23 , for measurement of surface
w x w xdrag coefficient 68 and surface shear viscosity of surfactant adsorption monolayers 72 . Particle 1 is

floating at a distance s from a hydrophobic plate 2, whose lower edge is located at a distance H below
the level of the non-disturbed horizontal liquid; H can be varied by means of the micrometric table 3
and screw 4.

ducibility of the measurement are about "2 mm for H and "20 mm for sU. The
Ž .theoretical curve the dashed line in Fig. 10 is drawn with R s 711 mm which2

agrees well with the optically measured radius of the bead; a more rigorous
w xexpression derived by Velev et al. 23 is used in the calculations, instead of the

Ž .asymptotic formula Eq. 2.8 . One sees in Fig. 10 that the agreement between
theory and experiment is very good.

w xAs demonstrated by Petkov et al. 68 , knowing the capillary force F, see Eq.
Ž .2.8 , and measuring the particle velocity, sin dynamic experiments one can˙

Ž . w xFig. 10. Experimental data v from Velev et al. 23 for the dependence of H on the equilibrium
distance sU for a hydrophobized copper sphere, see the text for the notation. The dashed line
represents the theoretical dependence calculated with the experimental values of the contact angle
a s 1008 and sphere radius R s 711 mm.2 2
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determine the drag force, F :d

Ž .F s F y ms, F ' 6phR f s 2.9¨ ˙d d 2 d

where R , m and s are the particle radius, mass and acceleration, h is the viscosity¨2

of the liquid and f is the drag coefficient. If the particle were entirely immersedd

in the bulk liquid, F would be given by the Stokes formula, F s 6phR s, and f˙d d 2 d

would be equal to 1. In general, f differs from unity because the particle isd

attached to the interface and protrudes from the underlying liquid phase. An
example is given in Fig. 11, where the experimentally measured velocity s of a˙

Ž .particle approaching the wall is plotted vs. the capillary force F s , calculated by
Ž . Ž .means of Eqs. 2.7 and 2.8 for the experimental values of the distance s. The

particle is a glass sphere of radius R s 229 mm and contact angle a s 48.782 2

floating at the surface of pure water, s s 72 mNrm. The straight line in Fig. 11
Ž .corresponds to drag force equal to the capillary force, i.e. F s F s ; from thed

slope of the straight line one determines f s 0.68. The deviation of the data ford

Ž .the larger F s is not a discrepancy between theory and experiment: the deviation
Ž .is due to the inertia term in Eq. 2.9 , ms which is not negligible for shorter¨

Ž .distances between the particle and wall, at which the approximation F f F s isd

not good enough.
w xAccording to the hydrodynamic theory by Brenner and Leal 69,70 , and Danov

w xet al. 71 , the drag coefficient f of a particle attached to a planar fluid interface isd

a function only of the viscosities of the two fluids and of the three-phase contact
w xangle, a . The experiment by Petkov et al. 68 gives f varying between 0.68 and2 d

Ž0.54 for particle contact angle varying from 498 to 828 the less the depth of particle
.immersion, the less the drag coefficient, as could be expected ; the data are in a

w xFig. 11. Experimental data from Petkov et al. 68 for the velocity s of a glass sphere plotted vs. The˙
Ž . Ž .capillary force F calculated from Eq. 2.8 ; the sphere is floating see Fig. 9 on the surface of pure

Ž . Ž .water. The slope of the dashed line, drawn in accordance with Eq. 2.9 the inertial term ms neglected ,¨
gives drag coefficient f s 0.68. the data are obtained in three runs corresponding to three fixed valuesd

of H denoted in the figure.
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very good quantitative agreement with the hydrodynamic theory of the drag
w xcoefficient 69]71 .

If the floating particle is heavy enough, it deforms the surrounding liquid
surface; the deformation travels together with the particle thus increasing fd

w xseveral times 68 ; so far there is no quantitative hydrodynamic theory of the latter
effect. The addition of surfactant strongly increases f . The latter effect has beend

w xused in Petkov et al. 72 to measure the surface viscosity of adsorption monolayers
from low molecular weight surfactants, which exhibit fast kinetics of adsorption.
For these surfactants the surface viscosity is too low to be accessible to the
conventional experimental methods. However, the motion of a sphere of radius
200]300 mm turns out to be sensitive to the friction within the adsorption layer
Ž . Ž .thick no more than 2 nm of surfactants such as sodium dodecyl sulfate SDS and

Ž .hexadecyl-trimethyl-ammonium-bromide HTAB . To demonstrate that, in Fig. 12
w xwe present experimental data from Petkov et al. 72 for the velocity of a particle

Ž . Ž . Ž .Fig. 9 plotted vs. the capillary force F s , calculated by means of Eq. 2.7 and Eq.
Ž . Ž . Ž .2.8 . One sees Fig. 12 that again the data for s vs. F s comply with straight˙

Ž .lines, whereas the plots of svs. time t are non-linear the inset in Fig. 12 . From the˙
slopes of the straight lines in Fig. 12 the drag coefficient f was determined; thed

obtained values of f are also shown in Fig. 12. Note, that the addition ofd

surfactant increases f from 0.66 up to 1.6. This effect, converted in terms ofd

surface viscosity, gives h s 1.5 and 2.0 = 10y6 kgrs for the surface viscosity ofs

w xdense SDS and HTAB adsorption monolayers, respectively 72 .
Note that if the kinetics of surfactant adsorption is not fast enough to damp the

surface elastic effects, the drag coefficient f can be influenced not only by thed

w xFig. 12. Experimental data from 72 for the velocity s of floating glass spheres plotted vs. the capillary˙
Ž .force F calculated from Eq. 2.8 . The slope of each experimental line gives the value of the surface

drag coefficient, f . Data about the type of the solution, the determined f and the particle radius Rd d 2

Ž . Ž .are given in the figure. The inset shows the experimental plot of s cmrs vs. time s , which becomes˙
linear when plotted as s vs. F.˙
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Ž .surface viscosity, but also by the surface Gibbs elasticity. The complete dynamic
problem, involving the effects of surface viscosity, surface elasticity and dynamics
of surfactant adsorption has not yet been solved theoretically.

3. Energy approach to the lateral capillary interactions

Having reviewed the experiments on capillary forces let us come back to the
theory. Our purpose below is to give the derivation of the most popular asymptotic

Ž .formula for the lateral capillary forces, Eq. 2.1 , and to demonstrate that this
equation is applicable to both flotation and immersion forces, with particles
attached to single interfaces or confined in thin liquid films, see Fig. 1. The cause
of the capillary interaction is the overlap of the deformations around such two
particles. Hence, the key to the theoretical description of this interaction is to solve
the Laplace equation, governing the meniscus shape, for a given configuration of
particles at an interface or in a thin film.

3.1. The linearized Laplace equation for fluid interfaces and thin films

Ž .Let z s z x,y be the equation of the deformed fluid interface. The interfacial
w xshape obeys the Laplace equation of capillarity 73

= zII
w Ž . Ž .x Ž .= ? s P z y P z rs 3.1II II I2ž /< <'1 q = zII

 
Ž .= s e q e 3.2II x y

x  y

w x w xsee also Finn 74 and Kralchevsky et al. 75 . Here = is the two-dimensionalII

Ž .gradient operator in the plane xy. Note that Eq. 3.1 is expressed in a covariant
form and can be specified for any type of curvilinear coordinates in the plane xy
Ž .not only Cartesian ones . The pressures P and P on the two sides of theI II

interface can be dependent on z because of the effects of hydrostatic pressure and
disjoining pressure, see below.

As an example, let us consider a spherical particle which is entrapped into a
wetting liquid film, Fig. 13. The upper surface of the liquid film is planar far from
the particle; this plane is chosen to be the level z s 0 of the coordinate system.
The thickness of the plane-parallel liquid film far from the particle is h . The0

Ž .pressure inside and outside the film in phases I and II can be expressed in the
w xform 14,21,76,77 :

Ž . Ž0. Ž . Ž . Ž0. < < 2P z s P y r gz q P h q z , P z s P y r gz , = z < 1I I I 0 II II II II

Ž .3.3



( )P.A. Kralche¨sky, K. Nagayama r Ad¨ances in Colloid and Interface Science 85 2000 145]192 163

Here g is the acceleration due to gravity, r and r are the mass densities inI II

phases I and II, P Ž0. and P Ž0. are the pressures in the respective phases at the levelI II

z s 0; P is the disjoining pressure, which depends on the local thickness of the
wetting film. The terms r gz , and r gz , express hydrostatic pressure, which isI II

predominant in thick films, i.e. for h G 100 nm, in which the disjoining pressure0

Ž .P the interaction of the two adjacent phases across the liquid film becomes
negligible. In fact, it is the gravity which keeps the interface planar far from the
particle when the film is thick. On the contrary, when the film is thin, the existence

Ž .of a positive disjoining pressure repulsion between the two film surfaces keeps
the film plane]parallel far from the particle. The condition for stable mechanical
equilibrium of this film is

Ł
XŽ0. Ž0. Ž . Ž .P s P q Ł h , Ł ' - 0 3.4II I 0 ž /h hsh0

w x Ž .see e.g. Kralchevsky 61 . Expanding the disjoining pressure term in Eq. 3.3 in
series one obtains

Ž . Ž . X Ž .Ł h q z s Ł h q Ł z q . . . 3.50 0

Usually the slope of the meniscus around particles, like that depicted in Fig. 13, is
< < 2small enough and the approximation = z < 1 can be applied. Then combiningII

Ž . Ž .Eqs. 3.1 ] 3.5 one obtains a linearized form of Laplace equation:

Dr g yŁ
X

2 2 2 2Ž < < . Ž .= z s q z , q ' q Dr ' r y r ; = z < 1 3.6Ł I II II
s s

Note that P
X
- 0. The disjoining pressure effect is negligible when the film is thick

XŽ .enough to have yP h < D r g. In the latter case the upper film surface behaves0

Ž . y1as a single interface it does not ‘feel’ the lower film surface . The quantity q is a
characteristic capillary length, which determines the range of action of the lateral

Ž X . y1capillary forces. In thick films P is negligible q is of the order of millimeters,
y1 Ž Xe.g. q s 2.7 mm for water]air interface. However, in thin films P is predomi-

. y1 w xnant q can be of the order of 10]100 nm, see Kralchevsky et al. 21 .

3.2. Flotation force: energy approach in superposition approximation

Ž .The simpler derivation of Eq. 2.1 , based on energy considerations, was given by
w xNicolson 3 long ago for floating particles. Following his approach let us consider a

floating spherical particle of mass m , which creates an interfacial deformation, seei

Ž .Fig. 14. For a single particle Eq. 3.6 , written in cylindrical coordinates, reduces to
Ž .the modified Bessel equation, whose solution for small meniscus slope has the

w xform 78 :

Ž . Ž . Ž . Ž . Ž .z r s r sinc K qr s Q K qr i s 1,2 3.7i i i 0 i 0
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Ž .Fig. 13. Colloidal sphere partially immersed in a liquid layer on a substrate; z r describes the shape
of the meniscus formed around the sphere; P and P are the pressures inside the liquid layer and inI II

the upper fluid phase; h is the thickness of the non-disturbed liquid layer; the latter is kept0

plane-parallel by the gravity, when the layer is thick, and by a repulsive disjoining pressure when the
film is thin.

where r is the contact line radius and c is the meniscus slope angle at the contacti i

Ž . Ž .line, and Eq. 2.2 has been used; K is the Macdonald modified Bessel function0

w x w x w xof zero order, see Janke et al. 58 , Abramowitz et al. 59 , Korn and Korn 60 .
Ž .The force due to gravity, F , which is exerted on the i-th particle i s 1,2 isg(i)

counterbalanced by the vertically resolved surface tension force, acting per unit
length of the three-phase contact line:

Ž . Ž .F s 2ps r sinc 2psQ i s 1,2 3.8g Ž i. i i i

Ž .cf. Fig. 14 and Eq. 2.2 . Here F s m g y F with F being the buoyancyg(i) i b b

Ž .Archimedes force; expression for F for floating particles can be found in Ivanovb

w xand Kralchevsky 79 .
Now let us consider particle 2 situated at a horizontal distance L from particle 1.

w xFollowing Nicolson 3 we assume that due to the meniscus created by particle 1,

Fig. 14. A heavy spherical particle creates a concave meniscus on an otherwise horizontal fluid
Žinterface of tension s, F is the net force due to gravity a combination of particle weight andg Ž1.

.buoyancy ; c is the meniscus slope at the particle contact line of radius r .1 1
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Ž .the mass-center of particle 2 is situated at a distance z L below the horizontal1

plane z s 0, see point 2 in Fig. 14. The work carried out by the gravitational force
Ž . w xto bring particle 2 from level z s 0 down to level z s yz L is 3,171

Ž . Ž . Ž .DW s yF z L s y2psQ Q K qL 3.9g g Ž2. 1 1 2 0

Ž . Ž .where at the last step Eqs. 3.7 and 3.8 have been used. Having in mind that

Ž .dDW dK xg 0
Ž . Ž .F s y ; s yK x 3.101

dL dx

Ž . Ž . Ž .one easily obtains Eq. 2.1 differentiating Eq. 3.9 . This derivation of Eq. 2.1
< < 2makes use of many approximations, the most obvious of them being = z < 1II

Ž .and r < L. In particular, it has been implicitly assumed that for r < L i s 1,2i i

the meniscus shape is a superposition of the axisymmetric menisci around each
Ž .particle in isolation, described by Eq. 3.7 . These and other approximations are

discussed in Section 3.4, where a more general formulation of the energy approach
can be found.

3.3. Immersion force: energy approach in superposition approximation

Let us consider a couple of vertical cylinders, each of them being immersed
partially in Phase I, and partially in Phase II. For each of these cylinders in

Ž .isolation Fig. 15 the shape of the surrounding capillary meniscus is given by Eq.
Ž .3.7 . The contact angle a at the three phase contact line of the i-th cylinderi

Ž .i s 1,2 obeys the Young equation:

Ž . Ž .s y s s scosa s ssinc s sQ rr i s 1,2 3.11i ,II i ,I i i i i

Ž .cf. Fig. 15 and Eq. 2.2 . Here s and s are surface free energies per unit areai,I i ,II

of the boundary of the i-th cylinder with Phases I and II, respectively. The two
cylinders are assumed immobile in vertical direction.

Ž .Let us assume that Cylinder 1 is fixed at the z-axis Fig. 15 and let us consider a
process in which the vertical Cylinder 2 is moved in horizontal direction from

Ž .infinity to some finite distance L L 4 r ,r . At such a distance L the level of the1 2

Ž .liquid meniscus around cylinder 1 rises with z L , see Fig. 15. Thus the surface1

area of cylinder 2 wet by Fluid 1 increases, whereas the area wet by Fluid 2
decreases. As a result, the energy of wetting of cylinder 2 will change with

Ž .Ž . Ž . Ž .DW f y2p r z L s y s s y2psQ Q K qL 3.12w 2 1 2,II 2,I 1 2 0

Ž . Ž .where at the last step Eqs. 3.7 and 3.11 have been used. Finally, identifying the
capillary force with the derivative of the wetting energy, F s ydDW r dL, onew

Ž . Ž . Ž .easily obtains Eq. 2.1 differentiating Eq. 3.12 . This derivation of Eq. 2.1 makes
< < 2use of the approximations r < L, = z < 1, and the superposition approxima-i II

tion. In the case of spherical particles the variation in the position of the contact
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Ž .Fig. 15. A vertical cylinder rod of radius r creates a convex meniscus on an otherwise horizontal1

fluid interface of tension s, the boundaries of the cylinder with the phases I and II have solid-fluid
surface tensions s and s ; a is the three-phase contact angle; c is the meniscus slope at the1,I 1,II 1 1

particle contact line.

line on the particle surface is accompanied with a variation of the contact line
radii, r and r , and of the slope angles c and c ; these effects are taken into1 2 1 2

w xaccount in Kralchevsky et al. 14,18]20,22,24 .
In spite of being approximate, the derivations of the expression for F, which are

presented in Sections 3.2 and 3.3, clearly demonstrate the difference between the
physical origin of the flotation and immersion forces. Indeed, the flotation force is

Ž .defined as a derivative of the gravitational energy W , see Eq. 3.9 , whereas theg

Ž .immersion force is equal to the derivative of the wetting energy W , see Eq. 3.12 .w

3.4. General expression for the grand thermodynamic potential

The grand thermodynamic potential of a system of N particles attached to the
w xinterface between phases I and II can be written in the form 14,20,21 :

Ž . Ž .V r , . . . ,r s W q W q W q const. 3.131 N g w m

N
Žc. Ž .W s m gZ y P dV 3.14Ý Ý Hg i i Y

VYis1 YsI ,II

N

Ž .W s s A , W s sA , 3.15Ý Ýw iY iY m

is1 YsI ,II

where r , r ,...,r are the position vectors of the particle mass centers and m1 2 N i

Ž . Žc.i s 1,2,...,N are the masses of the particles, Z is the projection of r along thei i

Ž .vertical, P and V Y s I, II are pressure and volume of the Y-th fluid phase; sY Y

Ž .and A are the interfacial tension and the area of the boundary the meniscus
between fluid phases I and II; A and s are area and the surface free energyiY iY

density of the boundary between particle ‘i’ and phase ‘Y’; the additive constant in
Ž .Eq. 3.13 does not depend on r , r ,...,r ; W , W and W are respectively the1 2 N g w m
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gravitational, wetting and meniscus contribution to the grand potential V. Then
the lateral capillary force between particles 1 and 2 is determined by differentia-
tion:

V
Ž12. < < Ž .F s y , r s r y r 3.1612 1 2

r12

When the distance between two particles varies, the shape of the meniscus
Ž .between phases I and II and consequently W alters; during the same variationm

the areas of the particle surfaces wet by phases I and II also vary, which leads to a
change in W ; last but not least, the change in the meniscus shape is accompaniedw

by changes in the positions of the mass centers of particles and fluid phases, which
gives rise to a variation in their gravitational energy accounted for by W . Eqs.g

Ž . Ž .3.13 ] 3.16 are applicable also to thin films; one should take into account the fact
that in such a case the meniscus surface tension depends on the local thickness of

Ž . w xthe film, s s s z , so that 21,80

ds 1r22< < Ž . Ž .s y 1 q = z Ł thin films 3.17Ž .II
dz

where, as usual, P is the disjoining pressure. In other words, the disjoining
Ž .pressure effect is ‘hidden’ in the meniscus energy term, W , in Eq. 3.13 .m

Ž . Ž .The explicit form of Eqs. 3.14 and 3.15 , and the relative importance of W , Wg w

and W , depend on the specific configuration of the system. For example, in them

case of small floating particles at separations L 4 r ,r , it turns out that W f1 2 m

yW r2 y W and then V s W q W q W f W r2 f DW , where DW is giveng w g w m g g g

Ž .by the Nicolson’s expression, Eq. 3.9 .
In the framework of the energy approach the treatment of flotation and immer-

sion lateral capillary forces is different, insofar as in the former case V is
dominated by W , whereas in the latter case V is dominated by W , cf. Sections 3.2g w

Žand 3.3. On the other hand, there is an equivalent force approach considered in
.Section 4 which provides an unified description of the flotation and immersion

forces.

3.5. Interactions at fixed slope and fixed ele¨ation

In some cases the distance between two particles attached to an interface can
Ž .decrease at constant values of the slope angle c and contact radius r i s 1,2 . Ini i

such a case the capillary charge Q s r sinc is also constant. A typical example isi i i

Ž .the capillary interaction between two vertical cylinders rods of radii r andi

Ž .contact angles a s pr2 y c i s 1,2 . Other example is the capillary interactioni i

w xbetween small floating particles, for which it can be proven 20 that they approach
Ž .each other at approx. constant capillary charge Q . In all these cases the averagei

elevation of the contact line,
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1
Ž . Ž .h L ' dlz , 3.18Ei

c2p r ii

depends on the distance L between the two particles; here C denotes thei

projection of the contact line on the horizontal plane xy. The following expression
w xfor the interaction energy DV has been derived for such cases 14,19,20 :

Ž . w Ž . x Ž . Ž .DV L f yps Q h L y h c s const., r s const. 3.19Ý i i i` i i

is1,2

Ž .where h s h L ª ` .i` i

In other cases, like that depicted in Fig. 3, the elevation of the contact line, h ,i
remains constant when the particles approach each other. In such cases the
average meniscus slope of the contact line,

1
Ž . Ž .sinC L ' dln ? = z , 3.20˜Ei II2p r ci i

depends on the distance L between the two particles; here n is a running outer˜
unit normal to the contour C . The following expression for the interaction energyi

w xDV has been derived for the latter case 21,25 :

Ž . w Ž . x Ž . Ž .DV L f ps h r sinC L y sinC h s const., r s const. 3.21Ý i i i i` i i

is1,2

Ž . Ž . Ž .where C s C L ª ` . To calculate the capillary force from Eqs. 3.19 or 3.21i` i

one is to first solve the Laplace equation, along with the respective boundary
Ž . Ž . Ž . Ž .conditions, and then to determine h L or C L by means of Eqs. 3.18 or 3.20 .i i

Ž . Ž . < < 2Note also that Eqs. 3.19 and 3.21 are valid for small meniscus slope, = z < 1.II

4. Force approach to the lateral capillary interactions

4.1. Integral expressions for the capillary force

ŽIn the force approach which is alternative to the energy approach from Section
.3 the lateral capillary force exerted on each of the interacting particles is

calculated by integrating the meniscus interfacial tension s along the contact line
w xand the hydrostatic pressure P throughout the particle surface 18]21 :

Ž i. Ž is . Ž i p. Ž .F s F q F , i s 2, . . . , 4.1

where the contribution of interfacial tension is

Ž is . Ž .F ' U ? dlms 4.2EII
L i
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and the contribution of the hydrostatic pressure is

Ž i p. Ž . Ž .F ' U ? ds yn P 4.3EII
S i

Ž . Ž .Here U is the unit operator tensor of the horizontal plane xy; in Eqs. 4.2II

Ž .and 4.3 this operator projects the respective vectorial integrals onto the xy-plane;
Ž .L denotes the three phase contact line on the particle surface Fig. 16 and dl is ai

linear element; m is an outer running unit normal to the contact line; the vector m

is also tangential to the meniscus surface and has the direction of the surface
tension force exerted on the particle along the contact line. Likewise, S denotesi

the particle surface with outer unit running normal n; ds is a scalar surface
element; the vector ‘yn’ has the direction of the outer pressure exerted on the

w xsurface of each particle. In Refs. 18,19,21 it has been proven, that the integral
Ž Ž . Ž . Ž ..expressions Eqs. 4.1 , 4.2 and 4.3 are compatible with the Newton’s third law,

i.e. F Ž1. s yF Ž2., as it must be.
Note that the interfacial bending moment can also contribute to the lateral

w x Ž .capillary force, see Kralchevsky et al. 25 and Eq. 6.16 below, although this
contribution is expected to be important only for interfaces and membranes of low
tension s .

As an example, let us consider two particles entrapped in a liquid film on a
substrate, see Fig. 16. If the contact lines L and L were horizontal, the integrals1 2

Ž . Ž .in Eqs. 4.2 and 4.3 would be equal to zero because of the symmetry of the force
distributions. However, due to the overlap of the interfacial perturbations created
by each particle, the contact lines are slightly inclined, which is enough to break

Ž .the symmetry of the force distribution and to give rise to a non-zero net integral
force exerted on each of the two particles.

The existence of inclination of the contact line can be clearly seen in Fig. 17,
which represents three photographs of thin vertical glass rods partially immersed in

w xwater; the photographs have been taken Velev et al. 64 with the experimental
setup sketched in Fig. 4. One sees that the contact line on an isolated rod is

Fig. 16. Illustration of the origin of capillary force between two spheres partially immersed in a liquid
film: the net horizontal force F Ž1. exerted on particle 1 is a sum of the surface tension vector s

integrated along the contact line L and of the pressure distribution integrated throughout the particle1

Ž . Ž . Ž .surface S the same for particle 2 , see Eqs. 4.1 ] 4.3 .1



( )P.A. Kralche¨sky, K. Nagayama r Ad¨ances in Colloid and Interface Science 85 2000 145]192170

w xFig. 17. Photographs, taken by Velev et al. 64 , of two partially immersed vertical hydrophilic glass
rods of radii r s 315 mm and r s 370 mm. Note that the inclination of the three-phase contact lines1 2

on the rods increases when the distance between them decreases.

Ž .horizontal Fig. 17a ; when two such rods approach each other inclination of the
Ž .contact line appears Fig. 17b and grows with the decrease of the distance between

Ž .the rods Fig. 17c .
Imagine now that the upper part of the rods shown in Fig. 17 is hydrophobic,

whereas the lower part is hydrophilic. In such a case the three-phase contact line
can stick to the horizontal boundary between the hydrophobic and hydrophilic

Ž .regions and the contact line will remain immobile and horizontal no inclination!
when the two rods approach each other. Nevertheless, in such a case a lateral force

w xof capillary attraction will also appear 21 because of the contact angle hysteresis:
the meniscus slope varies along the circular contact line of each rod. The meniscus

Ž .slope is the smallest in the zone between the two vertical cylinders rods ; then the
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Ž .integration in Eq. 4.2 yields an attractive net force, see Kralchevsky and
w xNagayama 21 for more details.

It is worth noting that for small particles, r ,r < qy1, the contribution of the1 2

w xpressure to the capillary force is negligible 19,20 ,

< Ž i p. < < Ž is . < y1 Ž .F < F for r ,r < q 4.41 2

w xAs established by Allain and Cloitre 49 , the pressure contribution can prevail for
Ž . y1 Ž .z r 4 q i s 1,2 , i.e. for large Bond numbers; however, this is not the casei

Ž .with colloidal particles, for which Eq. 4.4 is applicable.
Ž . Ž .It is not obvious that the energy and force approaches, based on Eqs. 3.13 ] 3.15

Ž . Ž .and Eqs. 4.1 ] 4.3 , respectively, are equivalent. Numerical coincidence of the
results provided by these two approaches has been established in Kralchevsky et al.
w x19,20 . Analytical proof of the equivalence of the two approaches has been given

w xin Kralchevsky and Nagayama 21 for the case of two vertical cylinders.

4.2. Asymptotic expression for the capillary force

As demonstrated in Fig. 16, the appearance of a small inclination of the contact
line gives rise to the lateral capillary force. The mere superposition approximation
is too rough to provide a quantitative estimate of this fine inclination. Indeed, the
meniscus shape in superposition approximation does not satisfy the boundary
condition for the constancy of the contact angle at the particle surface. A
quantitative description can be obtained by solving the linearized Laplace equa-

Ž . Ž . Ž .tion, Eq. 3.6 , in bipolar bicylindrical coordinates t ,v in the plane xy, see e.g.
w xKorn and Korn 60

asinht asinv
Ž .x s , y s 4.5

cosht y cosv cosht y cosv

Ž .yt F t F t , yp F v F p 4.61 2

The elementary lengths along the t- and s-lines of the respective orthogonal
w xcurvilinear coordinate network are 60

2a
Ž .dl s g dt , dl s g dv , g s g s 4.7' 't tt v v v tt v v 2Ž .cosht y cosv

where g and g are components of the metric tensor. In Fig. 18 the circumfer-tt vv

ences C and C , of radii r and r , represent the projections of the contact lines1 2 1 2

Ž .L and L on two interacting particles onto the plane xy see e.g. Fig. 16 . The1 2

x-axis is chosen to pass through the centers of the two circumferences. The
coordinate origin is determined in such a way that the tangents OA and OA to1 2

have equal lengths, a, see Fig. 18; in fact this is the geometrical meaning of
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Ž .Fig. 18. Introduction of bipolar coordinates, in the plane xy, see Eq. 4.5 : the x-axis passes through
the centers O and O of the contact line projections C and C ; the coordinates origin O is located in1 2 1 2

such a way that the two tangents, OA and OA , have equal length a.1 2

Ž . Ž .parameter a in Eqs. 4.5 and 4.7 . From the two rectangular triangles in Fig. 18
one obtains

2 2 2 Ž . Ž .s y a s r , i s 1,2 . 4.8i i

The two circumferences in Fig. 18 correspond to fixed values of the parameter t, as
follows: t s t and t s t , where t and t are related to the geometrical1 2 1 2

parameters as follows:

Ž . Ž .cosht s s rr , sinht s arr i s 1,2 . 4.9i i i i i

Ž . Ž . 2A substitution of Eq. 4.9 into Eq. 4.8 yields the known identity cosh t yI

sinh2t s 1.i

Let us consider the capillary force F Ž2. exerted on particle 2. In view of Eqs.
Ž . Ž .4.1 ] 4.4 one can write

Ž2. Ž2 s . Ž . Ž .F f F f s dl U ? m 4.10E II
c2

where approximation for small meniscus slope has been used to reduce the
integration along the contact line L to integration along its projection C . By2 2

w xmeans of geometrical considerations one can derive 19

dz
Ž .U ? m s e sinc q e cosc 4.11II v 2 t 2

dl

where c is the meniscus slope angle at the contact line of particle 2, see e.g. Fig.2

1; e and e are running unit vectors of the coordinate lines; in our case e isv t v

Ž .tangential to the contour C , whereas e is normal to it Fig. 18 . Now, let us2 t
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Ž . Ž .substitute Eq. 4.11 into Eq. 4.10 ; the result reads

pdz dz2Ž2. Ž .F f ssinc dl e s ssinc dv e 4.12E H2 v 2 v
dl dvc yp2

Ž .where z s z v describes the shape of the contact line on the surface of particle2

Ž .2. In Eq. 4.12 we have used the assumption that c f const., which is rigorous for2

vertical cylinders, but is a good approximation also for small spherical particles; the
Ž .integral of the term with e in Eq. 4.11 is equal to zero. Using the relationshipst

w xbetween curvilinear and Cartesian coordinates one obtains 60

1 x  y
Ž .e s e q e 4.13v x yž /v vg' v v

where e and e are the unit vectors of the x- and y-axes. With the help of Eqs.x y

Ž . Ž . Ž . Ž .4.5 ] 4.7 and 4.13 one can transform Eq. 4.12 to read

p sinht sinv dz2 2Ž2. Ž .F s e F ; F f yssinc dv 4.14Hx x x 2 cosht y cosv dvyp 2

4.3. Shape of the contact line on the particle surface

Solving the Laplace equation in bipolar coordinates and using the method of the
matched asymptotic expansions one can derive the following expression for the

w xshape of the contact lines on the surfaces of the two interacting particles 22 :

2 qa2 ri 2Ž . < < Ž .z v f h q Q K , < 1, = z < 1 4.15i i` j 0 IIž /ž /s y r cosv si i i

Ž .i / j; i, j s 1, 2 ; here h is the elevation of the contact line for an isolatedi`

Ž . Ž .particle cylinder ; h is independent of v. The term with K in Eq. 4.15i` 0

expresses the perturbation in the shape of the contact line on the particle ‘i’, which
is due to the presence of the particle ‘ j’ at a finite distance L s s q s . Next we1 2

Ž . Ž .expand Eq. 4.15 in series for r rs < 1 then s f s f a f Lr2 :i i 1 2

Ž . w Ž . Ž . x Ž . Ž .z v s h q Q K qL y 2 r qK qL cosv q . . . i s 1,2 4.16i i` j 0 i 1

Ž .Differentiating Eq. 4.16 one obtains

dz i
Ž . Ž . Ž .f 2 r Q qK qL sinv i / j; i , j s 1,2 4.17i j 1

dv
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Ž . Ž .Finally, we substitute Eq. 4.17 for i s 2 into Eq. 4.14 , which along with Eq.
Ž .2.2 yields

p
2sin v dv

Ž . Ž .F f y2sQ Q qK qL sinht f y2psQ Q qK qLHx 1 2 1 2 1 2 1cosht y cosvyp 2

Ž .4.18

w xAt the last step we have used the identity 19

p
2sin v dv

Ž . Ž .s 2pexp yt 4.19H 2cosht y cosvyp 2

and the approximation

Ž . Ž . Ž .2 sinht exp yt f 1 for t G 2 r rs < 1 4.202 2 2 2 2

Ž .see also Eq. 4.9 .
As could be expected, the derived asymptotic expression for the lateral capillary

Ž . Ž .force, Eq. 4.18 , is identical to Eq. 2.1 . Note that during the derivation of Eq.
Ž .4.18 it was not necessary to specify whether the capillary force is of flotation or
immersion type, or whether we deal with a single interface or with a thin liquid

Ž .film. We have used only the integral expression for the capillary force, Eq. 4.10 ,
Ž .which is valid in all aforementioned cases, as well as Eq. 4.15 for the shape of the

contact line. The latter equation accounts for the overlap of the interfacial
Ž .deformations created by the two particles cylinders irrespective of the origin of

Ž .the deformation: weight of the particle or capillary rise wetting . Consequently,
the above derivation of the expression for the capillary interaction by means of the
force approach once again confirms the general conclusion that all kind of lateral
capillary forces are due to the overlap of perturbations in the interfacial shape
created by attached bodies.

Ž .Note that Eq. 4.18 is an approximate asymptotic formula, which is valid for
Ž .comparatively long distances between the particles L 4 r ,r . More accurate1 2

analytical expressions for the capillary force, which are valid also for short
w xinterparticle separations, can be found in Kralchevsky et al. 14,18]22 .

5. Capillary forces between particles at a spherical interface, film and membrane

5.1. Origin of the ‘capillary charge’ in the case of spherical interface

The spherical geometry provides some specific conditions, which differ from
those with planar interfaces or plane]parallel thin films. For example, the capillary
force between two diametrically opposed particles is zero irrespective of the range
of the interaction determined by the characteristic capillary length qy1. Moreover,
in the case of spherical thin film the volume of the liquid layer is finite.
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ŽAs already discussed, the particles attached to an interface thin film, mem-
.brane interact through the overlap of the perturbations in the interfacial shape

created by them. Of course, this is true also when the non-disturbed interface is
spherical; in this case any deviation from the spherical shape has to be considered
as an interfacial perturbation, which gives rise to the particle ‘capillary charge’, see
Section 2. As a rule, the effect of gravity is negligible in the case of spherical

Ž .interfaces otherwise the latter will be deformed , and consequently, it is not
expected the particle weight to cause any significant interfacial deformation. Then
a question arises: Which is the origin of the interfacial perturbations in this case?

Let us consider an example depicted in Fig. 19a: a solid spherical particle
attached to the surface of a spherical emulsion drop of radius R . Such a0

configuration is typical for the Pickering emulsions which are stabilized by the
adsorption of solid particles and have a considerable importance for the practice
w x81]83 . The depth of immersion of the particle into the drop phase, and the radius
of the three-phase contact line, r , is determined by the value of the contact anglec

Ž .a Fig. 19a . The pressure within the drop, P , is larger than the outside pressureI

P because of the curvature of the drop surface. The force pushing the particleII

Ž .outside the drop along the z-axis is

2 Ž .F s p r P ; 5.1out c I

on the other hand, the force pushing the particle inside the drop is due to the outer
Ž .pressure and the drop surface tension resolved along the z-axis Fig. 19a :

2 Ž .F s p r P q 2p r ssinu 5.2in c II c c

Here u is a central angle: sinu s r rR . At equilibrium one must havec c c 0

Ž . Ž .F s F ; then combining Eqs. 5.1 and 5.2 one obtains the Laplace equationin out

P y P s 2srR which is identically satisfied for a spherical interface. Thus weI II 0

Ž .Fig. 19. a Spherical particle attached to the surface of an emulsion drop of radius R ; a is the three0

phase contact angle; r is the contact line radius; P and P are the pressures inside and outside thec I II

Ž .drop. b Particle of radius R entrapped between the two lipid bilayers composing a spherical vesicle ofp

Ž .radius R ; z is the running thickness of the gap filled with water between the two detached bilayers.0
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arrive at the conclusion that the force balance F s F is fulfilled for a sphericalin out

interface, without any deformation.
The same conclusion can be drawn on the basis of the Laplace equation. Indeed,

the configuration of a spherical particle attached to an emulsion drop must have
w xrotational symmetry. It is known 84 that for an axisymmetric surface intersecting

Žthe axis of revolution the Laplace equation, has a single solution: sphere gravity
.deformation negligible . If a second particle is attached to the drop it can acquire

the same configuration as that in Fig. 19a; only the radius of the spherical surface
will slightly increase due to the volume of the drop phase displaced by the second
particle. In other words the force balance F s F is fulfilled for each separatein out

particle and the drop surface remains spherical. However, if there is no deviation
from the spherical shape, then lateral capillary force between the particles cannot

appear. If aggregation of particles attached to such an emulsion drop is observed, it
should be attributed to other kind of forces.

After the last ‘negative’ example, let us consider another illustrative example, in
which both deformation and lateral capillary forces do appear. Pouligny and

w xcoworkers 85 have studied the sequence of phenomena which occur when a solid
latex microsphere is brought in contact with an isolated giant spherical phospho-

Ž .lipid vesicle. They observed a spontaneous attachment adhesion of latex particles
Ž .to the vesicle, which is accompanied by complete or partial wetting wrapping of

Ž .the particle by lipid bilayer s . In fact, the membrane of such a vesicle can be
composed of two or more lipid bilayers. As an example, in Fig. 19b we have
depicted a possible configuration of a membrane consisting of two lipid bilayers;
the particle is captured between the two bilayers. The experimental observations

w xshow that such two captured particles experience a long range attractive force 86 .
There are experimental indications that in a vicinity of the particle the two lipid

Ž .bilayers are detached Fig. 19b and a gap filled with water is formed between them
w x86 . The latter configuration resembles that depicted in Fig. 1f, and consequently,
the observed long range attraction could be attributed to the capillary immersion

w xforce 86 . Similar configurations can appear also around particles, which are
confined in the spherical film intervening between two attached emulsion droplets,
or in the globular emulsion films. In these cases the interfacial deformations are
caused by the confinement of the particles within the film.

Looking for an example in biology, we should note that the cytoskeleton of a
living cell is a framework composed of interconnected microtubules and filaments,
which resembles a ‘tensegrity’ architectural system composed of long struts joined

w xwith cables, see e.g. Ingber 87,88 . Moreover, inside the cell a gossamer network of
contractile microfilaments pulls the cell’s membrane toward the nucleus in the core
w x88 . In the points where the microfilaments are attached to the membrane,
concave ‘dimples’ will be formed, see Fig. 20a. On the other hand, at the points

Ž .where microtubules the ‘struts’ touch the membrane, the latter will acquire a
‘pimple’-like shape, see Fig. 20b. Being deformations in the cell membrane, these
‘dimples’ and ‘pimples’ will experience lateral capillary forces, both attractive and
repulsive, which can be employed to create a more adequate mechanical model of
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Ž .Fig. 20. Deformations in the membrane of a living cell due to a a microfilament pulling an inclusion
Ž .inward and b a microtubule pushing an inclusion outward.

a living cell and, hopefully, to explain the regular ‘geodesic forms’ which appear in
w xsome biological structures 88 .

Coming back to simpler systems, in which lateral capillary forces can be opera-
Ž .tive, we should mention the configuration of two small particles Fig. 21 , which are

confined in a liquid film wetting a bigger spherical solid particle. The problem
about the capillary forces experienced by two particles like those in Fig. 21 has

w xbeen solved in Kralchevsky et al. 24 . Since the developed formalism is applicable
also to the other systems mentioned above, in Section 5.2 we give an outline of this
formalism.

5.2. Forces between particles entrapped in a spherical film

Let us consider the configuration depicted in Fig. 21: there is only one de-
formable surface and the two particles are identical. The non-disturbed spherical
liquid film can have a stable equilibrium thickness h only due to the action of0

Ž .some repulsive forces positive disjoining pressure between the two film surfaces.
For that reason a thin film, i.e. a film for which the effect of the disjoining pressure

w xP is not negligible, has been considered in Kralchevsky et al. 24 .
The radial coordinate of a point of the deformed film surface can be presented

in the form

Ž . Ž .r s R q z u,w 5.30

where u and w are standard polar and azimuthal angles on the reference sphere
Ž . Ž .r s R Fig. 21 and z u ,w expresses the interfacial deformations due to the0

< <presence of the two particles. We assume small deformations, zrR < 1 and0

< < 2= z < 1, where = denotes surface gradient operator in the reference sphere.II II

For such small deformations the Laplace equation for the film surface can be
w xlinearized 24 :

2 2 2 Ž .= z y q z s QrR 5.4II 0

Ł
X 2 2Ł02 Ž .q s y y y , Q s R sinu sinc , 5.50 c c2s s RR0 0 00
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Fig. 21. Two particles of radius R confined in a liquid film around a larger spherical particle; u andp a

u are angles characterizing the distance between the two particles and the position of the three-phasec

contact line on the particle surface; a and c are contact angle and meniscus slope angle; R is thec 0

radius of the non-disturbed spherical fluid interface and h is the thickness of the non-disturbed liquid0

film.

where qy1 is the characteristic capillary length, Q is the capillary charge, s and0

P are the surface tension and disjoining pressure of the non-disturbed spherical0

film of thickness h .0

Ž .To conveniently integrate Eq. 5.4 special bipolar coordinates on a sphere have
Ž .been introduced. The connection between the Cartesian coordinates x,y,z and the

Ž . w xspherical bipolar coordinates r,v ,t are 24 :

2 2' ' Ž .r l y 1 sinht r l y 1 sinv r cosht y lcosv
Ž .x s , y s , z s . 5.6

lcosht y cosv lcosht y cosv lcosht y cosv

ŽThe surfaces r s const. are spheres; the lines v s const. on each sphere r s
.const. are circumferences which are counterparts of the meridians; the lines

t s const. are circumferences-counterparts of the parallels of latitude, see Fig. 22a.
In each point on the sphere the t-line is orthogonal to the respective v-line. In our
case r s R and l s cosu rcosu , see Fig. 21 for the notation. The contact lines0 c a

w xon the two particles correspond to t s "t , where 24 :c

1r22 2Ž . Ž . Ž .t ' arctanh cos u y cos u rsinu u - u F pr2 5.7c c a a c a

Thus the domain of integration acquires the simple form of a rectangle, see Fig.
22b:

Ž .yp F v F qp , yt F t F qt . 5.8c c
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Ž .In spherical bipolar coordinates the linearized Laplace equation Eq. 5.4 has the
w xform 24

2˜ 2˜ z  z2 2 2 ˜Ž . Ž . Ž . Ž . Ž .lcosht y cosv q s qR l y 1 z v ,t 5.902 2ž /v t

˜ 2 3Ž . w x Ž .where z ' zrR q Qr q R . In Ref. 24 Eq. 5.9 has been solved numerically0 0

Ž . Ž .using boundary conditions for i fixed contact angle and ii fixed contact line.
Ž .Then the lateral capillary force, F, exerted on each particle Fig. 21 has been

calculated by means of integral expressions stemming from the force approach, see
Section 4 above. For example, the expression for F corresponding to fixed contact

w xline reads 24 :

2
˜p 1 z

Ž .F s ys R dv lcosht cosv y 1H0 0 c 1r2 ž /2 t0 Ž .l y 1

˜2sinu zc
Ž .q 5.10

lcosht y cosv tc
tstc

Next, from the calculated values of F one can determine the capillary interaction
energy:

pR 0Ž . Ž . Ž .DW L s F L dL 5.11H
L

Ž .where L s 2u R is the length of the shortest arc on the reference spherea 0

Ž .connecting the centers of the two particles Fig. 21 . The additive constant in the
energy is determined in such a way, that DW s 0 for two diametrically opposed
particles, i.e. for L s pR .0

w xThe calculated in Kralchevsky et al. 24 dimensionless interaction energy,
˜ 2 ˜Ž . Ž .DW s DWr s R , is plotted against the dimensionless distance, L s Lr pR ,0 0 0

˜ ˜Ž .in Figs. 23 and 24 2u rp F L F 1 . Note that DW is independent of s and R .c 0 0

ŽThe right-hand side scale in Figs. 23 and 24 shows the values of DWrkT k is
.Boltzmann constant, T is temperature for typical parameters values: R s 1 mm,0

s s 30 mNrm, T s 298 K. At a given R , the size of the particles is determined0 0

by the angle u , which for the curves in Figs. 23 and 24 takes values 18, 28 and 38,c

i.e. the particles are small, r < R . One sees in Figs. 23 and 24 that thec 0

Ž .interaction energy can be of the order of 10]100 kT. Physically DWrkT 4 1
means that the capillary attraction prevails over the thermal motion and can bring
about particle aggregation and ordering in the spherical film. Such a situation is
typical for the lateral capillary force of immersion type, see Section 2 above.

Note that the parameters values in Figs. 23 and 24 are chosen in such a way, that
the shape of the fluid interfaces to be identical in the state of zero energy, i.e. for
two diametrically opposed particles. This provides a basis for quantitative compar-
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Ž .Fig. 22. a Bipolar coordinate lines on the unit sphere: the lines t s const. are analogous to the
Ž . Ž .parallels, while the lines v s const. connecting the ‘poles’ resemble meridians, cf. Eq. 5.6 . b The

parameterization of the reference sphere, r s R in Fig. 21, by means of spherical bipolar coordinates0

reduces the integration domain to a rectangle.

˜ison of the plots of DW vs. L in Figs. 23 and 24, calculated by using the two
alternative boundary conditions. The curves in Fig. 23 are calculated assuming
fixed contact angle; one sees that the interaction energy DW is always negative, i.e.
corresponds to attraction. On the other hand, the curves in Fig. 24 are calculated
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˜ 2w x Ž .Fig. 23. Calculated in Kralchevsky et al. 24 dimensionless energy, DW s DWr s R , of capillary0 0
˜ Ž .interaction between two particle plotted vs. the dimensionless interparticle separation L s Lr prR0

for the case of fixed contact angle; the different curves correspond to different values of u denoted onc

the figure; the other parameters values are c s 58 and qR s 5. The right-hand-side scale of DWrkTc 0

shows the interaction energy in the special case of R s 1 mm, s s 30 mNrm and T s 298 K.0 0

assuming fixed contact line. In the latter case the interaction energy changes its
sign at comparatively large interparticle distances: attractive at short distances
becomes repulsive at large separations.

The fact that that the interaction energy can change sign in the case of fixed
contact line, but the energy is always negative in the case of fixed contact angle, is

w xdiscussed in Kralchevsky et al. 24 . It is concluded that the non-monotonic
Ž .behavior of the capillary interaction energy Fig. 24 is a non-trivial effect stemming

˜ 0w x Ž .Fig. 24. Calculated in Kralchevsky et al. 24 dimensionless energy, DW s DWr s R , of capillary0 2
˜ Ž .interaction between two particles plotted vs. the dimensionless interparticle separation L s Lr prR0

for the case of fixed contact line and qR s 5; the different curves correspond to different values of u0 c

denoted on the Fig. 24; for each curve h rR is fixed and equal to the respective values of h rRc 0 ` 0

Ž .0.00389, 0.00585 and 0.00719 for the curves in Fig. 23. The right-hand-side scale of DWrkT is as in
Fig. 23.
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from the spherical geometry of the film coupled with the boundary condition of
fixed contact line; such an effect is difficult to anticipate by physical insight. Note
that in the case of planar geometry the capillary force between identical particles
is always monotonic attraction.

6. Lateral capillary forces between inclusions in lipid membranes

6.1. Perturbation of the lipid molecules due to inclusions in the membrane

Ž .The experiment shows that some integral transmembrane proteins can form
w xtwo-dimensional ordered aggregates in native membranes 89]94 . To explain the

driving force of this process a theory of lipid-mediated interactions between the
w xmembrane proteins has been developed in several works 95]98 . This theoretical

approach is based on experimental findings that proteins incorporated in mem-
w xbranes perturb the neighboring lipid molecules 99]101 , and especially affect the

fluidity of their hydrocarbon chains. More recent experiments performed by means
w xof ESR and NMR methods 102]104 demonstrated that the degree of ordering

and fluidity of the hydrocarbon chains of lipid molecules bound to membrane
proteins is not very different from those of free molecules, in contract with the

w xinitial hypotheses 95,96 .
Other idea about the origin of the membrane-mediated interactions between

w xinclusions stems from the experiments by Chen and Hubbell 105 , who have
observed aggregation of the transmembrane protein rhodopsin in cases in which
there has been a mismatch between the width of the hydrophobic belt of the
protein and the thickness of the hydrophobic interior of the lipid bilayer, see Fig. 3.
One can conclude that the perturbation of the bilayer thickness in a vicinity of an
incorporated protein may give rise to protein]protein attraction. This effect was

w x w xstudied both experimentally 106]110 and theoretically 111]114,25,46 . Lewis and
w x ŽEngelman 107 showed that bacteriorhodopsin forms aggregates in vesicles pre-

.pared from lipids of different chain length only when the mismatch is greater than
Ž . Ž .1 nm for thinner bilayers Fig. 3a and 0.4 nm for thicker bilayers Fig. 3b .

Likewise, protein aggregation at considerable hydrophobic mismatch was detected
w x w xwith other natural proteins 106,108,109 and synthesized polypeptides 108 .

w xIn Kralchevsky et al. 25 we proposed a theoretical approach to the membrane
mediate interaction between inclusions, which is based on an extension of the
theory of the lateral capillary forces described above. The extension is needed
because the mechanical properties of a lipid bilayer differ from the properties of a
common thin liquid film. For that reason, prior to the calculation of the capillary
force, an appropriate ‘sandwich’ model of the lipid membrane has been developed,
which is described briefly below.

6.2. Sandwich model of a lipid bilayer

A lipid bilayer drawn to scale is shown in Fig. 25. One can distinguish a
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hydrophobic hydrocarbon chain region sandwiched between two hydrophilic re-
gions of the lipid polar headgroups. It is generally accepted that a lipid bilayer
behaves as a two-dimensional̈ iscous fluid at body temperature. This two-dimen-
sional fluidity is manifested when inclusions are moving throughout the membrane
w x115 . On the other hand, the bilayer exhibits elastic properties in processes of
dilatation or bending, both of them being accompanied by extension or compres-
sion of the hydrocarbon chains of the lipids. In other words, a bilayer can exhibit

Ž .different rheological behavior fluid, elastic or hybrid depending on the mode of
deformation. This is not surprising, because a bilayer is neither a three-dimen-
sional, nor a two-dimensional continuum and the hydrocarbon region is neither an
isotropic liquid, nor a solid. A natural approach to the mechanics of such a

Ž .complex body is to use different constitutive relations connecting stress and strain
for the different independent modes of deformation. The displacement vector u

w xcan be expressed as a sum of components due to the independent modes 25 :

Ž .u s u q u q u 6.1stretching bending squeezing

In the case of bending or uniform stretching the bilayer is modeled as an
Žincompressible elastic body sandwiched between two Gibbs dividing surfaces mod-

.eling the two headgroup regions, see Fig. 25 . Then the following expressions for
w xthe bilayer elastic parameters have been obtained 25 :

Ž . Ž .K s 2s q 2 E q 3Łh q 3lh stretching elastic modulus 6.2s G

3 1 X 1 12 3Ž . Ž . Ž .k s 2k y B q B h q E h q lh bending elastic modulus 6.3t c 0 G4 2 2 3

1 1 3 Ž . Ž .k s 2k q B h y lh torsion elastic modulus 6.4t c 02 6

Here K is the stretching elastic modulus of the bilayer as a whole; s and E ares G

the interfacial tension and the Gibbs elasticity of a lipid monolayer on a hydrocar-
bon]water interface at the same temperature, composition of the aqueous phase
and area per molecule as for the bilayer; P is disjoining pressure which is expected

w xto originate mostly from the van der Waals forces 25 ; h is the thickness of the
hydrocarbon interior of the lipid bilayer, which is modeled as an incompressible
elastic plate having shear elasticity l; B s B q B

X
a q . . . is the series expansion0

of the bending moment of the bilayer surface for small values of the relative
dilatation a s D ArA of the interfacial area A; k and k are the bending andc c

Žtorsion elastic moduli of the bilayer surfaces to be distinguished from k and k ,t t

.which characterize the bilayer as a whole .
Ž .The deformation of a bilayer of non-disturbed thickness h around a cylindrical

Ž .inclusion say a transmembrane protein having a hydrophobic belt of width l0

Ž .consists of a variation of the bilayer thickness at planar midplane Fig. 26 . Such a
Ž .mode of deformation corresponds to the squeezing peristaltic mode observed with

w xthin liquid films 116 . The extension of the lipid hydrocarbon chains along the
Ž .z-axis is greater for molecules situated closer to the inclusion Fig. 26 . The region
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Ž . Ž w x.Fig. 25. A lipid lecithin bilayer drawn to scale after Israelachvili 117 .

Žof the hydrocarbon chains of a separate lipid molecule one of the many small
.rectangles depicted in Fig. 26 exhibit an elastic response to extension]compres-

sion; therefore each of them can be modeled as an incompressible elastic body. On
Ž .the other hand, lateral slip between molecules neighboring rectangles in Fig. 26

should not be accompanied with any elastic effects because of the two-dimensional
fluidity of the bilayer. Both these requirements are accounted for in the following

w xmechanical constitutive relation for the stress tensor t 25 :i j

u z
Ž . Ž . Ž .t s 2l ; t s ypd , i , j / z , z i , j s x , y , z 6.5z z i j i j

z

Here d is the Kroneker symbol, p has the meaning of pressure characterizing thei j

bilayer as a two-dimensional fluid; u is the z-component of the displacementz

vector u; the coordinate system is depicted in Fig. 26. The mechanical conditions
for hydrostatic equilibrium and incompressibility yield:

ti j
Ž . Ž .s 0, j s 1,2,3; = ? u s 0 x s x , x s y , x s z , 6.61 2 3

x i

Ž .where t is to be substituted from Eq. 6.5 . Thus the mechanical problem isi j

Ž .formulated: Eq. 6.6 represent a set of four equations for determining the four
unknown functions u , u , u and p. Considerations of symmetry imply that ux y z z

must be an odd function of z which is to satisfy the boundary condition

Ž . Ž .u s z x , y for z s hr2, 6.7z
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Ž .Fig. 26. Sketch of the deformation around a cylindrical inclusion membrane protein of radius r andc

width of the hydrophobic belt l ; h is the thickness of the non-disturbed bilayer and h is the mismatch0 c

Ž w x.between the hydrophobic regions of the inclusion and the bilayer after Kralchevsky et al. 25 .

Ž .where z s z x,y describes the shape of the upper bilayer surface. In Kralchevsky
w x Ž .et al. 25 it is proven that z x,y can be found as a solution of the equation

2 2 Ž .= z s q z 6.8II

Ž . y1which has the same form as Eq. 3.6 , but the capillary length q is defined in a
w xdifferent way 25 :

1 4l1r2X2 2 2 Ž . Ž .q s s y s y 8k 2lrh y Ł f 6.9˜ ˜½ 50 0 c2k hs̃c 0

Here s ' s q B
X
rh, with s being the surface tension of the non-disturbed˜0 0 0

Ž .planar bilayer far from the inclusion. The solution of Eq. 6.8 for a single

cylindrical inclusion along with the boundary condition for constant elevation,
Ž .z s h , at the contact line Fig. 26 , yieldsc

hc
Ž . Ž . Ž .z s K qr r G r 6.100 cŽ .K qr0 c

where, as usual, r is the radial coordinate and r is the radius of the inclusion. Forc

Ž .a couple of inclusions one can solve Eq. 6.8 in bipolar coordinates, which are
w xintroduced as explained in Section 4.2 above, see Kralchevsky et al. 25 for details.

6.3. Capillary interaction between inclusions

Ž .The force approach Section 4.1 can be applied to calculate the lateral capillary
force, F, between a couple of cylindrical inclusions, like those depicted in Figs. 3
and 26:
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Ž . Ž .F s 2U ? dl m ? s 6.11EII
c

Here C denotes the contact line; the multiplier 2 accounts for the presence of two
Ž . Ž .identical contact lines upper and lower on each inclusion; Eq. 6.11 looks like

Ž .Eq. 4.2 with the only difference that for a membrane the surface tension is a
w xtensor, s , rather than a scalar 25 :

mŽn. Ž .s s U s q a ns 6.12s m

Here s is the scalar surface tension, U is a unit tensor in the film surface, as m

Ž .m s 1,2 are the vectors of a local basis in the bilayer surface, n is the running
Ž . mŽn.unit normal to this surface Fig. 26 and the transversal components s are

mn w xrelated to the divergence of the tensor of the surface moments, M 25 :

mŽn. m¨ Ž 2 X . Ž .s s yM s y k q y B rh z 6.13,¨ c ,m

Ž . Ž .Combining Eqs. 6.11 ] 6.13 one can present the lateral capillary force as a sum
of contributions, F Žs . and F ŽB ., due to the surface tension and the interfacial

w xbending moment, respectively 25 :

Žs . ŽB . Ž .F s F q F 6.14

Žs . Ž . Ž .F s 2 dl U ? m s 6.15E II
c

ŽB . Ž 2 X . Ž .Ž . Ž .F s 2 k q y B rh dl m ? = z U ? n 6.16Ec s II
c

Ž .where = is a gradient operator in the curved surface z x,y . The latter equationss

show that the interfacial bending moment can also give a contribution to the
lateral capillary force: this conclusion has a general validity, i.e. it holds for any
interface, not only for lipid membranes. However, it is to be expected, that F ŽB . can
be comparable by magnitude with F Žs . only for interfaces of low tension, such as

Žmicroemulsions, some emulsions and biomembranes otherwise one could expect
Žs . ŽB ..that F 4 F .

ŽIn the case of two identical cylindrical inclusions in a lipid membrane like those
. Ž . Ž .in Fig. 3 one can introduce bipolar coordinates see Section 4.2 in Eqs. 6.15 and

Ž .6.16 to derive an expression for the non-zero x-component of the lateral capillary
w xforce F 25 :

2
p2 z

2Ž . Ž . Ž .F s y s y k q dv cosht cosv y 1 6.17˜ Hx 0 c c ž /a t tst0 c

Ž . Ž .Here a and t are defined by Eqs. 4.8 and 4.9 , where for two identical inclusionsc

of radius r we have set s s s s Lr2, r s r s r , t s t s t , with L beingc 1 2 1 2 c 1 2 c
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the distance between the axes of the two cylindrical inclusions. Note that the force
F can be attractive or repulsive depending on whether s ) k q2 or s - k q2.˜ ˜x 0 c 0 c

The respective interaction energy can be obtained by integration:

`
Ž . Ž . Ž .DV L s F L dL 6.18H x

L

w x Ž .In Kralchevsky et al. 25 an asymptotic formula for DV L has been derived,
which reads:

1Ž . Ž . Ž .K qr y qr K qL K qr1 c c 0 1 c22 2Ž . Ž . Ž .DV L s 4p s y k q qr h y 6.19˜0 c c c Ž . Ž . Ž .K qr q K qL K qr0 c 0 0 c

Ž . Ž .The numerical test of Eq. 6.19 shows that it gives DV L with a good accuracy.
Ž .To examine the predictions of Eq. 6.19 parameters of the bacteriorhodopsin

molecule have been used: r s 1.5 nm and l s 3.0 nm, see Fig. 26 for thec 0

notation. The following values of the bilayer mechanical parameters have been
used: l s 2 = 106 Nrm2, s s 35 mNrm and B

X
s y3.2 = 10y11 N; with h s 30

nm one calculates B
X
rh f y11 mNrm, s ' s q B

X
rh f 24 mNrm and qy1 f 3˜0 0

nm; in this case the term k q2 f 0.4 mNrm is negligible compared to s , see˜c 0

w xKralchevsky et al. 25 . The mismatch between the height of the cylindrical
inclusion, l , and the thickness of the non-disturbed layer, h, can be characterized0

Ž .by the quantity h s l y h r2, see Fig. 26. In the experiments of Lewis andc 0

w xEngelman 107 l was fixed and h was varied by using various lipids. The same0

experimental values of h have been used in our calculations: they are denoted on
the respective curves in Fig. 27a,b, all of them corresponding to the same value of

Ž . Ž .l to the same protein . The calculated curves of DVrkT vs. Lr 2 r for h ) 00 c c

are shown in Fig. 27a, whereas those for h - 0 are shown in Fig. 27b. In general,c

one sees that the strength of the lateral capillary attraction increases with the
< <increase of the mismatch magnitude h . Comparing the curves with the samec

Žmagnitude, but opposite signs of h h s 0.2 for the curve with h s 2.6 nm in Fig.c c

.27a, while h s y0.2 for the curve with h s 3.4 nm in Fig. 27b , one can conclude,c

Žthat has larger magnitude and longer range in the case of h - 0 bilayer thickerc

.than the inclusion . This result is consonant with the experimental observations of
w xLewis and Engelman 107 .

We compare DV with the energy of the thermal motion kT , for 258C. One can
see in Fig. 27 that for both h ) 0 and h - 0 the energy of capillary attraction isc c

larger than the thermal energy, except for h s 2.6 and 3.4 nm for which the
mismatch is rather small. In the two limiting cases of large mismatch, h s 1.55 and
3.75 nm, the interaction energy is large enough at close contact, DV s 5]10 kT , to
cause aggregation of the membrane proteins. It is worth noting that only in the

w xlatter two limiting cases have Lewis and Engelman 107 observed protein aggrega-
tion. A more detailed discussion of the comparison between theory and experiment

w xcan be found in Kralchevsky et al. 25,48 .
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w xFig. 27. Calculated in Kralchevsky et al. 25 interaction energy between two inclusions, DV, scaled by
kT , vs. the separation L, scaled by r ; the mechanical parameters of bilayer are l s 2 = 106 Nrm2,c

s s 35 mNrm and B
X

s y3.2 = 10y1 1 N; the geometrical parameters of bacteriorhodopsin molecule0

w xtaken from Henderson 90 are r s 1.5 nm, l s 3.0 nm and the values of h corresponds to thec 0

w x Ž . Ž .experiments in Lewis and Engelman 107 . a Thinner bilayer, h y l - 0; b thicker bilayer, h y l ) 0.0 0

7. Summary and conclusion

A general conclusion is that lateral capillary forces appear when the attachment
Ž .of particles or other bodies to a fluid phase boundary is accompanied with

perturbations in the interfacial shape; the capillary interaction itself is due to the
Žoverlap of such perturbations. The latter can appear around floating particles Fig.

. Ž .1a , around particles confined in a liquid film Fig. 1b and f , between inclusions in
Ž . Ž .lipid membranes Fig. 3 , between two vertical cylinders Figs. 4 and 17 , etc. In the

case of floating particles the deformations in the meniscus shape are due to the
particle weight. The ‘flotation’ capillary forces appearing in the latter case decrease
with the sixth power of the particle size and become immaterial for particles
smaller than approximately 10 mm. In all other cases the interfacial deformations
are due to the surface wetting properties of particles or bodies, which are partially
immersed in the two neighboring phases; the resulting ‘immersion’ capillary forces

Ž .can be large enough Fig. 2 to cause two-dimensional aggregation and ordering of
small colloidal particles, which has been observed in many experiments.
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The asymptotic law of the capillary interaction resembles the Newton law of
Ž .gravity, or Coulomb’s law in electrostatics, Eq. 2.3 . The latter analogy enables one

to introduce capillary charges of the attached particles, which can be both positive
and negative. This analogy can be further extended to the capillary interaction
between particle and wall, which resembles the image force in electrostatics, see
Fig. 8. If a particle is moving bound to an interface under the action of a capillary
force, one can determine the surface drag coefficient and the surface shear

Žviscosity supposedly the magnitude of the capillary force is known Figs. 9, 11 and
.12 .
There are two equivalent theoretical approaches to the lateral capillary interac-

tions: energy and force approaches. Both of them require the Laplace equation of
capillarity to be solved and the meniscus profile around the particles to be
determined. The energy approach accounts for contributions due to the increase of

Ž .the meniscus area, gravitational energy andror energy of wetting, see Eq. 3.13 .
The second approach is based on calculating the net force exerted on the particle
which can originate from the hydrostatic pressure, interfacial tension and bending

Ž . Ž . Ž . Ž .moment, see Eqs. 4.1 ] 4.3 and Eqs. 6.14 ] 6.16 . In the case of small overlap of
the interfacial perturbations, created by two interacting bodies, the superposition
approximation can be combined with the energy approach to derive an asymptotic
formula for both flotation and immersion interaction, see Sections 3.2 and 3.3. This

Ž .formula has been found to agree well with the experiment Figs. 5 and 7 . The
Ž .force approach provides an unified derivation of the same formula Section 4.2 .

Capillary interactions between particles bound to spherical interfaces are also
Ž .considered Section 5 . Due to the spherical geometry and restricted area the

capillary forces in the latter case exhibit some differences from those in the case of
planar interface. In particular, it turns out that the capillary force between

Židentical particles can have a non-monotonic behavior repulsion at long distances
.and attraction at short distances unlike the respective force at flat interfaces,

which is always attractive.
Finally, a similar approach can be applied to quantify the forces between

Ž . Ž .inclusions transmembrane proteins in lipid membranes Section 6 . Such inclu-
sions also give rise to deformations in the lipid membranes, which can be described

Žtheoretically in the framework of a mechanical model of the lipid bilayer the
.‘sandwich’ model , which accounts for the ‘hybrid’ rheology of a lipid bilayer

Ž .neither elastic body nor fluid , see Section 6.2. Lateral capillary forces can appear
Ž .also between concave andror convex formations ‘dimples’ and ‘pimples’ in the

membrane of a living cell, which are due to mechanical stresses exerted by
Ž .microfilaments and microtubules belonging to the cytoskeleton Fig. 20 .

In conclusion, the lateral capillary forces can appear in a variety of systems with
characteristic particle size from 1 cm down to 1 nm; in all cases the capillary

Ž .interaction has a similar origin overlap of interfacial deformations and is subject
to a unified theoretical treatment.
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